

Тахеометры электронные DS-201i, DS-202i, DS-203i, DS-205i

МЕТОДИКА ПОВЕРКИ

МП АПМ 62-16

Настоящая методика поверки распространяется на тахеометры электронные DS-201i, DS-202i, DS-203i, DS-205i (далее – тахеометры), производства «TOPCON CORPORATION», Япония, и устанавливает методику их первичной и периодической поверки.

Интервал между поверками - 1 год.

1. Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

		№ пункта	Проведение операций при		
$N_{\underline{0}}$	Наименование операции	документа	первичной	периодической	
п/п		по поверке	поверке	поверке	
1	Внешний осмотр	7.1	Да	Да	
2	Опробование, проверка работоспособно-	7.2	Да	Да	
	сти функциональных режимов, идентифи-				
	кация программного обеспечения			4"	
3	Определение метрологических характери-	7.3			
	стик				
3.1	Определение абсолютной и средней квад-	7.3.1	Да	Да	
	ратической погрешности измерений рас-			***	
	стояний				
3.2	Определение абсолютной и средней квад-	7.3.2	Да	Да	
	ратической погрешности измерений угла				

2. Средства поверки

При проведении поверки должны применяться эталоны и вспомогательные средства поверки, приведенные в таблице 2

Таблица 2

№ пункта доку-	Наименование эталонов, вспомогательных средств поверки и их основные		
мента по поверке	метрологические и технические характеристики		
7.3.1	Фазовый светодальномер (тахеометр электронный) 1 разряда по ГОСТ Р 8.750-2011		
7.3.2	Стенд универсальный коллиматорный ВЕГА УКС (рег. № 44753-16)		
1.3.4	Стенд универсальный коллиматорный БЕГА УКС (рег. № 44755-10)		

Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью, удовлетворяющей требованиям настоящей методики.

3. Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы, имеющие достаточные знания и опыт работы с тахеометрами.

4. Требования безопасности

При проведении поверки, меры безопасности должны соответствовать требованиям по технике безопасности согласно эксплуатационной документации, правилам по технике безопасности, действующие на месте проведения поверки и требованиям МЭК-825 «Радиационная безопасность лазерной продукции, классификация оборудования, требования и руководство для потребителей», а также правилам по технике безопасности при производстве топографогеодезических работ ПТБ-88.

5. Условия поверки

5.1. Поверка тахеометров может быть проведена в полевых или лабораторных услови-

При проведении поверки в лабораторных условиях должны соблюдаться, следующие нормальные условия измерений:

- температура окружающей среды, °С
- относительная влажность воздуха, %, не более
- атмосферное давление, мм рт. ст. (кПа)

630...800
(84,0...106,7)

- изменение температуры окружающей среды во время поверки, °С/ч, не более

Полевые измерения (измерения на открытом воздухе) должны проводиться при отсутствии осадков, порывов ветра и при температуре окружающей среды от минус 20 до плюс 50 °C

6. Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- проверить наличие действующих свидетельств о поверке на средства измерений;
- тахеометр и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией;
- тахеометр и средства поверки должны быть выдержаны при нормальных условиях не менее
 1 ч.

7. Проведение поверки

7.1. Внешний осмотр

При внешнем осмотре должно быть установлено соответствие тахеометра следующим требованиям:

- отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики тахеометра;
- наличие маркировки и комплектности согласно требованиям эксплуатационной документации на тахеометр;
 - оптические системы должны иметь чистое и равномерно освещенное поле зрения.

Если перечисленные требования не выполняются, тахеометр признают негодным к применению, дальнейшие операции поверки не производят.

7.2. Опробование, проверка работоспособности функциональных режимов, идентификация программного обеспечения

- 7.2.1. При опробовании должно быть установлено соответствие тахеометра следующим требованиям:
 - отсутствие качки и смещений неподвижно соединенных деталей и элементов;
 - плавность и равномерность движения подвижных частей;
 - правильность взаимодействия с комплектом принадлежностей;
 - работоспособность всех функциональных режимов и узлов;
- дискретность отсчета измерения углов и расстояний должны соответствовать эксплуатационной документации.
- 7.2.2. Проверку идентификационных данных программного обеспечения проводить следующим образом:

Идентификация программного обеспечения (далее – ПО) «BASIC» осуществляется следующим образом:

- 1. Включить поверяемый тахеометр
- 2. Через интерфейс пользователя в главном меню выбрать меню «Версия»

В появившемся диалоговом окне будет отображено наименование и номер версии ПО. Данные, полученные по результатам идентификации ПО, должны соответствовать таблице 3.

ле:

Идентификационное наименование ПО	BASIC		
Номер версии (идентификационный номер ПО), не ниже	5.26EN 07		

Если перечисленные требования не выполняются, тахеометр признают негодным к применению, дальнейшие операции поверки не производят.

7.3. Определение метрологических характеристик

7.3.1. Определение абсолютной и средней квадратической погрешности измерений рас-

Абсолютная и средняя квадратическая погрешности измерений расстояний определяется путем сличения с эталонным тахеометром 1го разряда по ГОСТ Р 8.750-2011.

Необходимо провести многократно, не менее 10 раз, измерения не менее 3 значений расстояний, действительные длины которых расположены в заявляемом диапазоне измерений расстояний поверяемого тахеометра и определены с помощью эталонного тахеометра 1го разряда по ГОСТ Р 8.750-2011.

Абсолютная погрешность измерений (при доверительной вероятности 0,95) расстояний определяется по формуле:

$$\Delta S = \left(\frac{\sum_{i=1}^{n} S_{ij}}{n_{j}} - S_{0j}\right) \pm 2 \cdot \sqrt{\frac{\sum_{i=1}^{n} \left(S_{ij} - \frac{\sum_{i=1}^{n} S_{ij}}{n_{j}}\right)^{2}}{n_{j} - 1}},$$

где ΔS - абсолютная погрешность измерений j-го расстояния, мм;

 $S_{\theta j}$ - эталонное (действительное) значение j-го расстояния, полученное по эталонному тахеометру;

 Si_{j} - полученное значение j-го расстояния i-м приемом по поверяемому тахеометру;

 n_j - число приемов измерений j-го расстояния.

Средняя квадратическая погрешность измерений каждой линии вычисляется по форму-

$$m_{S_i} = \sqrt{\frac{\sum_{i=1}^{n_j} (S_{0_j} - S_{i_j})^2}{n_j}},$$

 $m_{S_{i}}$ - средняя квадратическая погрешность измерения j-го расстояния.

Значение абсолютной погрешности (при доверительной вероятности 0,95) и средней квадратической погрешности измерений расстояний должны соответствовать значениям, приведённым в Приложении к настоящей методике поверки.

Если требование п.7.3.1. не выполняется, тахеометр признают непригодным к применению, дальнейшие операции поверки не производят.

7.3.2. Определение абсолютной и средней квадратической погрешности измерений угла

Абсолютная и средняя квадратическая погрешности измерений углов определяется на эталонном коллиматором стенде путем многократных измерений (не менее четырех циклов измерений, состоящих из измерений в положении «Круг право» (КП) и «Круг лево» (КЛ)) горизонтального угла $(90\pm30)^\circ$ и вертикального угла (50 солее $\pm20^\circ$).

Абсолютная погрешность измерений (при доверительной вероятности 0,95) горизонтального и вертикального углов вычисляется по формуле:

$$\Delta_{vi} = \left(\frac{\sum_{i=1}^{n} V_{ij}}{n} - V_{0j}\right) \pm 2 \cdot \sqrt{\frac{\sum_{i=1}^{n} (V_{ij} - \frac{\sum_{i=1}^{n} V_{ij}}{n})^{2}}{n - 1}},$$

где Δ_{vi} - абсолютная погрешность измерений горизонтального (вертикального) угла, ";

 V_{0j} - значение горизонтального (вертикального) угла по эталонному коллиматорному стенду, взятое из свидетельства о поверке на него, ...";

 $V_{\it ij}$ - значение горизонтального (вертикального) угла по поверяемому тахеометру, ". n - число измерений.

Средняя квадратическая погрешность измерений горизонтального и вертикального углов вычисляется по формуле:

$$\mathbf{m}_{\mathbf{v}_i} = \sqrt{\frac{\sum_{i=1}^{n} V_i^2}{n}},$$

где m_{Vi} - средняя квадратическая погрешность измерений горизонтального (вертикального) угла, ";

 V_i - разность между измеренным поверяемым тахеометром значением i-го горизонтального (вертикального) угла и значением i-го горизонтального (вертикального) угла по эталонному коллиматорному стенду, взятому из свидетельства о поверке на него "; n - число измерений.

Значения абсолютной погрешности (при доверительной вероятности 0,95) и средней квадратической погрешности измерений углов не должны превышать значений, указанных в Приложении к настоящей методике поверки.

Если требование п.7.3.2. не выполняется, тахеометр признают непригодным к применению, дальнейшие операции поверки не производят.

8. Оформление результатов поверки

- 8.1. Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 7 настоящей методики поверки.
- 8.2. При положительных результатах поверки, тахеометр признается годным к применению и на него выдается свидетельство о поверке установленной формы. Знак поверки наносится на свидетельство о поверке в виде наклейки и / или поверительного клейма.
- 8.3. При отрицательных результатах поверки, тахеометр признается непригодным к применению и на него выдается извещение о непригодности установленной формы с указанием основных причин.

Руководитель отдела ООО «Автопрогресс – М»

В.А. Лапшинов

ПРИЛОЖЕНИЕ (обязательное)

Метрологические характеристики

Наименование характеристики		Значение			
Модификация		DS-202i	DS-203i	DS-205i	
Диапазон измерений:			•		
- углов, °		от 0 до 360			
- расстояний, м, не менее:					
- отражательный режим		от 1,3 до 6000,0			
- отражательный режим на отражательную плёнку		от 1,3 до 500,01)			
- диффузный режим		от 0,3 до 1000,02)			
Границы допускаемой абсолютной погрешности			1 m 2 m		
измерений углов (при доверительной вероятности 0,95),	±2	±4	±6	±10	
"					
Допускаемая средняя квадратическая погрешность	1	2	2		
измерений углов, "	1	2	3	5	
Границы допускаемой абсолютной погрешности изме-					
рений расстояний (при доверительной вероятности					
0,95), мм:					
- отражательный режим		$\pm 2 \cdot (1,5+2,0\cdot10^{-6}\cdot D)$			
- отражательный режим на отражательную плёнку		$\pm 2 \cdot (2 + 2 \cdot 10^{-6} \cdot D)$			
- диффузный режим:			,		
от 0,3 до 200,0 м включ.		$\pm 2 \cdot (2 + 2 \cdot 10^{-6} \cdot D)$			
св. 200 до 350 м включ.		$\pm 2 \cdot (5 + 10 \cdot 10^{-6} \cdot D)$			
св. 350 до 1000 м включ.		$\pm 2 \cdot (10 + 10 \cdot 10^{-6} \cdot D)$			
	где D – измеряемое расстояние, мм				
Допускаемая средняя квадратическая погрешность из-					
мерений расстояний, мм:					
- отражательный режим (1 призма)		1,5+2,0·10 ⁻⁶ ·D			
- отражательный режим на отражательную плёнку		2+2·10 ⁻⁶ ·D			
- диффузный режим:					
от 0,3 до 200,0 м включ.		2+2·10 ⁻⁶ ·D			
св. 200 до 350 м включ.		5+10·10 ⁻⁶ ·D			
св. 350 до 1000 м включ.		10+10·10 ⁻⁶ ·D			
		где D – измеряемое расстояние, мм			

 $^{^{1)}}$ - Измерения на отражающую плёнку (90×90) мм $^{2)}$ - Измерения на поверхность соответствующей белой поверхности пластины Кодак с коэффициентом отражения 90% по ГОСТ 8.557-2007.