Федеральное государственное унитарное предприятие Всероссийский научно-исследовательский институт метрологической службы (ФГУП «ВНИИМС»)

СОГЛАСОВАНО

УТВЕРЖДАЮ

Генеральный директор

АО «ИПО «Спецэлектромеханика»

Ю.М. Сарапулов

2016 г.

Зам. директора ФГУП «ВНИИМС»

по производственной метрологии

Н.В.Иванникова

M.H.

narghe 2016 r.

Комплексы программно-технические микропроцессорной системы автоматизации пожаротушения "Шнейдер Электрик"

Методика поверки

ЯКДГ.42609.021МП

Москва 2016 ЯКДГ.42609.021 МП

СОДЕРЖАНИЕ

1 ОБЩИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ РАСПРОСТРАНЕНИЯ	3
2 ОПЕРАЦИИ ПОВЕРКИ	4
3 СРЕДСТВА ПОВЕРКИ	5
4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	5
5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
6 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ	6
7 ПОДГОТОВКА К ПРОВЕРКЕ	6
8 ПРОВЕДЕНИЕ ПОВЕРКИ	6
8.1 Рассмотрение документации	6
8.2 Внешний осмотр	6
8.3 Проверка электрического сопротивления защитного заземления	6
8.4 Проверка электрического сопротивления изоляции	7
8.5 Опробование	7
8.6 Проверка (контроль) погрешностей ИК ПТК МПСА ПТ	7
8.6.1 Проверка погрешности ИК аналого-цифрового преобразования сигналов	
постоянного тока	7
8.6.2 Проверка погрешности ИК сигналов термопреобразователей сопротивле-	
К ИН	9
8.6.3 Проверка погрешности ИК комплекса цифро-аналогового преобразования сигналов постоянного тока	10
9 ПРОВЕРКА ЗАЩИТЫ ОТ НЕСАНКЦИОНИРОВАННОГО ДОСТУПА	11
10 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ.	12
ПРИЛОЖЕНИЕ А. Комплексы программно-технические микропроцессорной си-	
стемы автоматизации пожаротушения «Шнейдер Электрик».	
Состав и характеристики измерительных каналов	13
ПРИЛОЖЕНИЕ Б. Форма документа «Перечень каналов ПТК МПСА ПТ, подлежащих	1.0
TORENKE))	16

1 ОБЩИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

Настоящая методика распространяется на комплексы программно-технические микропроцессорной системы автоматизации пожаротушения "Шнейдер Электрик" (далее – комплексы, или ПТК МПСА ПТ) и устанавливает объем, условия поверки комплексов, методы и средства экспериментального исследования метрологических характеристик измерительных каналов комплекса (ИК) и порядок оформления результатов поверки.

Интервал между поверками - 2 года.

Комплексы входят в состав систем автоматизации нефтеперекачивающих станций и построены на базе универсальных промышленных контроллеров серии PLC Modicon (Госреестр № 18649-09), Modicon M340 (Госреестр № 38403-08). ПТК МПСА ПТ являются агрегатными, проектно-компонуемыми, число и виды измерительных каналов (далее – ИК) которых определяются конкретным проектом и вносятся в формуляр комплекса.

Под измерительным каналом (далее – ИК) понимается тракт преобразования значения входного сигнала (силы постоянного тока, сопротивления от термопреобразователей сопротивления), поступающего с выхода датчиков, в отображаемое на верхнем уровне комплекса значение этой величины, т.е. тракт «выходной сигнал датчика - система отображения (визуализации) информации».

ИК выходных аналоговых сигналов преобразует входной код в соответствующее ему значение выходной силы постоянного тока.

Измерительные каналы (ИК) комплексов в общем случае состоят из:

- 1) промежуточных измерительных преобразователей (ИПП), осуществляющих нормализацию сигналов и гальваническую развязку цепей первичных измерительных преобразователей (исполнительных устройств) и входных цепей аналоговых модулей ввода/вывода;
- 2) аналоговых модулей ввода/вывода, реализующих аналого-цифровые и цифроаналоговые преобразования - модулей аналоговых серии ВМХ (Госреестр № 49662-12) и модули аналоговые из состава контроллеров программируемых логических PLCModicon серии ModiconQuantum (Госреестр № 18649-09). Модули предназначены для совместной работы по внешней шине с контроллерами программируемыми логическими ModiconQuantum и ModiconM340;
- 3) АРМ оператора, предназначенного для визуализации результатов измерений сигналов от датчиков технологического процесса, формирования отчетных документов и хранения архивов данных.

Перечень возможных промежуточных измерительных преобразователей в составе ИК комплексов приведен в таблице A.1. Перечень возможных модулей ввода аналоговых сигналов приведен в таблице A.2.

Перечень возможных модулей вывода аналоговых сигналов приведен в таблице А.3.

ПТК МПСА ПТ подлежат первичной и периодической поверке в части измерительных каналов (ИК), используемых в сфере государственного регулирования обеспечения единства измерений.

Примечание — При выпуске из производства перед отгрузкой заказчику допускается проводить поверку комплексов, при этом результаты измерений могут оцениваться без применения SCADA-системы, в единицах электрических параметров либо инженерных единицах, без учета линий связи.

На поверку представляется перечень ИК комплекса, подлежащих поверке, с указанием диапазонов измерений и отображения результатов, а также предел допускаемой погрешности при поверке. Рекомендуемая форма представления заявки на поверку приведена в Приложении Б.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 Перечень операций, которые должны проводиться при первичной и периодической поверке комплексов, приведен в таблице 1.

Таблица 1

таолица т				
Наименование операции	№ пункта в	Проведение операции при		
тимисториять сторидат	методике	первичной поверке *	периодической поверке	
1 Рассмотрение документации	8.1	Да	Да	
2 Внешний осмотр	8.2	Да	Да	
3 Проверка электрического сопротивления защитного заземления	8.3	Да Нет Да	Да	
4 Проверка электрического сопротивления изоляции	8.4	Да	Да	
5 Опробование	8.5	Да	Да	
6 Проверка (контроль) погрешно- стей ИК ПТК МПСА ПТ	8.6	Да	Да	
6.1 Проверка погрешности ИК аналого- го-цифрового преобразования сигналов постоянного тока	8.6.1	Да	Да	
6.2 Проверка погрешности ИК сигналов от термопреобразователей сопротивления	8.6.2	Да	Да	
6.3 Проверка погрешности ИК цифро- аналогового преобразования сигналов постоянного тока	8.6.3	Да	Да	
7 Проверка защиты от несанкционированного доступа	9	Да	Да	

Примечания

Результаты поверки считаются положительными, если погрешность ИК в условиях поверки не превышает предела допускаемых значений.

ИК комплекса, не используемые в сфере государственного регулирования обеспечения единства измерений, подлежат первичной и периодической калибровке. Калибровка ИК может проводиться по методике поверки на аналогичные им ИК.

Далее в тексте применяется только термин "поверка", под которым подразумевается поверка или калибровка.

^{*}Под первичной поверкой подразумевается поверка при выпуске из производства, после ремонта, при вводе нового ИК, при переустановке ПО, подлежащего метрологическому контролю.

¹⁾ при первичной поверке комплексов после переустановки программного обеспечения, подлежащего метрологическому контролю, операции по пп.1-4 не выполняются.

²⁾ при вводе новых каналов в состав комплекса первичная поверка проводится по пп.1-2, 4-9 в объёме вносимых изменений.

3 СРЕДСТВА ПОВЕРКИ

3.1 Эталоны и вспомогательные технические средства, используемые при выполнении операций, указанных в таблице 1, приведены в таблице 2

Таблица 2

Средство измерений	Тип	Основные характеристики
Калибратор- измеритель унифи- цированных сигналов эталонный	ИКСУ-260	Воспроизведение и измерение сигналов силы постоянного тока в диапазоне от 0 до 25 мА, пределы допускаемой основной погрешности $\pm (10^{-4} \cdot I_{\text{Воспр/изм}} + 1 \text{ мкА});$ Пределы допускаемой абсолютной погрешности термопреобразователей сопротивления типов
		100Π, Pt100, 100M, Cu100 ±0,05 °C.
Магазин сопротивлений	P4831	Класс точности 0,02/2·10 ⁻⁶
Мегаомметр	E6-16	Измерение электрического сопротивления в диапазонах: от 100 кОм до 20 МОм, от 1 МОм до 200 МОм \pm (1 % от $R_{\text{показ}}$ + 1,5% от $R_{\text{диап}}$)
Миллиомметр	E6-18/1	Измерение электрического сопротивления в диапазоне до 1 Ом \pm 1,5 % от диапазона

Примечания

- 1 Допускается использовать другие эталоны, с метрологическими характеристиками не хуже указанных в таблице 2.
- 2 Применяемые при поверке эталоны должны работать в условиях поверки, оговоренных в соответствующей эксплуатационной документации.
- 3 Все эталоны, используемые при поверке, должны быть поверены и иметь соответствующие свидетельства.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 Поверка комплексов должна выполняться специалистами, имеющими квалификацию поверителей, аттестованных в качестве поверителей средств измерений электрических величин в соответствии с ПР 50.2.012 "ГСИ. Порядок аттестации поверителей средств измерений", прошедшими инструктаж по технике безопасности и освоившими работу с системой.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1 При проведении поверки должны выполняться требования по безопасности, изложенные в эксплуатационной документации используемых средств поверки и комплекса и общих требований электробезопасности ("Правила технической эксплуатации электроустановок потребителей", "Правила техники безопасности при эксплуатации электроустановок потребителей", ГОСТ 12.2.007.0-75, ГОСТ 12.1.019-2009, ГОСТ Р 51350-99).

Персонал, проводящий поверку, должен проходить инструктаж по технике безопасности на рабочем месте и иметь группу по технике электробезопасности не ниже 2.

6 УСЛОВИЯ ПОВЕРКИ

6.1 Условия проведения поверки

температура окружающего воздуха, ⁰ С от 15 до 25 (температура нормальных условий 25^{0} C)

относительная влажность воздуха, % от 30 до 75

атмосферное давление, кПа от 84 до 106

Перед проведением поверки средства поверки и вспомогательное оборудование должны быть подготовлены к работе в соответствии с указаниями в эксплуатационной документации.

7 ПОДГОТОВКА К ПРОВЕРКЕ

- 7.1 Перед поверкой ИК комплекса следует убедиться в том, что число выводимых на экран АРМ оператора цифр индицируемого параметра достаточно для оценки погрешности ИК.
- 7.2 Перед проведением поверки проводится обследование фактических условий и сети питания в помещениях, где размещены измерительные компоненты ИК комплекса. Обследование условий работы ИК проводится непосредственно перед проведением экспериментальной проверки погрешности, и в течение ее выполнения контролируется их сохранность (стабильность).

8 ПРОВЕДЕНИЕ ПРОВЕРКИ

8.1 Рассмотрение документации

Проверяют наличие следующих документов:

- перечня ИК, входящих в состав комплекса (по форме приложения Б), подлежащих поверке, с указанием заводских номеров комплектующих их измерительных компонентов;
- эксплуатационной документации на измерительные компоненты в составе ИК и на комплекс в целом:
 - протоколов предыдущей поверки (при первичной поверке не требуются);
- технической документации и свидетельств о поверке эталонов, используемых при поверке ПТК МПСА ПТ.

8.2 Внешний осмотр

Проводят осмотр ПТК МПСА ПТ. Комплекс не допускается к дальнейшей поверке ИК, если у его составных частей обнаружено неудовлетворительное крепление разъемов, штепселей, гнезд, зажимов для подключения внешних цепей, следы обугливания изоляции внешних токоведущих частей, грубые механические повреждения наружных частей устройств и прочие повреждения.

Следует убедиться в том, что надписи и обозначения нанесены на компоненты комплекса четко и соответствуют требованиям проектной документации.

8.3 Проверка электрического сопротивления защитного заземления

Электрическое сопротивление между болтом (клеммой) заземления и корпусом проверяется у каждого шкафа, входящего в комплект комплекса.

Проверка электрического сопротивления выполняется с помощью миллиомметра.

Результаты проверки считаются положительными, если измеренное значение электрического сопротивления не более 0,1 Ом.

8.4 Проверка электрического сопротивления изоляции

Электрическое сопротивление изоляции между цепями питания и корпусом проверяется у каждого типа ИК, ПК автоматизированного рабочего места (APM), входящего в комплект комплекса.

Электрическое сопротивление изоляции измеряется мегаомметром с номинальным напряжением 500 В между каждой из клемм (контактов) разъема сетевого питания, клеммами ПТК и клеммой защитного заземления. Отсчет показаний проводят по истечении 1 минуты после начала измерения.

Результаты проверки считаются положительными, если все измеренные значения электрического сопротивления составили не менее 20 МОм.

8.5 Опробование

Опробование комплекса осуществляется по методике, изложенной в соответствующем разделе его руководства по эксплуатации. Допускается совмещать опробование с процедурой проверки погрешностей измерительных каналов в соответствии с настоящей методикой.

Результаты проверки считаются положительными, если ПТК МПСА ПТ функционирует в полном соответствии с руководством по эксплуатации.

Проверку программного обеспечения ПТК МПСА ПТ осуществляют в соответствии с документацией. Идентификационные данные используемого в комплексе ПО не должны противоречить данным таблицы 3.

Таблица 3 - Идентификационные данные внешнего программного обеспечения ПО «ПТК МПСА ПТ «Шнейдер Электрик»

Идентификационные данные	Значение		
Идентификационное наименование	OPC Factory Server -[Server Status]		
программного обеспечения			
Номер версии (идентификационный	Не ниже V3.50.2905.0		
номер) программного обеспечения			
Цифровой идентификатор программ-	Номер версии		
ного обеспечения (контрольная сумма			
исполняемого кода)			

8.6 Проверка (контроль) погрешностей ИК ПТК МПСА ПТ

При отклонении условий проведения поверки от нормальных для средств измерений, входящих в состав комплекса, оценивают предел допускаемых значений погрешности каждого ИК в этих условиях.

Для каждого средства измерений, входящего в состав ПТК МПСА ПТ рассчитывают пределы допускаемых значений погрешностей в условиях поверки путем учета основной и дополнительной погрешностей в соответствии с условиями эксплуатации на момент поверки.

8.6.1 Проверка погрешности ИК аналого-цифрового преобразования сигналов постоянного тока

Оценивание погрешности ИК с линейной зависимостью выходного кодового сигнала от входного аналогового сигнала постоянного тока проводят в изложенной ниже последовательности:

- собирают схему измерений согласно рисунку 1 (для ИК сопротивления постоянному току – согласно рисунку 2);

- выбирают 5 проверяемых точек Zi, i = 1, 2, 3, 4, 5, равномерно распределенных по диапазону измеряемого параметра ИК (5 %, 25 %, 50 %, 75 % и 95-100 % от диапазона измерения);
- назначают пределы допускаемой основной или рассчитывают пределы допускаемой приведенной погрешности уdop ИК в условиях поверки;
- на вход ИК через линию связи подают от калибратора значение сигнала Xi, соответствующее значению Zi;
- считывают значение выходного сигнала Үі ИК в единицах измеряемого физического параметра.

Если при неизменном значении входного сигнала показания на мониторе APM не изменяются в течение 1 минуты, то в протокол заносят это значение Yi. Если наблюдается изменение младшего разряда, то в протокол заносят минимальное и максимальное значения показаний, отмеченные на интервале времени 1 мин, и за результат измерений принимается одно из указанных выше значений, наиболее отстоящее от соответствующего заданному на калибраторе значению измеряемой величины. Единица младшего разряда числа, считываемого на мониторе в качестве результата измерений при поверке должна быть не более 1/5 от предела допускаемых значений основной погрешности ИК.

- для каждой проверяемой точки рассчитывают значение приведенной погрешности:

$$\gamma i = \frac{(Yi - Xi)}{(YB - YH)} \times 100 \%$$

Үн и Үв – нижняя и верхняя граница измеряемого диапазона соответственно. Если для каждой проверяемой точки выполняется неравенство

где γ dop - пределы допускаемой приведенной погрешности γ dop ИК основной или в условиях поверки),

ИК признают годным по результатам проверки.

Результаты проверки погрешности ИК заносят в таблицу, составленную по форме таблицы 4.

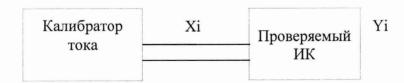


Рисунок 1 - Электрическая схема поверки ИК комплексов с линейной зависимостью кода от входного аналогового сигнала

Таблица 4. Диапазон измерений Yн= Yв=

Наименов. ИК, тип и № модуля	Проверяе- мая точка, % диап.	Проверяе- мая точка, ед. физ. па- раметра Y(.Xi)	Задано на входе Хі, мА	Измерено на АРМ, Үі	Погреш- ность ИК, үі, %	Предел допус- каемой привед. погрешности ИК, γdopi, %

^{*} Форма таблицы – рекомендуемая

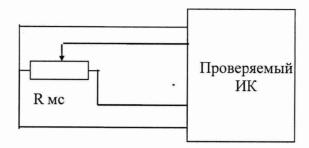
8.6.2 Проверка погрешности ИК сигналов термопреобразователей сопротивления Оценивание погрешности ИК приема сигналов от термопреобразователей сопротивления проводят в изложенной ниже последовательности:

- собирают схему измерений согласно рисунку 2;
- выбирают 5 проверяемых точек Твх.і, равномерно распределенных по диапазону измерения ИК (температуры), например, 5, 25, 50, 75 и 95 % диапазона;
- назначают пределы допускаемой основной или рассчитывают пределы допускаемой абсолютной погрешности Δdop ИК в реальных условиях поверки,
- находят для используемого типа термопреобразователей сопротивления по таблицам HCX значения сопротивлений Xi в Ом для каждой проверяемой точки Твх.i;
- на вход ИК для каждой проверяемой точки подают от магазина сопротивления значение сигнала Xi:
 - считывают значение выходного сигнала Твых.і ИК, выраженное в °С.

Примечание –допускается задавать на вход ИК сигналы от калибратора электрических сигналов в режиме имитации сигналов термопреобразователей сопротивления.

Если при неизменном значении входного сигнала показания на мониторе APM не изменяются в течение 1 минуты, то в протокол заносят это значение Твых. і. Если наблюдается изменение младшего разряда, то в протокол заносят минимальное и максимальное значения показаний, отмеченные на интервале времени 1 мин, и за результат измерений принимается одно из указанных выше значений, наиболее отстоящее от соответствующего заданному на магазине сопротивлений значению измеряемой величины. Единица младшего разряда числа, считываемого на мониторе в качестве результата измерений при поверке должна быть не более 1/5 от предела допускаемых значений основной погрешности ИК.

- для каждой проверяемой точки диапазона изменения входного сигнала рассчитывают значение абсолютной погрешности:


$$\Delta i = T$$
вых. $i - T$ вх. i ;

если для каждой проверяемой точки выполняется неравенство

 $|\Delta i| \leq |\Delta dop|$,

ИК признают годным по результатам проверки.

Результаты проверки погрешности ИК заносят в таблицу, составленную по форме таблицы 5.

Rмс - магазин сопротивлений Рисунок 2 - Электрическая схема поверки ИК комплекса сигналов термопреобразователей сопротивления

Таблица 5.		
Диапазон измерений	$T_{\rm H} =$	 Тв=
Градуировка ТС		

Наименов. ИК,	Проверяемая точка		Измерено на	Погрешность		
тип и № модуля	Твх.і,	Хі, Ом	APM,	ИК	∆dop, %	
	°C	711, OM	Твых.і, °С	Δi, °C		
		5				

^{*} Форма таблицы – рекомендуемая

8.6.3 Проверка погрешности ИК комплекса цифро-аналогового преобразования сигналов постоянного тока

Оценивание погрешности ИК с линейной зависимостью выходного аналогового сигнала от входного кодового сигнала постоянного тока проводят в изложенной ниже последовательности:

- собирают схему измерений согласно рисунку 3;
- выбирают 5 проверяемых точек Zi, i=1, 2, 3, 4, 5, равномерно распределенных по диапазону воспроизводимого параметра ИК (5 %, 25 %, 50 %, 75 % и 95-100 % от диапазона воспроизведения);
- назначают пределы допускаемой основной или рассчитывают пределы допускаемой приведенной погрешности γdop ИК в реальных условиях поверки;
- на выходе ИК (ЦАП) с APM оператора устанавливают значение сигнала Xi, соответствующее значению Zi;
- - считывают значение выходного сигнала Yi ИК в единицах измеряемого физического параметра (ма, В). Если при неизменном значении выходного сигнала показания на мультиметре (калибраторе в режиме мультиметра) не изменяются в течение 1 минуты, то в протокол заносят это значение Yi. Если наблюдается изменение младшего разряда, то в протокол заносят минимальное и максимальное значения показаний, отмеченные на интервале времени 1 мин, и за результат измерений принимается одно из указанных выше значений,

наиболее отстоящее от соответствующего сгенерированного (установленного) значения измеряемой величины. Единица младшего разряда числа, считываемого на мультиметре в качестве результата измерений при поверке должна быть не более 1/5 от предела допускаемых значений основной погрешности ИК.

- для каждой проверяемой точки рассчитывают значение приведенной погрешности:

$$\gamma i = \frac{(Yi - Xi)}{(YB - YH)} \times 100 \%$$

Yн и YТв – нижняя и верхняя граница диапазона выходных сигналов, соответственно.

Если для каждой проверяемой точки выполняется неравенство

ИК признают годным по результатам проверки.

Результаты проверки погрешности ИК заносят в таблицу, составленную по форме таблицы 6.

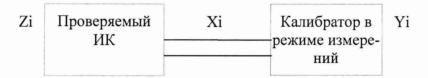


Рисунок 4 - Электрическая схема поверки ИК комплекса с линейной зависимостью выходного аналогового сигнала от входного кода

Таблица7.

Диапазон воспроизведения Үн = ____ Үв=___

Наименов. ИК, тип и № модуля	Проверяемая точка, % диап. или знач. кода	Номинальное значение тока на выходе, Xi, мA	Измерено на выходе Yi, мА	Погрешность ИК, үі, %	Предел допуска- емой привед. по- грешности ИК, уdop, %

^{*} Форма таблицы – рекомендуемая

9 ПРОВЕРКА ЗАЩИТЫ ОТ НЕСАНКЦИОНИРОВАННОГО ДОСТУПА

Испытания по данному пункту проводят на произвольно выбранном автоматизированном рабочем месте (APM) оперативно-диспетчерского и управленческого персонала, входящем в состав поверяемого комплекса.

Пользуясь указаниями руководства по эксплуатации на комплекс, осуществить выход всех пользователей и в этом режиме осуществить попытку несанкционированного доступа к APM, например, путём изменения показаний измеренных данных, настроечных коэффициентов и т.п.

Результаты проверки являются положительными, если любые несанкционированные действия пользователя на испытуемом APM блокируются в порядке, регламентированном в руководстве по эксплуатации на комплекс.

10 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

10.1 При положительных результатах поверки ПТК МПСА ПТ оформляется Свидетельство о поверке по форме приложения 1 к документу «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденному приказом №1815 Минпромторга от 2.07.2015г. К свидетельству прилагаются протоколы с результатами поверки по всем измерительным каналам комплекса согласно Приложению Б.

10.2 При отрицательных результатах поверки комплекса в целом, или по части его измерительных каналов, оформляется извещение о непригодности, в этом случае комплекс или забракованная группа ИК не допускаются к дальнейшему использованию.

_____И.Г. Средина

Разработал:

Зам. нач. отдела ФГУП «ВНИИМС»

ЯКДГ.42609.021 МП

ПРИЛОЖЕНИЕ А

Комплексы программно-технические микропроцессорной системы автоматизации пожаротушения «Шнейдер Электрик»

Состав и характеристики измерительных каналов

Таблица А.1 - Промежуточные измерительные преобразователи

Taominga 71.1 - Tipomenty to 411ble 1151	reprirementate inpecopusor	541 63111	
Наименование СИ	Тип СИ	Изготовитель	Номер в Госреестре
Преобразователи измерительные	IM, IMS	Фирма "Hans Turck GmbH & Co. KG", Германия	49765-12
Преобразователи измерительные	MCR-FL		56372-14
Преобразователи измерительные	MACX MCR-SL		64832-16
Преобразователи измерительные	MACX	Фирма "Phoenix	55661-13
Преобразователи сигналов измерительные	MACX MCR(-EX)-SL	Contact GmbH & Co. KG", Германия	54711-13
Преобразователи измерительные	MACX MCR-EX-SL- RPSSI-2I-1S(-SP)	•	64617-16
Преобразователи измерительные входных и выходных унифицированных сигналов	PI-EX		62041-15
Преобразователи измерительные тока и напряжения с гальванической развязкой (барьеры искрозащиты) серии К	KFD2-**.**	Фирма "Pepperl + Fuchs GmbH", Гер- мания	22153-14
Преобразователи измерительные ввода-вывода	ACT20X	Фирма "Weidmuller Interface GmbH & Co. KG", Германия	50677-12

Таблица А.2 - Модули ввода аналоговых сигналов

Тип модуля	Тип СИ	Изготовитель	Номер в Госреестре
BMXAMI0410			
BMXAMI0410H	Модули аналоговые	Фирма "Schneider Electric Industries	49662-12
BMXAMI0810	серии ВМХ		17002 12
BMXAMI0800			
140ACI03000	Контроллеры програм-	SAS", Франция	
140AVI03000	мируемые логические		18649-09
140ACI04000	PLC Modicon		

Таблица А.3 - Модули вывода аналоговых сигналов

Тип модуля	Тип СИ	Изготовитель	Номер в Госреестре
BMXAMO0210			
BMXAMO0210H	Модули аналоговые		49662-12
BMXAMO0410	серии ВМХ	X Фирма "Schneider	49002-12
BMXAMO0802		Electric Industries	
140ACO02000	Контроллеры програм-	SAS", Франция	
140AVO02000	мируемые логические		18649-09
140ACO13000	PLC Modicon		

Таблица А.4 Основные метрологические характеристики ИК входных сигналов комплексов

СОВ				
Наименование ИК комплексов ¹	Диапазоны преобразования ИК комплексов	Диапазоны ² отображения технологиче- ских парамет-	Пределы допускаемой погрешности ИК комплексов 3 , γ – приведённой 4 , $\%$; Δ – абсолютной	
		ров	с ИПП	без ИПП
- избыточного давления сред вспомогательных систем (кроме воздуха), МПа	0-20 мА;	0 - 16	±0,13 (γ)	±0,1 (γ)
- разрежения, МПа	4-20 MA 0-10 B	0 - 0,1	$\pm 0.13 (\gamma)$ $\pm 0.16 (\gamma)$	±0,1 (γ)
- избыточного давления воз- духа, МПа	2-10 B 0-5 B	0 - 16	±0,25 (γ)	±0,1 (γ)
- перепада давления сред вспомогательных систем, МПа	1-5 B	0 - 10	±0,25 (γ)	±0,1 (γ)
- температуры вспомога-	0-20 мА; 4-20 мА	от -100 до	-	±0,3 °C (Δ)
тельных сред, °С	Сигнал ТС ти- па Pt100	+200	±0,5 °C (Δ)	±0,3 °C (Δ)
- расхода сред вспомогательных систем, ${\rm M}^3/{\rm H}$	0-20 мА; 4-20 мА	0,1 - 10000	±0,25 (γ)	±0,1 (γ)
- уровня жидкости во вспо- могательных емкостях, мм		0 - 23000	-	±0,1 (γ)
- загазованности воздуха парами нефти/нефтепродуктов, % НКПРП*	0-20 мА; 4-20 мА 0-10 В	0 -50	-	±0,1 (γ)
- силы переменного тока, по- требляемого нагрузкой, А	2-10 B 0-5 B 1-5 B	0 - 5	±0,25 (γ)	±0,1 (γ)
- напряжения переменного то- ка нагрузки, В		0 - 380	±0,25 (γ)	±0,1 (γ)
- сопротивления, Ом	30 - 180	30 - 180	$\pm 0,15 (\gamma)$	-

Наименование ИК комплексов ¹	Диапазоны преобразования ИК комплексов	Диапазоны ² отображения технологических параметров	Пределы допускаемой погрешности ИК комплексов ³ , γ – приведённой ⁴ , %; Δ – абсолютной без ИПП		
- силы постоянного тока, мА	4 - 20	4 - 20	$\pm 0,25 (\gamma)$	$\pm 0,1 (\gamma)$	
- напряжения постоянного то- ка, В	от -10 до +10	от -10 до +10	±0,25 (γ)	±0,1 (γ)	

Примечания

- 1 Наименование измерительных каналов согласно РД-35.240.50-КТН-109-13
- 2 С поддиапазонами согласно ТЗ на комплекс
- 3 В таблице для оценки суммарной погрешности ИК комплексов $\Delta_{\text{ИК}}$ использовалась формула:

$$\Delta_{u\kappa} = 1.1 \times \sqrt{\sum_{j=1...2} (\Delta_{cuj})^2} ,$$

где $\Delta_{\text{сиј}}$ – погрешность измерительного компонента канала (модуля и ИПП).

Формула приведена для абсолютных погрешностей, она корректна для других видов погрешностей (приведенной или относительной) при соответствии диапазонов преобразования и если суммарная погрешность и погрешности компонентов приведены к одинаковому виду.

- 4 Нормирующими значениями при определении пределов приведенной погрешности являются диапазоны отображения технологических параметров.
 - * НКПРП нижний концентрационный предел распространения пламени

Таблица А.5 - Основные метрологические характеристики выходных измерительных каналов комплексов

Выходной сигнал ИК	Диапазон	Пределы допускаемой приведенной		
	воспроизведения	грешности ИК комплексов, % диапазона		
		с ИПП	без ИПП	
- сила постоянного то-	0-20	± 0,15	$\pm 0,10$	
ка, мА	4-20	$\pm 0,3$	$\pm 0,25$	
- напряжение постоян-	от -10 до +10	± 0,15	± 0,10	
ного тока, В от -5 до +5		$\pm 0,3$	$\pm 0,25$	
	0-10, 0-5			

приложение Б

Форма документа «Перечень каналов ПТК МПСА ПТ, подлежащих поверке».

ПЕРЕЧЕНЬ ИЗМЕРИТЕЛЬНЫХ КАНАЛОВ ПТК МПСА ПТ					
установленной на					
	(наименование объекта установки системы)				
ПОЛЛЕЖАЦИХ ПОВЕРКЕ					

No	Наименование изменяе	Наименование измеряемого	Единица изме-	Диапазон измерений	Модуль ввода/вывода		ипп		ПДЗ погрешности	
п/п	Позиция по проекту	параметра ИК	рений		Позиция модуля УСО	Заводской № модуля УСО	Вид входного сигнала	Тип	Зав. №	ИК комплекса
			I	Ікаф	_ зав. №					
1										
2										
3										