

Государственная система обеспечения измерения

Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 250-1м сортопрокатного цеха АО «ЕВРАЗ ЗСМК»

МЕТОДИКА ПОВЕРКИ

МП 252-16

СОДЕРЖАНИЕ

1 Общие положения	3
2 Операции поверки	
3 Средства поверки	
4 Требования к квалификации поверителей	
5 Требования безопасности	
б Условия поверки	
7 Подготовка к поверке	
8 Проведение поверки	
9 Оформление результатов поверки	
Приложение А Метрологические характеристики измерительных каналов	
Гриложение Б Образец оформления протокола поверки	
Приложение В Образец приложения к свидетельству о поверке	
Приложение Г Перечень ссылочных нормативных документов	

1 ОБШИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика поверки распространяется на систему измерительноуправляющую технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 250-1м сортопрокатного цеха АО «ЕВРАЗ ЗСМК» (далее – ИУС) и устанавливает методы и средства ее первичной и периодической поверок.
- 1.2 Поверке подлежит ИУС в соответствии с перечнем измерительных каналов (ИК), приведенным в приложении А.
 - 1.3 Первичную поверку ИУС выполняют перед вводом в эксплуатацию и после ремонта.
- 1.4 Периодическую поверку ИУС выполняют в процессе эксплуатации через установленный интервал между поверками.
 - 1.5 Периодичность поверки (интервал между поверками) ИУС 1 год.
- 1.6 Измерительные компоненты ИУС поверяют с интервалом между поверками, установленным при утверждении их типа. Если очередной срок поверки измерительного компонента наступает до очередного срока поверки ИУС, поверяется только этот компонент и поверка ИУС не проводится.
- 1.7 При замене измерительных компонентов на однотипные подвергают поверке только те ИК, в которых проведена замена измерительных компонентов. В этом случае собственником ИУС должен быть оформлен акт об изменениях, внесенных в ИУС, являющийся неотъемлемой частью описания типа ИУС для Федерального информационного фонда по обеспечению единства измерений
- 1.8 Допускается применение измерительных компонентов аналогичных типов, прошедших испытания для целей утверждения типа с аналогичными техническими и метрологическими характеристиками.
- 1.9 При модернизации ИУС путем введения новых измерительных каналов должны быть проведены их испытания в целях утверждения типа.
- 1.10 В случае замены отдельных компонентов АРМ оператора (за исключением жёсткого диска) проводят проверку функционирования ИУС в объёме 8.5 настоящей методики поверки.
- 1.11 В случае обновления программного обеспечения ИУС, расширении/модификации его функций проводится анализ изменений, внесённых в программное обеспечение. Если внесённые изменения могут повлиять на метрологически значимую часть программного обеспечения, то проводят испытания ИУС в целях утверждения типа.

В тексте приняты следующие сокращения:

АРМ оператора – автоматизированное рабочее место;

ИК – измерительный канал;

ИУС – измерительная управляющая система;

 $M\Pi$ – методика поверки;

МХ – метрологические характеристики;

ПО – программное обеспечение;

СИ – средство измерений;

ФВ – физическая величина.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки выполняют операции, приведенные в таблице 1.

Таблица 1

			Проведен	ие операци	и при поверке	
			пер	вичной		
Наименование операции	Номер пункта методики поверки	при вводе в эксплуата- цию	при вводе нового ИК	после ремонта ИК	после переустановк и ПО или замены компьютера APM	периоди- ческой
1 Рассмотрение	8.1	да	да*	да*	да*	да*
документации		да	да	да	да	да
2 Внешний осмотр	8.2	да	нет	нет	да	да
3 Проверка условий						
эксплуатации	8.3	да	да*	нет	нет	да
компонентов ИС						
4 Опробование	8.4	да	да	да	да	да
5 Подтверждение соответствия программного обеспечения ИК ИУС	8.5	да	да*	нет	да	да
6 Определение погрешности измерений и синхронизации времени	8.6	да	нет	нет	да*	да
7 Проверка метрологических характеристик измерительных каналов ИУС	8.7	да	да*	да*	да	да
* – в объеме вносимых изм	енений					

3 СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки применяют основные и вспомогательные средства поверки, перечень которых приведен в таблице 2.
- 3.2 Средства поверки должны иметь действующие свидетельства о поверке или оттиски поверительных клейм.

Таблица 1 – Средства поверки

Наименование	Основные метрологические харак	теристики
средства поверки	диапазон измерений (воспроизведений)	погрешность
Термогигрометр	 Диапазон измерений температуры от 0 до 60 °C; 	$\Delta = \pm 0.3 ^{\circ}\text{C};$
ИВА-6А-Д	– диапазон измерений влажности от 0 до 98 %;	$\Delta = \pm 3 \%;$
	– диапазон измерений атмосферного давления от 86	$\Delta = \pm 2,5$ κΠα
	до 106 кПа	
Мультиметр	 Диапазон измерений напряжения переменного 	$\Delta = \pm (0.007 \cdot U_{\sim} + 5 \text{ B});$
цифровой	тока U_{\sim} от 0,1 до 750 B;	
APPA-107	 диапазон измерений частоты f от 1 до 200 Гц; 	$\Delta = \pm (0,0001 \cdot f + 0,1 \Gamma \mu);$
	– диапазон измерений напряжения постоянного тока	$\Delta = \pm (0,0006 \cdot U_{=} + 0,1 B)$
	U= от 1 до 200 B	
Калибратор	 Диапазон воспроизведения сигналов силы 	$\Delta = \pm (0.025\% \cdot X + 3 \text{ MKA});$
электрических	постоянного тока от 0 до 24 мА;	
сигналов СА71	– диапазон воспроизведения напряжения	$\Delta = \pm (0.02 \% \cdot X + 15 \text{ MKB})$
	постоянного тока от 0 до 110 мВ;	
Радиочасы	Период формирования импульса PPS и последователь	ьного временного
МИР РЧ-02	кода 1 с, пределы допускаемой абсолютной погрешно	
	переднего фронта выходного импульса PPS со шкало	й координированного
	времени UTC ±1 мкс	
Пахилания		

Примечания

- 1) В таблице приняты следующие обозначения: Δ абсолютная погрешность, единица величины; X значение воспроизводимой величины, деленное на 100 %.
- 2) При проведении поверки допускается замена указанных средств поверки аналогичными, обеспечивающими проверку метрологических характеристик ИК ИУС с требуемой точностью

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

Поверка ИУС должна выполняться специалистами, аттестованными в качестве поверителей средств измерений, имеющими удостоверение на право работы с напряжением до 1000 В (квалификационная группа по электробезопасности не ниже третьей) и освоившими работу с ИУС.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки необходимо соблюдать требования безопасности, установленные в следующих документах:

- ГОСТ Р МЭК 60950-2002 Безопасность оборудования информационных технологий;
- Правила устройств электроустановок, раздел I, III, IV;
- Правила технической эксплуатации электроустановок потребителей;
- Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок СТО ИСМ 3-10-2011 ПОТ Р М-016-2001, РД 153-34.0-03.150-00
 - СНиП 3.05.07-85 Системы автоматизации;
 - Инструкция по работе с компьютерной техникой (АСНи 01-99)

– эксплуатационная документация на СИ и компоненты ИУС.

6 УСЛОВИЯ ПОВЕРКИ

6.1 Средствам измерений, используемым при проведении поверки, должны быть обеспечены следующие условия:

– диапазон температуры окружающего воздуха, °C	от 15 до 25;
 относительная влажность окружающего воздуха при 25 °C, % 	от 30 до 80;
– атмосферное давление, кПа	от 84 до 106,7;
– напряжение питающей сети переменного тока, В	от 198 до 242;
– частота питающей сети, Гц	от 49 до 51.

Условия эксплуатации:

1) для измерительных и связующих компонентов ИУС:

– температура окружающего воздуха для преобразователей давления измерительных, °C

измерительных, °C от 0 до 40; от 0 до 40; от 0 до 60; температуры, °C от относительная влажность воздуха при 25 °C, %

– атмосферное давление, кПа от 84 до 106,7;

2) для комплексных и вычислительных компонентов ИУС:

-температура окружающего воздуха, °C
 от 5 до 30;
 от 40 до 80;
 -атмосферное давление, кПа
 от 84 до 106,7.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 На поверку ИУС представляют следующие документы:
- РИЦ125.00-ИЭ ОАО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат». Сортопрокатный цех. Среднесортный цех. Автоматизированная система управления технологическим процессом нагрева заготовок в нагревательных печах (Типовая АСУТП нагрева в печах). Руководство пользователя (руководство пользователя);
- МП 252-16 ГСИ. Система измерительно-управляющая технологическим процессом нагрева заготовок в нагревательной печи № 1 стана 250-1м сортопрокатного цеха АО «ЕВРАЗ 3СМК». Методика поверки (проект).
- свидетельства о поверке первичных измерительных преобразователей, входящих в состав ИК ИУС;
 - свидетельство о предыдущей поверке ИУС (при выполнении периодической поверки);
 - эксплуатационную документацию на ИУС и ее компоненты;
- эксплуатационную документацию на средства измерений, применяемые при поверке ИУС.
- 7.2 Перед выполнением операций поверки необходимо изучить настоящий документ, эксплуатационную документацию на поверяемую ИУС и её компоненты.
- 7.3 Непосредственно перед проведением поверки необходимо подготовить средства поверки к работе в соответствии с их эксплуатационной документацией.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

- 8.1 Рассмотрение документации
- 8.1.1 Проверяют наличие следующей документации:
- руководство пользователя;
- свидетельство о предыдущей поверке ИУС (при проведении периодической поверки);

- документы, удостоверяющие поверку средств измерений, входящих в состав ИУС;
- эксплуатационная документация на ИУС и ее компоненты;
- эксплуатационная документация на средства измерений, применяемые при поверке ИУС.
- 8.1.2 Проверяют перечень ИК, представленных на поверку, в соответствии с перечнем, приведенным в руководстве пользователя на ИУС и в приложении А настоящей МП. Эксплуатационная документация на средства измерений, применяемые при поверке ИУС, должна содержать информацию о порядке работы, их технических и метрологических характеристиках.

Результат проверки положительный, если вся вышеперечисленная документация в наличии, перечень ИК соответствует перечню, приведенному в руководстве пользователя на ИУС и в приложении А настоящей МП, все средства поверки имеют документально подтвержденную пригодность для использования в операциях поверки, все компоненты ИУС имеют действующие свидетельства о поверке.

8.2 Внешний осмотр

- 8.2.1 При внешнем осмотре проверяют соответствие ИУС нижеследующим требованиям:
- соответствие комплектности ИУС перечню, приведенному в паспорте и в таблице А.1 приложения А настоящей МП;
- отсутствие механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
- отсутствие обрывов и нарушения изоляции кабелей и жгутов, влияющих на функционирование ИУС;
 - наличие и прочность крепления разъёмов и органов управления;
- отсутствие следов коррозии, отсоединившихся или слабо закрепленных элементов схемы.
- 8.2.2 Внешним осмотром проверяют соответствие количества и месторасположения APM оператора и ПЛК, приведенным в эксплуатационной документации.

Результат проверки положительный, если выполняются все вышеперечисленные требования. При оперативном устранении недостатков, замеченных при внешнем осмотре, поверка продолжается по следующим операциям.

- 8.3 Проверка условий эксплуатации компонентов ИУС
- 8.3.1 Проводят сравнение фактических климатических условий в помещениях, где размещены компоненты ИУС, а также параметров сети их питания с условиями, приведенными в разделе 6 настоящей МП и в эксплуатационной документации на эти компоненты.

Результат проверки положительный, если фактические условия эксплуатации каждого компонента ИУС удовлетворяют рабочим условиям применения, приведенным в разделе 6 настоящей МП и в эксплуатационной документации.

8.4 Опробование

- 8.4.1 Непосредственно перед выполнением экспериментальных исследований необходимо подготовить ИУС и СИ к работе в соответствии с их эксплуатационной документацией.
- 8.4.1.1 Перед опробованием ИУС в целом необходимо выполнить проверку функционирования её компонентов.
- 8.4.1.2 При проверке функционирования измерительных и комплексных компонентов ИУС проверяют работоспособность индикаторов, отсутствие кодов ошибок или предупреждений об ошибках, авариях.
 - 8.4.1.3 При опробовании линий связи проверяют:
 - наличие сигнализации о включении в сеть технических средств ИУС;

- поступление информации по линиям связи;
- наличие сигнализации об обрыве линий.
- 8.4.1.4 При опробовании ИУС проводят первичное тестирование ИУС средствами программного обеспечения АРМ оператора (опрос первичных измерительных преобразователей, контроллеров; установление связи с компонентами и оборудованием ИУС и т.д.).
- 8.4.1.5 Мониторы APM оператора должны быть включены. Исправность клавиатуры и манипулятора мышь оценивают, выполнив переключение между экранными формами ИУС. Проверяют отображение на APM оператора главной мнемосхемы и возможность вызова через нее остальных экранов.
- 8.4.1.6 При проверке функционирования ИУС с АРМ оператора проверяют выполнение следующих функций:
 - измерение и отображение значений параметров технологического процесса;
 - измерение и отображение текущих значений даты и времени.
 - 8.4.2 Проверка функционирования ИУС с АРМ оператора

На APM оператора проверяют наличие экранных форм согласно руководству пользователя. Проверяют отображение текущих значений технологических параметров и информации о ходе технологического процесса, текущих значений даты и времени, возможность отображения в реальном масштабе времени технологических параметров в виде исторического тренда.

Результат проверки положительный, если по всем ИК ИУС (перечень ИК приведён в приложении А настоящей МП) на экранных формах отображаются текущие значения параметров технологического процесса в установленных единицах, даты и времени, и результаты измерений находятся в заданных диапазонах.

- 8.5 Подтверждение соответствия программного обеспечения ИК ИУС
- 8.5.1 Проверка идентификационных данных ПО

Проверку идентификационных данных ПО ИУС проводят в процессе штатного функционирования. Прикладное ПО ИУС включает программное обеспечение, функционирующее на APM оператора, и программное обеспечение ПЛК, являющееся метрологически значимой частью ПО ИУС.

С АРМ оператора получают доступ к встроенному ПО ИУС. Проверяют следующие идентификационные данные метрологически значимой части ПО ИУС (ПО контроллеров):

- идентификационное наименование проектов.

Идентификационное наименование программного обеспечения

Для ПЛК SIMATIC S7-300 - проекта: «S7 Pro1»

Результат проверки положительный, если идентификационное наименование метрологически значимой части ПО ИС совпадают с приведенными в описании типа на ИУС, паспорте и 8.5.1 настоящей МП.

8.5.2 Проверка защиты ПО от несанкционированного доступа

Проверку защиты ПО ИУС от несанкционированного доступа проводят на физическом и программном уровне. На физическом уровне проверяют ограничение доступа к запоминающим устройствам ИУС и наличие замков на дверях шкафов, в которых установлены модули ПЛК и системные блоки APM оператора.

Результат проверки положительный, если на дверях шкафов имеются замки.

На программном уровне проверку защиты ПО АРМ оператора и данных от несанкционированного доступа проводят следующим образом:

- проверяют наличие средств защиты (обнаружение и фиксацию событий, подлежащих регистрации, в журнале сообщений);
- проверяют корректность реализации управления доступом пользователя к ПО APM оператора и данным при вводе неправильных идентификационных данных пользователя (при вводе неверного пароля должно появиться окно с сообщением);
 - проверяют соответствие полномочий пользователей, имеющих различные права доступа.

Результат проверки положительный, если осуществляется авторизованный доступ к выполнению функций ПО APM оператора.

8.6 Определение погрешности измерений и синхронизации времени

АРМ поочередно переводятся в режим отображения/настройки времени (текущее системное время). Устанавливается соединение с радиочасами МИР РЧ-02.00 нажатием кнопки «Соединить» на вкладке «Конфигурация» программы «КОНФИГУРАТОР РАДИОЧАСОВ МИР РЧ-02» (далее — конфигуратора). На вкладке «Синхронизация» конфигуратора фиксируют следующие значения:

- «ВРЕМЯ UTC» время в очередной метке времени, пришедшей от радиочасов МИР РЧ-02.00;
- «Время ПК» локальное время APM оператора, в момент прихода метки времени от радиочасов МИР РЧ-02.00;
- «Разница» разница между локальным временем APM оператора и временем UTC из очередной метки времени.

Примечание – Разница вычисляется без учёта количества часов.

Результат проверки положительный, если:

- отличие показаний APM от значения астрономического времени не превышает ± 5 с (привязка к Государственной шкале единого времени).
 - 8.7 Проверка метрологических характеристик измерительных каналов ИУС
- 8.7.1 Метрологические характеристики (МХ) ИК ИУС определяют расчетно-экспериментальным способом (согласно МИ 2439). Проверку метрологических характеристик компонентов ИУС (первичных измерительных преобразователей, модулей ввода-вывода контроллера) выполняют экспериментально в соответствии с утвержденной методикой поверки на каждый тип преобразователя. МХ измерительных каналов рассчитывают по МХ компонентов ИУС в соответствии с методикой, приведенной в разделе 8.7.4 настоящей МП. Допускается не проводить расчет погрешности ИК ИУС при условии, что подтверждены МХ компонентов ИК ИУС. Результаты проверки МХ ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей МП.
 - 8.7.2 Проверка метрологических характеристик компонентов ИК ИУС
- 8.7.2.1 Метрологические характеристики измерительных и связующих компонентов ИУС принимают равными значениям, приведенным в эксплуатационной документации (паспорт, формуляр и др.) СИ при наличии на них свидетельств о поверке.
- 8.7.2.2 Значения основной погрешности компонента ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей МП.
 - 8.7.3 Исходные допущения при определении погрешности измерительных каналов ИУС.

Погрешности средств измерений ИК ИУС относятся к инструментальным погрешностям.

Факторы, определяющие погрешность, независимы.

Погрешности компонентов ИК ИУС – не коррелированны между собой.

Законы распределения погрешностей компонентов ИК ИУС – равномерные.

- 8.7.4 Методика расчёта основной погрешности ИК ИУС
- 8.7.4.1 Погрешности ИК температуры нормированы в абсолютной форме. Погрешности ИК расхода нормированы в относительной форме. Погрешности ИК давления и давления-разряжения нормированы в приведённой форме.
- 8.7.4.2 Границы основной абсолютной погрешности ИК температуры $\Delta_{\text{ИК_осн}}$, °C, определяют, исходя из состава ИК ИС, по формуле:

$$\Delta_{_{\text{ИК осн}}} = \Delta_{_{\Pi \text{И}\Pi}} + \Delta_{_{\text{И}\Pi}} + \Delta_{_{\text{K}}} + \Delta_{_{\text{ЛC}}}, \tag{1}$$

где $\Delta_{\Pi \Pi \Pi}$ – пределы основной абсолютной погрешности первичного измерительного преобразователя, единица измерений;

 $\Delta_{\text{ИП}}$ — пределы основной абсолютной погрешности промежуточного измерительного преобразователя (при наличии в составе ИК ИС), единица измерений;

 Δ_{K} – пределы основной абсолютной погрешности модуля ввода аналоговых сигналов ПЛК или УВВ, единица измерений;

 $\Delta_{\rm ЛC}$ – абсолютная погрешность линии связи, единица измерений.

Примечание — Погрешность линии связи определяется потерями в линиях связи. Между измерительными и комплексными компонентами линии связи построены из кабелей контрольных и (или) кабелей управления. Параметры линий связи удовлетворяют требованиям ГОСТ 18404.0 и ГОСТ 26411. Длина линий связи небольшая, входное сопротивление модулей ПЛК велико, поэтому потери в линиях связи пренебрежимо малы. Между комплексными и вычислительными компонентами построен цифровой канал связи. Применены сетевые технологии Ethernet. Передача данных по каналам связи Ethernet, имеет класс достоверности II и относится к S1 классу организации передачи (в соответствии с ГОСТ Р МЭК 870-5-1). Принимаем погрешность линии связи во всех ИК ИУС равной нулю.

Для расчёта погрешности измерительного канала по формуле (1) погрешность компонента ИК ИУС переводят в абсолютную форму Δ , единица измерений, для случая её представления в приведённой форме γ , %, по формуле:

$$\Delta = \gamma \cdot \frac{X_{\rm B} - X_{\rm H}}{100} \,, \tag{2}$$

где X_B и X_H – верхний и нижний пределы измерений компонента ИК ИУС, единица измерений.

8.7.4.3 Границы основной относительной погрешности ИК расхода $\delta_{\text{ИК_осн}}$, %, определяют, исходя из состава ИК ИУС, в соответствии с РМГ 62 по формуле:

$$\delta_{\text{MK och}} = K \cdot \sqrt{\delta_{\text{ПИП}}^2 + \delta_{\text{M}\Pi}^2 + \delta_{\text{K}}^2 + \delta_{\text{arr}}^2 + \delta_{\text{RC}}^2} , \qquad (3)$$

где K = 1.2:

 $\delta_{\Pi \Pi \Pi}$ — пределы основной относительной погрешности первичных измерительных преобразователей, %;

 $\delta_{\text{ИП}}$ — пределы основной относительной погрешности промежуточного измерительного преобразователя (при наличии в составе ИК ИУС), %;

 δ_K – пределы основной относительной погрешности модуля ввода аналоговых сигналов ПЛК или УВВ, %:

 $\delta_{\text{алг}}$ – относительная погрешность алгоритма (при наличии), %;

 $\delta_{\text{ЛC}}$ – относительная погрешность линии связи, %.

Для расчёта погрешности ИК ИУС по формуле (3) погрешность компонента ИК ИУС переводят в относительную форму δ , %, для случая её представления в абсолютной или приведённой формах по формуле:

$$\delta = \frac{\Delta}{X_{\text{HOM}}} \cdot 100 = \gamma \cdot \frac{X_{\text{B}} - X_{\text{H}}}{X_{\text{HOM}}},\tag{4}$$

где Δ – пределы абсолютной погрешности компонента ИК ИС, единица измерений;

 γ – пределы приведённой погрешности компонента ИК ИС, нормированной для диапазона измерений, %;

 $X_{\rm B}$ и $X_{\rm H}$ — верхний и нижний пределы диапазона измерений компонента ИК ИС (в тех же единицах, что и $X_{\rm Hom}$);

 $X_{\text{ном}}$ — номинальное значение измеряемой величины, для которой определят границы относительной погрешности измерений, единица измерений.

Примечание — Если приведённая погрешность γ нормирована для верхнего предела диапазона измерений, то $X_{\rm H}$ =0.

В соответствии с ГОСТ 8.508 относительную погрешность измерений вычисляют в точках $X_{\text{номі}}$, соответствующих 5, 25, 50, 75 и 95 % от диапазона измерений, и выбирают максимальное значение (i = 1, ..., 5).

Для модулей ввода аналоговых сигналов ПЛК, погрешность которых нормирована в приведённой форме, необходимо определить значение силы тока, соответствующее номинальному значению. Расчёт значения силы тока $I_{\text{номі}}$, мА, соответствующего номинальному значению измеряемой величины $X_{\text{номі}}$, единица измерений, проводят для диапазона входного сигнала модуля (4—20) мА по формуле:

$$I_{\text{homi}} = \frac{D_{\text{сигнала}} \cdot X_{\text{homi}}}{D_{\text{пип}}} + 4, \tag{5}$$

где $D_{\text{сигнала}}$ — разница между верхним и нижним пределами диапазона измерений входного сигнала модуля, мA;

 $D_{\Pi \Pi \Pi}$ – разница между верхним и нижним пределами диапазона измерений ПИП (в тех же единицах, что и $X_{\text{номi}}$).

Примечание — Числовые значения пределов диапазонов измерений преобразователей приведены в эксплуатационной документации (паспорт, руководство). Значение напряжения постоянного тока на выходе преобразователей термоэлектрических — в соответствии с ГОСТ Р 8.585.

- 8.7.4.4 Границы основной приведённой погрешности ИК давления и давления-разряжения $\gamma_{\text{ИК осн}}$, %, определяют следующим образом:
- а) переводят погрешность компонентов ИК ИУС из приведённой формы в относительную по формуле (4) согласно ГОСТ 8.508 в точках $X_{\text{номі}}$, соответствующих 5, 25, 50, 75 и 95 % от диапазона измерений;
- б) вычисляют по формуле (3) основную относительную погрешность ИК ИУС для каждой i-ой точки диапазона измерений $\delta_{\rm ИK\ ochi}$, %;
- в) переводят значения основной погрешности ИК ИУС, соответствующие i-ым точкам диапазона, из относительной формы в приведённую по формуле:

$$\gamma_{\text{ИК_осні}} = \frac{\delta_{\text{ИК_осні}} \cdot X_{\text{ИК_номі}}}{X_{\text{B}} - X_{\text{H}}}, \tag{6}$$

где $X_{\rm ИК_номі}$ — номинальное значение ИК ИС, соответствующее *i*-ой точке диапазона измерений;

 $X_{\rm B}$ и $X_{\rm H}$ — верхний и нижний пределы диапазона измерений ИК ИС (в тех же единицах, что и $X_{\rm UK~Homi}$);

г) выбирают из пяти значений, полученных по формуле (6), максимальное и приписывают его основной фактической приведённой погрешности ИК ИУС.

Рассчитанные (фактические) значения основной погрешности ИК ИУС заносят в таблицу по форме таблицы А.1 приложения А настоящей методики поверки.

Результаты проверки положительные, если фактические значения основной погрешности измерительных каналов не превышают границ допускаемых погрешностей, приведённых в таблице А.1 приложения А настоящей методики поверки.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки оформляют протоколом по форме, приведенной в приложении Б настоящей методики поверки.
- 9.2 При положительных результатах поверки ИУС оформляют свидетельство о поверке. Состав и метрологические характеристики измерительных каналов ИУС приводят в Приложении к свидетельству о поверке по форме, приведенной в приложении В настоящей методики поверки. Каждая страница Приложения к свидетельству о поверке должна быть заверена подписью поверителя. Знак поверки наносят на свидетельство о поверке.
- 9.3 При положительных результатах первичной поверки (после ремонта или замены компонентов ИК ИУС на однотипные поверенные), проведённой в объёме проверки в части вносимых изменений, оформляют новое свидетельство о поверке ИУС при сохранении без изменений даты очередной поверки.
- 9.4 Допускается на основании письменного заявления собственника ИУС проведение поверки отдельных измерительных каналов из перечня, приведённого в описании типа ИУС, с обязательным указанием в Приложении к свидетельству о поверке информации о количестве и составе поверенных каналов.
- 9.5 Отрицательные результаты поверки оформляют извещением о непригодности. Измерительные каналы ИУС, прошедшие поверку с отрицательным результатом, не допускаются к использованию.

Приложение A (обязательное)

Метрологические характеристики ИК ИУС

Таблица А.1 – Метрологические характеристики ИК ИУС

		Диапазон	Средства измерен	ий (СИ), вхо	одящие в состав ИК ИУС	Основная по	грешность ИК
Но- мер ИК	Наименование ИК ИУС	измерений физической величины, ед. измерений	Наименование, тип СИ	Номер в ФИФ ОЕИ	Пределы допускаемой основной погрешности компонента ИК	фактическая	границы допускаемой погрешности
1	2	3	4	5	6	7	8
			Преобразователь термоэлектрический ТПП-0192	32632-11	Δ = \pm 2,4 °C в диапазоне от 0 до 600 °C; Δ = \pm (0,004·t) °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 4.0 ^{\circ}\text{C}$ в диапазоне от 0 до 100 $^{\circ}\text{C}$;
1	Температура газа в сварочной зоне (передний конец)	от 0 до 1300°C	Модуль ввода аналоговых сигналов SM 331 модуль: 6ES7 331-7PF11- 0AB0 контроллера программируемого Simatic S7-300 (далее – Модуль 6ES7 331-7PF11- 0AB0)	15772-11	$\Delta = \pm 1,0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0,5$ °C в диапазоне св. 100 до 1300 °C		$\Delta = \pm 3.0$ °C в диапазоне св. 100 до 600 °C; $\Delta = \pm (1.0 + +0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C

1	2	3	4	5	6	7	8
2	Температура газа в сварочной зоне (задний конец) от 0 до 1300 °C	- 1	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C в диапазоне от 0 до 600 °C; $\Delta = \pm (0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 4.0 ^{\circ}\text{C}$ в диапазоне от 0 до 100 $^{\circ}\text{C}$; $\Delta = \pm 3.0 ^{\circ}\text{C}$ в диапазоне
2		той от 0 до 1300 °C Модуль 6ES7 331-7PF11-0AB0		15772-11	$\Delta = \pm 1,0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0,5$ °C в диапазоне св. 100 до 1300 °C		св. 100 до 600 °C; $\Delta = \pm (1,0+ +0,004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C
2	Температура	от 0 до	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C в диапазоне от 0 до 600 °C; $\Delta = \pm (0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 4.0 ^{\circ}\text{C}$ в диапазоне от 0 до 100 $^{\circ}\text{C}$; $\Delta = \pm 3.0 ^{\circ}\text{C}$ в диапазоне
3	газа в сварочной зоне (середина)	1300 °C	Модуль 6ES7 331-7PF11- 0AB0	15772-11	$\Delta = \pm 1,0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0,5$ °C в диапазоне св. 100 до 1300 °C		св. 100 до 600 °C; $\Delta = \pm (1,0+$ $+0,004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C

1	2	3	4	5	6	7	8
4	Температура газа в от 0 до томильной зоне (передний конец)		Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C в диапазоне от 0 до 600 °C; $\Delta = \pm (0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 4.0 ^{\circ}\text{C}$ в диапазоне от 0 до 100 $^{\circ}\text{C}$; $\Delta = \pm 3.0 ^{\circ}\text{C}$ в диапазоне
4		Модуль 6ES7 331-7PF11- 0AB0	15772-11	$\Delta = \pm 1,0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0,5$ °C в диапазоне св. 100 до 1300 °C	до 1300 °C = 1,0 °C ппазоне о 100 °C; = 0,5 °C ппазоне		
Ē	Температура газа в	от 0 до	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2,4$ °C в диапазоне от 0 до 600 °C; $\Delta = \pm (0,004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 4.0 ^{\circ}\text{C}$ в диапазоне от 0 до 100 $^{\circ}\text{C}$; $\Delta = \pm 3.0 ^{\circ}\text{C}$ в диапазоне
5		Модуль 6ES7 331-7PF11- 0AB0	15772-11	$\Delta = \pm 1,0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0,5$ °C в диапазоне св. 100 до 1300 °C		св. 100 до 600 °C; $\Delta = \pm (1.0+ +0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C	

1	2	3	4	5	6	7	8
	Температура	om 0. To	Преобразователь термоэлектрический ТПП-0192	32632-11	$\Delta = \pm 2.4$ °C в диапазоне от 0 до 600 °C; $\Delta = \pm (0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C		$\Delta = \pm 4.0 ^{\circ}\text{C}$ в диапазоне от 0 до 100 $^{\circ}\text{C}$; $\Delta = \pm 3.0 ^{\circ}\text{C}$
6	газа в томильной зоне (середина)	от 0 до 1300°C	Модуль 6ES7 331-7PF11- 0AB0	15772-11	$\Delta = \pm 1,0$ °C в диапазоне от 0 до 100 °C; $\Delta = \pm 0,5$ °C в диапазоне св. 100 до 1300 °C		в диапазоне св. 100 до 600 °C; $\Delta = \pm (1.0+ +0.004 \cdot t)$ °C в диапазоне св. 600 до 1300 °C
7	Температура воздуха до рекуператора	от 0 до 1000°C	Преобразователь термоэлектрический ТХА-1192-ТМ1	31930-07	$\Delta = \pm 2.5$ °C в диапазоне от 0 до 333 °C; $\Delta = \pm (0.0075 \cdot t)$ °C в диапазоне св. 333 до 1000 °C		$\Delta = \pm 3.0$ °C в диапазоне от 0 до 333 °C; $\Delta = \pm (1.0+$ $\pm 0.0075 \cdot t)$ °C
			Модуль 6ES7 331-7PF11- 0AB0	15772-11	$\Delta = \pm 0.5$ °C		в диапазоне св. 333 до 1000 °C

1	2	3	4	5	6	7	8
8	Температура воздуха после рекуператора	от 0 до 1000°C	Преобразователь термоэлектрический ТХА-1192-ТМ1	31930-07	$\Delta = \pm 2.5$ °C в диапазоне от 0 до 333 °C; $\Delta = \pm (0.0075 \cdot t)$ °C в диапазоне св. 333 до 1000 °C		$\Delta = \pm 3.0$ °C в диапазоне от 0 до 333 °C; $\Delta = \pm (1.0+$ $\pm 0.0075 \cdot t)$ °C
			Модуль 6ES7 331-7PF11- 0AB0	15772-11	$\Delta = \pm 0.5$ °C		в диапазоне св. 333 до 1000 °C
9	Температура воздуха на печь	от 0 до 1000°C	Преобразователь термоэлектрический ТХА-1192-ТМ1	31930-07	$\Delta = \pm 2.5$ °C в диапазоне от 0 до 333 °C; $\Delta = \pm (0.0075 \cdot t)$ °C в диапазоне св. 333 до 1000 °C		$\Delta = \pm 3.0$ °C в диапазоне от 0 до 333 °C; $\Delta = \pm (1.0+$ $\pm 0.0075 \cdot t)$ °C
			Модуль 6ES7 331-7PF11- 0AB0	15772-11	$\Delta = \pm 0.5$ °C		в диапазоне св. 333 до 1000 °C
10	Расход газа в сварочной зоне	от 1000 до 20000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII 7MF4433	45743-10	$\gamma = \pm (0.0029 \cdot P_{\text{max}}/P_{\text{B}} + +0.071) \%$		$\delta = \pm 2.7 \%$
			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		

1	2	3	4	5	6	7	8
11	Расход воздуха в сварочной зоне	от 3150 до 63000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII 7MF4433	45743-10	$\gamma = \pm (0.0029 \cdot P_{\text{max}}/P_{\text{B}} + + 0.071) \%$		δ = ± 2,2 %
			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
12	Расход газа в томильной зоне	от 625 до 12500 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII 7MF4433	45743-10	$\gamma = \pm (0.0029 \cdot P_{\text{max}}/P_{\text{B}} + + 0.071) \%$		$\delta = \pm 2.7 \%$
			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
13	Расход воздуха в томильной зоне	от 1250 до 25000 м ³ /ч	Преобразователь давления измерительный SITRANS P DSIII 7MF4433	45743-10	$\gamma = \pm (0.0029 \cdot P_{\text{max}}/P_{\text{B}} + + 0.071) \%$		$\delta = \pm 2,2 \%$
			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
14	4 Давление газа в сварочной зоне	от 0 до 1000 кгс/м ²	Преобразователь давления измерительный SITRANS P210	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$
			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		

1	2	3	4	5	6	7	8
15	Давление газа в сварочной зоне после отсечного	от 0 до 1000 кгс/м ²	Преобразователь давления измерительный SITRANS P210	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm~0.8~\%$
	клапана		Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
16	Давление воздуха в	от 0 до 1000 кгс/м²	Преобразователь давления измерительный SITRANS P210	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm~0.8~\%$
	сварочной зоне		Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
17	Давление газа в томильной зоне	от 0 до 1000 кгс/м²	Преобразователь давления измерительный SITRANS P210	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm~0.8~\%$
			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
18	Давление газа в томильной зоне после отсечного	от 0 до 1000 кгс/м²	Преобразователь давления измерительный SITRANS P210	51587-12	$\gamma = \pm 0.5 \%$		$\gamma=\pm~0.8~\%$
	клапана		Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		

Продолжение таблицы А.1

1	2	3	4	5	6	7	8
19		от 0 до 1000 кгс/м ²	Преобразователь давления измерительный SITRANS P210	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$
	томильной зоне		Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
20	Давление газа на печь	от 0 до 1000 кгс/м ²	Преобразователь давления измерительный SITRANS P210	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$
			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
21	Давление воздуха на печь	от 0 до 1000 кгс/м²	Преобразователь давления измерительный SITRANS P210	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.8 \%$
			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
	Давление газа	от 0 до	Датчик давления Метран-150CG0	32854-13	$\gamma = \pm 0.1 \%$		
22	до рекуператора	2	Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.5 \%$
	Давление газа после рекуператора	осле 63 кгс/м ²	Датчик давления Метран-150CG0	32854-13	$\gamma = \pm 0.1 \%$		
23			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		$\gamma = \pm 0.5 \%$

Продолжение таблицы А.1

1	2	3	4	5	6	7	8
24	Давление- разряжение газа в печи		Датчик давления Метран-150CG0	32854-13	$\gamma = \pm \ 0.1 \%$		$\gamma = \pm 0.5 \%$
			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
25	Давление азота на печь	от 0 до 16 кгс/м ²	Преобразователь давления измерительный SITRANS P220	51587-12	$\gamma = \pm 0.5 \%$		$\gamma = \pm~0.8~\%$
			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		
26	Температура металла после 3 клети	тура от 600 до	ИК-Пирометр «Термоскоп модификации «Термоскоп-800»	26443-04	$\gamma = \pm 0.75 \%$		$\Delta = \pm 12 ^{\circ}\text{C}$
			Модуль 6ES7 331- 7KF02-0AB0	15772-11	$\gamma = \pm 0.5 \%$		

Примечание — В таблице приняты следующие сокращения и обозначения: Φ ИФ ОЕИ — Федеральный информационный фонд по обеспечению единства измерений; Δ — абсолютная погрешность, δ — относительная погрешность, γ — приведенная погрешность, t — измеренная температура, P_{max} — максимальный верхний предел измерений давления для выбранной модели датчика, P_{θ} — верхний предел диапазона измерений датчика давления

Приложение Б Образец оформления протокола поверки

(рекомендуемое)

протокол поверки

		№	OT «		_ 20_	Γ.
Средство измерений (СИ)						
	наименовані					
заводской номер (номера)						
поверено в соответствии с						
	наименование и ном					
с применением эталонов:						
	наименование, заво	дскои номер, разря	д, класс или по	огрешность		
при следующих значениях вли		_				
температура окружающегоатмосферное давление						
– атмосферное давление– относительная влажность						
 напряжение питания 						
– частота Гц.						
Результаты операций поверки	:					
1 Рассмотрение документации	I					
2 Внешний осмотр						
3 Проверка сопротивления заг	щитного заземления					
4 Проверка условий эксплуата	ации компонентов И	УС				
5 Опробование					-	
6 Подтверждение соответстви	я программного обе	спечения ИК	ИУС			
7 Определение погрешности и	измерений и синхрон	изации врем	ени			
9 Проверка метрологических :						
Результаты проверки метро ставлены в таблице по форме таб.				ых кана	лов I	ИУС
Заключение СИ (не) соответст						
Руководитель отдела (группы		-				
	подпись		инициалы, ф	амилия		
Поверитель						
	подпись		инициалы, ф	амилия		

Приложение В Образец приложения к свидетельству о поверке

(рекомендуемое)

	Наименование ИК ИУС	Диапазон измерений ИК ИС, единица измерений	Средства измерений, входящие в состав ИК ИУС			Основная погрешность ИК ИУС		
Номер ИК			наименование, тип СИ, заводской номер	номер в ФИФ ОЕИ	пределы допускаемой основной погрешности	фактическая	границы допускаемой погрешности	

Приложение Г Перечень ссылочных нормативных документов

(справочное)

ГОСТ 8.508-84 ГСИ. Метрологические характеристики средств измерений и точностные характеристики средств автоматизации ГСП. Общие методы оценки и контроля.

ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования.

ГОСТ 18404.0-78 Кабели управления. Общие технические условия.

ГОСТ 26411-85 Кабели контрольные. Общие технические условия.

ГОСТ Р МЭК 870-5-1-95 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 1. Форматы передаваемых кадров.

РМГ 62-2003 ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Оценивание погрешности измерений при ограниченной исходной информации.

МИ 2439-97 ГСИ. Метрологические характеристики измерительных систем. Номенклатура. Принципы регламентации, определения и контроля.