

Государственная система обеспечения единства измерений

Масс-спектрометры с индуктивно-связанной плазмой ICPMS-2030

Методика поверки МП 045.Д4-16

 Главный метролог
 ФГУП «ВНИИОФИ» С.Н. Негода «31» октября 2016 г.

Москва 2016 г.

1 Введение

Настоящая методика поверки распространяется на масс-спектрометры с индуктивносвязанной плазмой ICPMS-2030 (далее по тексту – масс-спектрометры), предназначенные для измерения элементного и изотопного состава жидких веществ и материалов по аттестованным методикам измерений, и устанавливает операции при проведении их первичной и периодической поверок.

Интервал между поверками – 1 год.

2 Операции и средства поверки

2.1 При проведении первичной и периодической поверок выполняются операции, указанные в таблице 1.

таолица г	Т	аблица	1
-----------	---	--------	---

	Номер пункта	Обязательнос	ть выполнения
Наименование операции	методики	ОПО	ерации
		При	При
		первичной	периодической
		поверке	поверке
Внешний осмотр	8.1	Дa	Да
Опробование	8.2	Да	Да
Подтверждение соответствия	8.3	Да	Да
программного обеспечения			
Определение метрологических	8.4		
характеристик			_
Определение уровня фонового	8.4.1	Да	Да
сигнала на массе 220 а.е.м			
Определение чувствительности	8.4.2	Да	Да
Определение пределов обнаружения	8.4.3	Да	Да
элементов (по критерию 5 б)			
Определение относительного СКО	8.4.4	Да	Да
выходного сигнала			
Определение относительной	8.4.5	Да	Дa
интенсивности сигнала оксидных		¢.	
ИОНОВ			
Определение относительной	8.4.6	Да	Дa
интенсивности сигнала			
двухзарядных ионов			
		1	

2.2 При получении отрицательных результатов при проведении хотя бы одной операции поверка прекращается.

2.3 Поверку средств измерений осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.

3 Средства поверки

3.1 При проведении первичной и периодической поверок применяются средства поверки, указанные в таблице 2.

Табли	ца 2	
	Наименование и тип основного или	Основные технические и (или)
Номер	вспомогательного средства поверки;	метрологические характеристики
пункта	обозначение НД, регламентирующего	
методики	метрологические и основные технические	
	характеристики средства поверки	
	Вода 2-й степени чистоты.	ГОСТ Р 52501-2005 (ИСО
8/1		3696:1987) Вода для
0.4.1		лабораторного анализа.
		Технические условия.
	Государственные стандартные образцы	массовая концентрация ионов
	состава растворов ионов металлов Со	металлов Со и Ві 1,0 мг/см ³ ;
	(ГСО 7880-2001), Bi III (ГСО 7477-98), Be	массовая концентрация ионов
842 846	(ГСО 7759-2000), Ва (ГСО 7760-2000), Аз	металлов Be, As и Ba 0,1 мг/см ³ ;
0.4.2 - 0.4.0	(ГСО 7264-96)	границы относительной
		погрешности концентрации
		элемента 1% при доверительной
		вероятности Р=0,95

3.2 Средства поверки, указанные в таблице 2, должны быть поверены и аттестованы в установленном порядке. Допускается также применение других средств, не приведенных в таблице 2, но обеспечивающих определение (контроль) метрологических характеристик поверяемых анализаторов с требуемой точностью.

4 Требования к квалификации поверителей

4.1 К проведению поверки допускают лиц, изучивших настоящую методику поверки и Руководство по эксплуатации масс-спектрометров, имеющих квалификационную группу не ниже III в соответствии с правилами по охране труда и эксплуатации электроустановок, указанных в приложении к приказу Министерства труда и социальной защиты РФ от 24.07.13 № 328Н и прошедшие полный инструктаж по технике безопасности, прошедших обучение по требуемому виду измерений.

5 Требования безопасности

5.1 При проведении поверки следует соблюдать требования, установленные ГОСТ 12.1.031-2010, ГОСТ 12.1.040-83, правилами по охране труда и эксплуатации электроустановок, указанных в приложении к приказу Министерства труда и социальной защиты РФ от 24.07.13 № 328Н. Оборудование, применяемое при поверке, должно соответствовать требованиям ГОСТ 12.2.003-91. Воздух рабочей зоны должен соответствовать ГОСТ 12.1.005-88 при температуре помещения, соответствующей условиям испытаний для легких физических работ.

5.2 Система электрического питания приборов должна быть защищена от колебаний и пиков сетевого напряжения, искровые генераторы не должны устанавливаться вблизи приборов.

5.3 При выполнении поверки должны соблюдаться требования, указанные в «Правилах техники безопасности при эксплуатации электроустановок потребителей», утвержденных Госэнергонадзором, а также требования руководства по эксплуатации массспектрометров.

5.4 Помещение, в котором проводится поверка, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

5.5 В данном приборе используются аргон и гелий под высоким давлением. Следите, чтобы в пределах 2 м вокруг газового баллона не было источников открытого огня, а температура в помещении, где установлен газовый баллон, не поднималась выше 40 °C.

Убедитесь, что баллон закреплен хомутами и т.п. и не перевернется. Полностью проветривайте помещение, где производятся измерения, а по завершении работы с газом немедленно перекройте главный вентиль баллона.

5.6 Не проводите измерения взрывчатых, воспламеняющихся или огнеопасных материалов, и не вводите их в прибор.

5.7 В зависимости от исследуемого образца могут выделяться токсичные газы, поэтому убедитесь, что прибор подключен к системе вытяжной вентиляции, и обязательно включайте вентиляцию во время проведения анализа.

6 Условия проведения поверки

6.1 Все этапы поверки, за исключением особо оговоренных, проводят при следующих условиях:

- температура окружающего воздуха, °С	от 18 до 28;
- относительная влажность воздуха, %	от 20 до 70;
- атмосферное давление, кПа	от 94 до 106;
- номинальное напряжение электропитания, В	(от 200 до 240) ± 10 %;
- номинальная частота. Ги	50/60.

6.2 Помещение, где проводится поверка, должно быть чистым и сухим. В помещение не должно быть кислотных, щелочных и других газов, способных вызвать значительную коррозию металлов, а также газообразных органических растворителей (особенно бензина и разбавителя), способных вызвать коррозию краски.

6.3 В помещении не допускаются посторонние источники излучения, мощные постоянные и переменные электрические и магнитные поля. Если линия электропитания генерирует помехи, следует поставить фильтр-шумоподавитель. Заземление прибора должно быть независимым с сопротивлением не более 30 Ом.

6.4 Рядом с прибором не должно быть источников тепла, таких как газовая горелка, электронагреватель, печь и т.п. Допускаемый перепад температуры воздуха в течение часа – не более 2 °С.

6.5 Не ставьте на прибор сосуды с жидкостями. Если жидкость попадет внутрь прибора, то может произойти возгорание, поражение оператора электротоком или отказ прибора.

7 Подготовка к поверке

7.1 Подключите сетевой шнур к однофазному источнику электропитания со следующими параметрами: (от 200 до 240) В \pm 10 %, 50/60 Гц, 6 кВА.

7.2 Подключите сетевой шнур к независимой линии заземления сопротивлением макс. 30 Ом.

7.3 Подключите газовые линии и дополнительное оборудование согласно схеме, представленной на рисунке 1.

Рисунок 1

 подключение охлаждающей воды(ввод); 2 – подключение охлаждающей воды(вывод); 3 – порт подачи гелия; 4 – порт подачи аргона; 5 – порт подачи смеси Ar+O₂(опция); 6 – разъем подключения автосамплера; 7 – разъем для наружного вывода; 8 – сливная трубка для отвода протечек воды.

7.4 Соедините разъемы LAN на главном модуле прибора и на ПК при помощи кабеля LAN.

7.5 Включите вытяжную вентиляцию, подключенную к выходному штуцеру.

7.6 Откройте кран линии водопроводной воды на шланге, подключенном к главному модулю прибора или включите блок питания внешнего охладителя (если он предусмотрен).

7.7 Откройте главный вентиль газового баллона (с аргоном или гелием), подключенного к главному модулю прибора. Главный газовый вентиль открывайте после установки давления газа: Аргон (450 ± 10) кПа; Гелий (150 ± 10) кПа.

7.8 Включите сетевой выключатель, расположенный на левой стороне главного модуля прибора. Включится электропитание прибора, а световой индикатор загорится зеленым светом.

7.9 Включите электропитание ПК.

7.10 В соответствии с приложением 2 подготовить аттестованные растворы из государственных стандартных образцов, указанных в таблице 1.

8 Проведение поверки

8.1 Внешний осмотр

8.1.1 Проверку проводят визуально. Проверяют соответствие расположения органов управления, надписей и обозначений требованиям технической документации; отсутствие механических повреждений на корпусах масс-спектрометров, влияющих на их работоспособность; чистоту гнезд, разъемов и клемм.

8.2.2 Масс-спектрометры считаются прошедшими операцию поверки, если корпус, внешние элементы, органы управления и индикации не повреждены, отсутствуют механические повреждения и ослабления элементов конструкции.

8.2 Опробование

8.2.1 Запустите программное обеспечение дважды кликнув по значку (LabSolutions ICPMS) на рабочем столе.

8.2.2 В отобразившемся на рабочем столе окне экрана запуска кликните по значку [Analysis].

Рисунок 2

Запустится программа анализа и откроется главное окно (см. рисунок 3)

Рисунок 3

Кликните по [New Analysis](Новый анализ) в меню [Analysis]. Откроется экран [New Analysis].

Рисунок 4

Кликните по вкладке [Recent Method] (Текущий метод). Выберите метод, который будет использован при измерении. Если нужный метод во вкладке [Recent Method] не отобразится, откройте его из пункта [Open] (Открыть) меню [File] (Файл). Кликните [Open]. Экран [New Analysis] закроется, а откроется файл выбранного метода.

8.2.3 Кликните по значку (Plasma ON) на панели помощи или кликните по [Plasma ON] (Плазма ВКЛ) в меню [Analysis]. Откроется экран [Plasma ON]. Проверьте [Ignition Mode] (Режим поджига) и [Attached Instruments] (Подключенные приборы). Отобразятся пункты [Ignition Mode]и [Attached Instruments,] заданные в выбранном методе (см. рисунок 5)

tion Mode: Norma	l(Water) Mode	
Attached Instruments		Plasma ON
Torch:	Mini	
Cooling Chamber:	ON	Start
Bubbler:	OFF	Stop
Penstaltic Pump:	ON	
Connection of external device:	OFF	
sma:	Plasma OFF	

Рисунок 5

Кликните [Start]. Плазма будет включена. Пока идет включение, на панели прибора отображается [Busy]. По завершении процесса включения плазмы на панели прибора отображается [Ready]. Кликните [OK].

Рисунок 6

Чтобы анализ выполнялся должным образом, после появления cooбщения [Ready] следует подождать прогрева в течение примерно 30 минут.

8.2.4 Кликните по значку Measurement (Instrument Calib. & Measurement) на панели помощи. Отобразится экран [Instrument Calibration]. Кликните по вкладке [Sequence] (Последовательность).

	-	-				
Instrument Calibration	Calibration Item	Pos.	Meas.	State	Measured in critinuous	
	J Torch Position	001				
Start	Gain Votage	001				
	Lens Voltage	001				
CHIMNES AND CHIMNES	Mass / Resolution	001				
2000	PIA Calibration	001				
	Validation	001				
	Valuation	001	the statute	THEORE		Condition Settion
	And the second					
Taugh Day						
Torch Pos	ugn					
In intensity:	x	ne	m			
In intensity.	x	me	m			
in intensity.	X T		m m			
in intensity.	x r		m m			
In intensity.	X Y	na 	m m			
in intensity.	X Y	me	m m			
In intensity.	X Y		n			
in intensity.	X Y		m			
in intensity. [X Y	na 	n			
in intensity. [Y	(7) (7) (7)	m			
in intensity. [X Y	100 100	m			
in intensity. [Y Y		n			
in intensity. [X Y		m m			
in intensity. [X Y		m m			
in interisty. [Y T	na 	n			
in intensity. [X Y		n			
in intensity. [X Y	ריידי דיידי דיי דיידי דיידי דייד	n			
in intensity. [Y	735 736	n			
in intensity: [X Y	næ	n			
in intensity. [X Y	(18) (19) (19) (19) (19) (19) (19) (19) (19	n			
in intensity. [Y	na 	n n			
in intensity: [X Y	na	n			
in intensity. [Y T		n.			
in intensity: [Y	778 	n n			
in intensity: [X Y	718 719 719	n.			
in intensity: [Y	735 776	n.			

Рисунок 7

Выбрать калибровочные параметры. Кликните по [Condition Setting] (Задание условий) во вкладке [Sequence]. Откроется подокно [Condition Setting] (см. рисунок 8)

lation														
Condition	<u>N</u> o 1		Ttle Vald	lation-1				Change	Save					
ildation I Unber of	tem Measurem	ents 1	• •	ntegration	Time(sec) 1	9		Intensity	/ Mass	Oxide D	waient	BG	
Elem	Mass	Cell Gas	Inten Min (kcps)	RSD Max (%)	Max gap (u)	Resolut ion gap	Exclusi on	<u>Å</u> dd	Cel	i Gas: (9) Use (1) No u	56			
									Bem I Ir	Elem 53 49 77	No.		Mass 113 115	
undber of Item	Measurem	ents 3 Mass	Cell Ga	ntegration s Un	Time(sec	k 1 Max	Exclusion		K La L	19 57 3 71		E		
									Mg Mn Mo	12 25 42		0.59.00		

Рисунок 8

Введите числовое значение в пункт [Target resolution] (Целевое разрешение). Выберите число измерений. Во вкладке Intensity/Mass выберите элементы Ві и Ве; во вкладке Oxide выберите Ва, а в колонке Mass укажите 154 и 138; во вкладке Divalent выберите Ва 69 и в колонке Mass 138; во вкладке BG задайте массу фона 220, что соответствует массе дистиллированной воды. После установки всех необходимых параметров нажать на кнопку OK.

Опустить пробозаборник в колбу с контрольным раствором, приготовленным согласно приложению 2 и нажать кнопку Start.

8.2.5 Масс-спектрометры считаются прошедшими операцию поверки, если в протоколе калибровки напротив каждого пункта в графе Result будет написано ОК.

8.3 Подтверждение соответствия программного обеспечения

8.3.1 Проверяют соответствие идентификационных данных программного обеспечения сведениям, приведенным в описании типа на масс-спектрометры.

8.3.2 Для просмотра идентификационных данных программного обеспечения массспектрометров необходимо в главном окне программы LabSolutions ICPMS (см. рисунок 3) зайти во вкладку Help и затем нажать на раздел About. После этого в главном окне программы отобразится наименование и номер версии программного обеспечения (см. рисунок 9).

	LabSolutions ICPMS Custom 1 Version 1.0	ОК
4144		
and and	Copyright (C) 2016 Shimadzu Corporation	

Рисунок 9

8.3.3 Масс-спектрометры считаются прошедшим операцию поверки, если идентификационные данные программного обеспечения соответствуют значениям, приведенным в таблице 3.

Таблица 3	
Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	LabSolutions ICPMS
Номер версии (идентификационный номер) ПО	1.0 и выше

8.4 Определение метрологических характеристик

8.4.1 Определение уровня фонового сигнала на массе 220 а.е.м

8.4.1.1 Используя воду 2й степени чистоты по ГОСТ Р 52501-2005 (ИСО 3696:1987), измерить интенсивность сигналов на массах 9, 59, 209, 75 (только для приборов, оснащенных генераторами гидридов) и 220 а.е.м. Для этого кликните по вкладке [BG] в окне Condition Setting, присвойте пункту [Cell Gas] [No use] (Не использовать). В пункт [BG Mass] (Масса фона) введите массу, которая будет использована для измерения фона. Установить время интеграции 1 сек.

Рисунок 10

8.4.1.2 Операцию по п. 8.4.1.1 повторить 5 раз. Вычислить среднее значение интенсивности сигналов на каждой массе по формуле 1:

$$\overline{I} = \frac{\sum_{i=1}^{n} I_i}{n} \tag{1}$$

где I_i - результат измерения интенсивности, имп/с

n – число измерений

8.4.1.3 Масс-спектрометры считаются прошедшими операцию поверки, если значения уровня фонового сигнала на массе 220 а.е.м. не превышает 2 имп/с.

8.4.2 Определение чувствительности

8.4.2.1 Чувствительность масс-спектрометров определяют по интенсивности сигналов, соответствующих однозарядным ионам изотопов. Используя контрольный многоэлементный раствор, приготовленный в соответствии с приложением 2 данной методики, измерить интенсивность сигналов изотопов ⁹Be, ⁵⁹Co, ²⁰⁹Bi, ⁷⁵As (только для приборов, оснащенных генераторами гидридов). Для этого кликните по вкладке [Intensity / Mass] в окне Condition Setting, присвойте пункту [Cell Gas] [No use] (Не использовать). Выберите [Elem] (Элемент), который будет задействован в измерении. Выберите [Mass]

(Maccy), которая будет задействована в измерении. Кликните [Add] (Добавить). Установить время интеграции 1 сек.

Рисунок 11

Операцию повторить 10 раз. Вычислить среднее значение интенсивности каждого сигнала по формуле 1.

8.4.2.2 Рассчитать чувствительность для каждого из изотопов в пересчете на концентрацию контрольного раствора, равную 1 мкг/дм³ по формуле 2:

$$S = \frac{\bar{I}}{c}$$
(2)

где \overline{I} – среднее арифметическое значение интенсивности сигнала, имп/с

с – концентрация элемента, равная 1 мкг/дм³.

8.4.2.3 Масс-спектрометры считаются прошедшими операцию поверки, если измеренные значения чувствительности составляют не менее:

8000 (имп/с)/(мкг/дм³) для ⁹Ве; 90000 (имп/с)/(мкг/дм³) для ⁵⁹Со; 10000 (имп/с)/(мкг/дм³) для ⁷⁵As; 200000 (имп/с)/(мкг/дм³) для ²⁰⁹Ві.

8.4.3 Определение пределов обнаружения элементов (по критерию 3 σ) 8.4.3.1 Предел обнаружения для каждого из элементов ⁹Be, ⁵⁹Co, ²⁰⁹Bi, ⁷⁵As (только для приборов, оснащенных генераторами гидридов) определяют по формуле 3:

$$\sigma = \frac{3 \cdot \overline{l} \cdot 1000}{S} \tag{3}$$

где \bar{I} – уровень фонового сигнала по каждому из элементов по п. 8.4.2, имп/с

S чувствительность масс-спектрометров по каждому элементу, (имп/с)/(мкг/дм³)

8.4.3.2 Масс-спектрометры считаются прошедшими операцию поверки, если рассчитанные значения пределов обнаружения составляют не более:

3 нг/дм³ для ⁹Ве; 4 нг/дм³ для ⁵⁹Со; 3 нг/дм³ для ⁷⁵Аs; 2 нг/дм³ для ²⁰⁹Вi.

8.4.4 Определение относительного СКО выходного сигнала

8.4.4.1 По данным, полученным в п. 8.4.2.1 рассчитать относительное СКО выходного сигнала для каждого элемента по формуле 4:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (I_i - \overline{I})^2}{n(n-1)}} \cdot \frac{100}{\overline{I}}$$
(4)

8.4.4.2 Масс-спектрометры считаются прошедшими операцию поверки, если рассчитанные значения относительного СКО выходного сигнала не превышают 3 %.

8.4.5 Определение относительной интенсивности сигнала оксидных ионов

8.4.5.1 Используя контрольный раствор, измерить интенсивность сигналов на массах 138 и 154 а.е.м., соответствующих ионам Ba⁺ и BaO⁺. Для этого кликните по вкладке [Intensity / Mass] в окне Condition Setting, присвойте пункту [Cell Gas] [No use] (Не использовать). Выберите [Elem] (Элемент), который будет задействован в измерении (Ba). Выберите [Mass] (Массу), которая будет задействована в измерении. Кликните [Add] (Добавить). Установить время интеграции 1 сек и число измерений 5 (см. рисунок 11).

Проведите последовательно измерение интенсивности сигнала сначала на массе 138 а.е.м, а затем на массе 154 а.е.м.

8.4.5.2 Вычислите средние интенсивности сигналов на массах 138 а.е.м. (I_{138}) и 154 а.е.м. (I_{154}) по формуле 1.

8.4.5.3 По полученным данным вычислить среднее значение относительной интенсивности сигнала оксидных ионов по формуле 5:

$$C_0 = \frac{I_{154}}{I_{138}} \cdot 100 \tag{5}$$

где 1₁₅₄ – средняя интенсивность сигнала на массе 154 а.е.м., имп/с

1₁₃₈ – средняя интенсивность сигнала на массе 138 а.е.м., имп/с

8.4.5.4 Масс-спектрометры считаются прошедшими операцию поверки, если полученное значение относительной интенсивности оксидных ионов не превышает 2 %.

8.4.6 Определение относительной интенсивности сигнала двухзарядных ионов

8.4.6.1 Используя контрольный раствор, измерить интенсивность сигналов на массах 69 и 138 а.е.м., соответствующих соотношению масса/заряд ионов Ba²⁺ и Ba⁺. Для этого кликните по вкладке [Intensity / Mass] в окне Condition Setting, присвойте пункту [Cell Gas] [No use] (Не использовать). Выберите [Elem] (Элемент), который будет задействован в измерении (Ba). Выберите [Mass] (Maccy), которая будет задействована в измерении. Кликните [Add] (Добавить). Установить время интеграции 1 сек и число измерений 5 (см. рисунок 11).

Проведите последовательно измерение интенсивности сигнала сначала на массе 69 а.е.м, а затем на массе 138 а.е.м.

8.4.6.2 Вычислите средние интенсивности сигналов на массах 69 а.е.м. (I_{69}) и 138 а.е.м. (I_{138}) по формуле 1.

8.4.6.3 По полученным данным вычислить среднее значение относительной интенсивности сигнала двухзарядных ионов по формуле 6:

$$C_{\mathcal{A}} = \frac{I_{69}}{I_{138}} \cdot 100 \tag{6}$$

где 1₆₉ – средняя интенсивность сигнала на массе 69 а.е.м., имп/с

1₁₃₈ – средняя интенсивность сигнала на массе 138 а.е.м., имп/с

8.4.6.4 Масс-спектрометры считаются прошедшими операцию поверки, если полученное значение относительной интенсивности двухзарядных ионов не превышает 7 %.

9 Оформление результатов поверки

9.1 Результаты поверки заносятся в протокол (форма протокола приведена в приложении 1 настоящей методики поверки).

9.2 Масс-спектрометры, прошедшие поверку с положительным результатом, признаются годными и допускаются к применению. На них выдаётся свидетельство о поверке установленной формы с указанием полученных по п.п. 8.4.1 - 8.4.6 фактических значений метрологических характеристик масс-спектрометров и наносят знак поверки (место нанесения указано в описании типа) согласно Приказу Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», и анализаторы допускают к эксплуатации.

9.3 Масс-спектрометры, прошедшие поверку с отрицательным результатом, признаются непригодными, не допускаются к применению и на них выдается извещение о непригодности с указанием причин. Свидетельство о предыдущей поверке и знак поверки аннулируют и выписывают «Извещение о непригодности» с указанием причин в соответствии с требованиями Приказа Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015г.

Начальник отдела ФГУП «ВНИИОФИ»

Ведущий инженер ФГУП «ВНИИОФИ»

А.В. Иванов

А.Н. Шобина

ПРИЛОЖЕНИЕ 1 к Методике поверки МП 045.Д4-16 «Масс-спектрометры с индуктивно-связанной плазмой ICPMS-2030»

протокол

	первичной / периодической п	оверки
	от «»201	года
Средство изм	ерений: <u>Масс-спектрометры с индуктивно-связ</u> (Наименование СИ, тип (если в состав СИ входит нескольк	<u>анной плазмой ICPMS-2030</u> ко автономных блоков
	то приводят их перечень (наименования) и типы с разделением зна	аком «косая дробь» /)
Зав. №	<u>No/No</u>	
	Заводские номера олоков	
Принадлежат	цее Наименование юридического лица, ИНН	
Поверено в со	оответствии с методикой поверки <u>«ГСИ. Масс</u>	с-спектрометры с индуктивно-
связанной пла	змой ICPMS-2030. Методика поверки МП 045.Д	[4-16», утвержденной ФГУП
<u>«ВНИИОФИ»</u>	• «31» октября 2016 г. Наименование документа на поверку, кем ут	вержден (согласован), дата
С применени	ем эталонов (наименование, заводской номер, разряд, класс	сточности или погрешность)
При следуюш	цих значениях влияющих факторов: (приводят перечень и значения влияющих факторов, нормир	ованных в методике поверки)
– темпе	ература окружающего воздуха,°С	от 18 до 28
– относ	сительная влажность, %	от 20 до 70
– атмос	ферное давление, кПа	от 94 до 106

- атмосферное давление, кПа

Получены результаты поверки метрологических характеристик: Характеристика Результат Требования методики поверки

1	

Рекомендации_____

Средство измерений признать пригодным (или непригодным) для применения

Исполнители:_____

____подписи, ФИО, должность

ПРИЛОЖЕНИЕ 2 к Методике поверки МП 045.Д4-16 «Масс-спектрометры с индуктивно-связанной плазмой ICPMS-2030»

МЕТОДИКА ПРИГОТОВЛЕНИЯ КОНТРОЛЬНОГО РАСТВОРА ИОНОВ БЕРИЛЛИЯ, КОБАЛЬТА, ВИСМУТА, МЫШЬЯКА И БАРИЯ НА ОСНОВЕ РАЗБАВЛЕНИЯ ГСО 7880-2001, ГСО 7477-98, ГСО 7759-2000, ГСО 7760-2000, ГСО 7264-96*¹

А.1 Назначение и область применения

Настоящая методика регламентирует процедуру приготовления контрольного многоэлементного раствора ионов бериллия, кобальта, висмута, мышьяка и бария на основе разбавления ГСО 7880-2001, ГСО 7477-98, ГСО 7759-2000, ГСО 7760-2000, ГСО 7264-96. Контрольный многоэлементный раствор ионов бериллия, кобальта, висмута, мышьяка и бария предназначены для проведения поверки масс-спектрометров с индуктивно-связанной плазмой ICPMS-2030. Аттестованное значение концентрации ионов бериллия, кобальта, висмута, мышьяка и бария в контрольном растворе составляет 1 мкг/дм³.

А.2 Нормы и погрешности

А.2.1 Характеристики погрешности контрольного многоэлементного раствора ионов бериллия, кобальта, висмута, мышьяка и бария оценивают по процедуре приготовления с учетом всех составляющих погрешностей, вносимых на каждой стадии приготовления контрольного многоэлементного раствора ионов бериллия, кобальта, висмута, мышьяка и бария.

А.2.2 Настоящая методика обеспечивает получение контрольного многоэлементного раствора ионов бериллия, кобальта, висмута, мышьяка и бария с погрешностью аттестованных значений концентрации ионов бериллия, кобальта, висмута, мышьяка и бария не превышающих при доверительной вероятности Р=0,95 доверительных интервалов абсолютной погрешности (±∆А) при соблюдении всех регламентированных условий. А.3 Средства измерений, приборы и реактивы

А.3.1 Колбы мерные 2-го класса точности с притертой пробкой по ГОСТ 1770-74

А.3.2 1-канальный механический дозатор «BIOHIT M1000» с варьируемым объемом дозирования от 100 до 1000 мкл, предел допускаемого относительного среднего квадратического отклонения фактического объема дозы при температуре 22 ± 2 °C (от 0,3 до 0,7) %, пределы допускаемой систематической составляющей дополнительной относительной погрешности дозаторов при отклонении температуры окружающего воздуха от 22 °C не более $\pm 2,0$ % на каждые 10 °C или пипетки 2-го класса точности по ГОСТ 29169-9, 29228-91.

Α.3.3 ΓCO 7880-2001, ΓCO 7477-98, ΓCO 7759-2000, ΓCO 7760-2000, ΓCO 7264-96.

А.3.4 Дистиллированная вода по ГОСТ 6709-72. Вода дистиллированная. Технические условия.

А.3.5 Кислота азотная квалификации Ч.Д.А. по ГОСТ 4461-77. Реактивы. Кислота азотная. Технические условия.

¹ * - СО состава растворов ионов мышьяка (III) МСО 0082:1999 используется только для приборов, оснащенных генераторами гидридов

А.4 Требования безопасности

А 4.1 Применение ГСО 7880-2001, ГСО 7477-98, ГСО 7759-2000, ГСО 7760-2000, ГСО 7264-96 не требует соблюдения каких-либо специальных мер безопасности. Необходимо соблюдать только требования инструкций безопасности при работе в химической лаборатории.

А.4.2. Азотная кислота при непосредственном контакте с кожей вызывает ожоги. Дым, содержащий азотную кислоту, раздражает дыхательные пути, вызывает разрушение зубов, коньюнктивиты. При работе с препаратом необходимо пользоваться индивидуальными средствами защиты (респираторы, резиновые перчатки, защитные очки, спецодежда), а также соблюдать правила личной гигиены. Все рабочие помещения должны быть оборудованы общей приточно-вытяжной вентиляцией. Работы с азотной кислотой следует проводить в вытяжном шкафу лаборатории.

А.5 Требования к квалификации оператора

К приготовлению контрольного многоэлементного раствора ионов бериллия, кобальта, висмута, мышьяка и бария и вычислениям допускают лиц, имеющих квалификацию инженера-химика или техника-химика и опыт работы в химической лаборатории.

А.6 Условия приготовления контрольного многоэлементного раствора ионов бериллия, кобальта, висмута, мышьяка и бария

А.6.1 Приготовление контрольного многоэлементного раствора ионов бериллия, кобальта, висмута, мышьяка и бария проводят при соблюдении в лаборатории следующих условий:

- температура окружающего воздуха 20 ± 5, °С

- атмосферное давление от 96 до 104, кПа

- относительная влажность воздуха $60 \pm 15, \%$

А.6.2 Контрольный многоэлементный раствор ионов бериллия, кобальта, висмута, мышьяка и бария готовятся и используются непосредственно в день проведения поверки.

А.7 Приготовление контрольного многоэлементного раствора ионов бериллия, кобальта, висмута, мышьяка и бария.

Приготовить основной раствор ионов бериллия, кобальта, висмута, мышьяка и бария с концентрацией 1 мг/дм³. Для этого в мерную колбу вместимостью 100 мл ввести по 0,1 мл ГСО 7880-2001 и ГСО 7477-98, по 1 мл ГСО 7759-2000, ГСО 7760-2000 и ГСО 7264-96. Добавить 2 мл азотной кислоты и довести до метки дистиллированной водой. Закрыть колбу пробкой и перемешать её содержимое, переворачивая 10 раз.

Из основного раствора ионов бериллия, кобальта, висмута, мышьяка и бария с концентрацией 1 мг/дм³ отбирают аликвоту в 1 мл, а затем переносят её в мерную колбу объемом 1000 мл. Добавляют в неё 10 мл азотной кислоты. Колбу доводят дистиллированной водой до метки, закрывают пробкой и перемешивают содержимое колбы, переворачивая её

10 раз. Полученный контрольный многоэлементный раствор имеет концентрацию ионов бериллия, кобальта, висмута, мышьяка и бария 1 мкг/дм³.

А.8 Оценка метрологических характеристик контрольного многоэлементного раствора ионов бериллия, кобальта, висмута, мышьяка и бария.

А.8.1 Значения пределов абсолютной погрешности аттестованного значения массовой концентрации ионов бериллия, кобальта, висмута, мышьяка и бария (ΔА) в контрольном растворе, рассчитывают по формуле (1):

$$\Delta A = (\delta \cdot X)/100 \tag{1}$$

где δ - относительная погрешность приготовления контрольного раствора, рассчитываемая по формуле (2):

Х - концентрация приготовленных растворов;

$$\delta = \sqrt{\delta_1^2 + \delta_2^2},\tag{2}$$

А.8.2 Относительная погрешность приготовления контрольного раствора рассчитывается по формулам 3 и 4:

$$\delta_1 = (\Delta V_{\kappa} / V_{\kappa}) \cdot 100, \%$$
(3)

$$\delta_2 = (\Delta V_{\mathcal{A}} / V_{\mathcal{A}}) \cdot 100, \,\% \tag{4}$$

где ΔV_{κ} – погрешность измерений объема мерной колбы, (берется в соответствии с ГОСТ 1770-74);

 V_{κ} - объем мерной колбы , см³;

 ΔV_{a} - погрешность измерений объема 1-канального механического дозатора (согласно свидетельству о поверке или сертификату калибровки на дозатор);

V_д - объем дозирования 1-канального механического дозатора, мм³.

А.9 Оформление результатов

А.9.1 Рассчитанные значения метрологических характеристик приготовленного контрольного многоэлементного раствора ионов бериллия, кобальта, висмута, мышьяка и бария приведены в таблице 1.

Таблица 1

	Концентрация	Абсолютная погрешность
	раствора,	аттестованного значения растворов
раствора	<u>мкг/дм</u> ³	нефтепродуктов в воде, ΔA , мкг/дм ³
1	1	0,017