УТВЕРЖДАЮ

Первый заместитель генерального директора - заместитель генерального директора - заместитель генерального директора - А.Н. Щипунов » (0 2016 г.

Инструкция

Антенны рамочные измерительные НРА-02

Методика поверки ПНРМ.464653.105 МП

Содержание

1 Вводная часть	3
2 Операции поверки	3
3 Средства поверки	3
4 Требования к квалификации поверителей	4
5 Требования безопасности	4
6 Условия поверки	4
7 Подготовка к проведению поверки	4
8 Проведение поверки	4
9 Оформление результатов поверки	6

1 ВВОДНАЯ ЧАСТЬ

- 1.1 Настоящая методика поверки (далее МП) устанавливает методы и средства первичной и периодической поверок антенн рамочных измерительных НРА-02 (далее антенны НРА-02), изготавливаемых ООО «НПП НИФРИТ»), г. Москва, г. Зеленоград, находящихся в эксплуатации, а также после хранения и ремонта находящихся в эксплуатации, а также после хранения и ремонта.
- 1.2 Первичной поверке подлежат антенны НРА-02 выпускаемые из производства и выходящие из ремонта.

Периодической поверке подлежат антенны НРА-02, находящиеся в эксплуатации и на хранении.

1.3 Интервал между поверками 1 (один год) год.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, указанные в таблице 1. Таблица 1 – Операции поверки

Наименование операции	Номер пункта МП	Проведение операций при	
		первичной поверке	периодической поверке
Внешний осмотр	8.1	+	+
Опробование	8.2	+	+
Определение абсолютной погрешности коэффициента калибровки	8.3	+	+

3 СРЕДСТВА ПОВЕРКИ

3.1. При проведении поверки антенн НРА-02 должны применяться средства поверки, которые приведены в таблице 2.

Таблица 2

Пункт МП	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки
	Государственный рабочий эталон единиц напряженности электрического и магнитного полей 2 разряда в диапазоне частот от 10Γ ц до $300 \mathrm{M}\Gamma$ ц, диапазон воспроизведения напряженности магнитного поля от 0.8 до $8 \mathrm{mA \cdot m^{-1}}$, пределы допускаемой относительной погрешности воспроизведения напряженности магнитного поля $\pm 6 \%$
8.3 8.4	Государственный рабочий эталон единиц напряженности магнитного поля 1 разряда в диапазоне частот от 5 Γ ц до 10 М Γ ц, диапазон воспроизведения НМ Π от 0,05 до 3000 А·м ⁻¹ в диапазоне частот от 5 до 60 Γ ц; от 0,05 до 300 А·м ⁻¹ в диапазоне частот от 60 до 2000 Γ ц; от 0,005 до 300 А·м ⁻¹ в диапазоне частот от 2 до 30 к Γ ц; от 0,005 до 100 А·м ⁻¹ в диапазоне частот от 30 до 100 к Γ ц; от 0,005 до 3 А·м ⁻¹ в диапазоне частот от 100 до 400 к Γ ц; от 0,05 до 1 А·м ⁻¹ в диапазоне частот от 0,4 до 10 М Γ ц; от 0,05 до 10 А·м ⁻¹ на частотах 0,5; 1; 5; 10 М Γ ц, пределы допускаемой относительной погрешности воспроизведения НМ Π ±3 %
	Приемник измерительный ESPI3, диапазон частот от 9 кГц до 3 ГГц, пределы допускаемой погрешности измерений среднеквадратичного значения напряжения ±0,7 дБ

- 3.2 Допускается использовать аналогичные средства поверки, которые обеспечат измерение соответствующих параметров с требуемой точностью.
- 3.3 Средства поверки должны быть исправны, поверены и иметь действующие свидетельства о поверке.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 Поверка должна осуществляться лицами, аттестованными в качестве поверителей в установленном порядке и имеющим квалификационную группу электробезопасности не ниже второй.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки необходимо соблюдать требования безопасности, регламентируемые Межотраслевыми правилами по охране труда (правила безопасности) ПОТ Р М-016-2001. РД 153-34.0-03.150-00, а также требования безопасности, приведённые в эксплуатационной документации на Антенну и средств поверки.
- 5.2 Средства поверки должны быть надежно заземлены в соответствии с документацией. Запрещается проведение измерений при отсутствии или неисправности заземления аппаратуры, используемой при новерке.
- 5.3 Размещение и подключение измерительных приборов разрешается производить только при выключенном питании.

6 УСЛОВИЯ ПОВЕРКИ

- 6.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающей среды от 15 до 25 °C;
- относительная влажность окружающего воздуха от 30 до 80 %;
- атмосферное давление от 630 до 800 мм рт. ст.

7 ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ

7.1 Подготовить средства поверки к работе согласно эксплуатационной документации.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

- 8.1.1 Внешний осмотр антенны HPA-02 проводить визуально, без вскрытия. При этом необходимо проверить:
 - комплектность маркировку и пломбировку согласно эксплуатационной документации;
 - чистоту и исправность ВЧ разъема;
 - отсутствие видимых механических повреждений;
 - прочность крепления элементов конструкции;
 - 8.1.2 Результат внешнего осмотра считать положительным, если:
- комплектность соответствуют п. 4.1 документа «Антенна рамочная измерительная HPA-02. Формуляр. ПНРМ.464653.105 ФО» (далее ФО);
- маркировка и пломбировка соответствуют разделу 14 документа «Антенна рамочная измерительная НРА-02. Руководство по эксплуатации. ПНРМ.464653.105 РЭ» (далее РЭ);
 - разъем ВЧ цел и чист;
 - отсутствуют видимые механические повреждения;
 - крепления элементов конструкции прочны;
- В противном случае результаты внешнего осмотра считать отрицательными и дальнейшие операции поверки не проводить.

8.2 Опробование

8.2.1 Включить питание (перевести переключатель питания в режим «Вкл») испытуемой антенны HPA-02 и убедиться в том, что цвет индикатора питания зеленый (постоянный или моргающий).

В том случае, если индикатор питания горит одновременно красным и зеленым цветом или индикация отсутствует необходимо перевести переключатель питания в режим «Выкл» и выполнить зарядку аккумуляторной батареи по п. 8.2.2.

- 8.2.2 Для зарядки аккумуляторных батарей:
- подключить зарядное устройство в разъем питания на корпусе антенны;
- произвести зарядку аккумулятора согласно инструкции на зарядное устройство.

8.2.3 Выключить питание и поместить антенну HPA-02 в рабочую зону государственного рабочего эталона единиц напряженности электрического и магнитного полей 2 разряда в диапазоне частот от 10 Гц до 300 МГц (далее – РЭНЭМП-10Г/300М) так, чтобы плоскость экранированной рамки располагалась перпендикулярно вектору напряженности магнитного поля (далее – НМП).

Подготовить приемник измерительный ESPI3 (далее – ESPI3) к работе на частоте 100 кГц в соответствии с руководством по эксплуатации.

- 8.2.4 Подключить поверяемую антенну HPA-02 к входу ESPI3 посредством ВЧ-кабеля, входящего в комплект поставки. Включить питание антенны HPA-02.
- 8.2.5 Изменять в соответствии с руководством по эксплуатации РЭНЭМП-10Г/300М НМП от 3 до 5 мА·м $^{-1}$ на частоте 100 к Γ ц.
- 8.2.6 Убедиться в том, что при изменении НМП в рабочей зоне РЭНЭМП- $10\Gamma/300$ М, напряжение па входе ESPI3 изменяется.
 - 8.2.7 Результат опробования считать положительным, если:
 - при включении питания индикатор питания горит или моргает зеленым цветом;
- при помещении антенны HPA-02 в рабочую зону РЭНЭМП-10Г/300М показания ESPI3 изменяются при изменении величины НМП в рабочей зоне.
- В противном случае результаты внешнего осмотра считать отрицательными и дальнейшие операции поверки не проводить.

8.3 Определение абсолютной погрешности коэффициента калибровки

- 8.3.1 Измерения для определения основной абсолютной погрешности коэффициента калибровки проводить:
- на частотах f: 0,009; 0,01; 0,02; 0,05; 0,1; 0,2; 0,5; 1,0; 2,0; 5,0; 10,0; 20,0; 30,0 МГц при значении НМП H_0 , равным (3 ... 5) мА·м⁻¹;
- на частоте f 100 к Γ ц при значениях НМП H_0 , равными 5, 10, 30, 50, 100 мA·м $^{-1}$ (выполнять только при первичной поверке).
- 8.3.2 Подсоединить к выходному разъему ВЧ поверяемой антенны НРА-02 кабель ПНРМ.464653.105-04 из комплекта поставки.

Поместить поверяемую антенну НРА-02 в рабочую зону РЭНЭМП-10Г/300М так, чтобы плоскость экранированной рамки располагалась перпендикулярно вектору НМП.

Установить в соответствии с руководством по эксплуатации на РЭНЭМП- $10\Gamma/300M$ значение НМП H_0 , равное (3 ... 5) мА·м⁻¹, на частоте 0,009 МГц.

- 8.3.3 Настроить ESP13 на частоту f = 0,009 МГц и измерить напряжение U^f , в дБ (1 мкВ) на его входе. Результат измерений зафиксировать в рабочем журнале.
 - 8.3.4 Вычислить значение коэффициента калибровки K_A^f , в дБ (1 м⁻¹), по формуле

$$K_A^f = E_0 - U^f, \tag{1}$$

где U^{\perp} — напряжение на входе ESPI3 в дБ (1 мкВ);

 $E_0 = 20 \cdot \lg(120 \cdot \pi \cdot H_0)$ — напряженность эквивалентного электрического поля в месте расположения испытуемой антенны HPA-02 (рабочей зоне РЭНЭМП-10Г/300М) в дБ (1 мкВ·м $^{-1}$).

Результат вычислений зафиксировать в рабочем журнале.

8.3.5 Вычислить значение абсолютной погрешности коэффициента калибровки $\Delta_{K_4}^f$, в дБ, по формуле

$$\Delta_{K_{\perp}}^{f} = K_{A}^{f} - K_{\phi}, \qquad (2)$$

где K_{ϕ} – значения коэффициента калибровки, записанные в ΦO ;

 K_{\perp}^{+} — значения коэффициента калибровки, полученные при испытаниях по п. 8.3.4. Результат вычислений зафиксировать в рабочем журнале.

8.3.6 Выполнить п.н. 8.3.2 — 8.3.5 последовательно устанавливая частоту f НМП в рабочей зоне РЭНЭМП-10Г/300М в соответствии с п. 8.3.1.

- 8.3.7 Результаты поверки считать положительными, если все значения Δ_{κ}^{f} находятся в пределах ±2 дБ.
- 8.3.8 Поместить поверяемую антенну НРА-02 в рабочую зону государственного рабочего эталона единиц напряженности магнитного поля 1 разряда в диапазоне частот от 5 Гц до 10 МГц (далее - РЭНМП-5Г/10М) так, чтобы плоскость экранированной рамки располагалась перпендикулярно вектору НМП (выполнять только при первичной поверке).

Установить в соответствии с руководством по эксплуатации РЭНМП-5Г/10М значение НМП H_0 , равное 5 мА·м⁻¹ частотой 100 кГц.

- 8.3.9 Настроить ESPI3 на частоту $f = 100 \text{ к}\Gamma\text{ц}$ и измерить напряжение U^H , в дБ (1 мкВ), на его входе. Результат измерений зафиксировать в рабочем журнале.
 - 8.3.10 Вычислить значение коэффициента калибровки K_{A}^{H} , в дБ (1 м⁻¹), по формуле

$$K_A^H = E_0 - U^H \,, \tag{3}$$

где U^f — напряжение на входе ESPI3 в дБ (1 мкВ);

 $E_0 = 20 \cdot \lg(120 \cdot \pi \cdot H_0)$ — напряженность эквивалентного электрического поля в месте расположения испытуемой антенны HPA-02 (рабочей зоне РЭНМП-5 Γ /10M) в дБ (1 мкВ·м $^{-1}$). Результат вычислений зафиксировать в рабочем журнале.

8.3.11 Вычислить значение абсолютной погрешности коэффициента калибровки $\Delta_{\kappa_{-}}^{H}$, в дБ, по формуле

$$\Delta_{K_A}^H = K_A^H - K_{\phi} \,, \tag{4}$$

где K_{ϕ} — значение коэффициента калибровки на частоте 100 к Γ ц, записанное в Φ О;

 K_{A}^{H} — значение коэффициента калибровки, полученное при испытаниях по п. 8.3.4. Результат вычислений зафиксировать в рабочем журнале.

- 8.3.12 Выполнить п.п. 8.3.8 8.3.11 последовательно устанавливая в рабочей зоне РЭНМП-5Г/10М значения H_0 , равные 10, 30, 50, 100 мА·м⁻¹.
- 8.3.13 Результаты поверки считать положительными, если значения $\Delta_{K_4}^H$ находятся в пределах ±2 дБ.

9 ФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Антенна НРА-02 признается годной, если в ходе поверки все результаты положительные.
- 9.2 На антенну НРА-02 признанной годной, выдается Свидетельство о поверке по установленной форме.

Знак поверки наносить в виде наклейки или оттиска клейма поверителя на свидетельство о

9.3 Антенна НРА-02, имеющая отрицательные результаты поверки в обращение не допускается, и на нее выдается Извещение о непригодности к применению с указанием причин непригодности.

В.А.Тищенко

Старший научный сотрудник НИО-2 ФГУП «ВНИИФТРИ»

В.И. Лукьянов