

Закрытое Акционерное Общество «АКТИ-Мастер» АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ и ИНФОРМАТИКА

> 127254, Москва, Огородный проезд, д. 5, стр. 5 тел./факс (495)926-71-85 E-mail: <u>post@actimaster.ru</u> <u>http://www.actimaster.ru</u>

> > **УТВЕРЖДАЮ**

EST Генеральный директор ЗАО «АКТИ-Мастер» АКТИ-Мастер В.В. Федулов ACTI-Master «∕01∕» февраля 2017 г.

Государственная система обеспечения единства измерений

Стенды измерительные для контроля параметров микроэлектронных компонентов FT-17HF-768, FT-17DT-256

> Методика поверки FT-17МП-2017

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

Д.Р. Васильев

Главный метролог ООО «Совтест АТЕ»

К.А. Витязев

г. Москва 2017 Настоящая методика поверки распространяется на стенды измерительные для контроля параметров микроэлектронных компонентов FT-17HF-768, FT-17DT-256 (далее – стенды), изготавливаемые ООО «Совтест АТЕ», и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

È

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки				
TT.	Номер	Проведение операции		
Наименование операции	пункта	при п	оверке	
	методики	первичной	периодической	
2	3	4	3	
Внешний осмотр	6.1	да	да	
Опробование и идентификация	6.2	да	да	
Подготовка к измерениям статических параметров	6.3	да	да	
Определение метрологических характеристик	6.4	да	да	
Определение абсолютной погрешности воспроизведения уровней постоянного напряжения драйверами	6.4.1	да	да	
Определение абсолютной погрешности воспроизведения постоянного напряжения источником-измерителем статических параметров универсальных каналов	6.4.2	да	да	
Определение абсолютной погрешности воспроизведения силы постоянного тока источником-измерителем статических параметров универсального канала	6.4.3	да	да	
Определение абсолютной погрешности воспроизведения силы постоянного тока активной нагрузкой универсального канала	6.4.4	да	да	
Определение абсолютной погрешности измерения постоянного напряжения компаратором	6.4.5	да	да	
Определение абсолютной погрешности измерения постоянного напряжения источником-измерителем статических параметров универсального канала	6.4.6	да	да	
Определение абсолютной погрешности измерения силы постоянного тока источником- измерителем статических параметров универсального канала	6.4.7	да	да	

Таблина 1 – Операции поверки

стр. 2 из 31

Продолжение таблицы 1

î

2	3	4	5
Определение абсолютной погрешности воспроизведения постоянного напряжения источником-измерителем статических параметров дополнительного канала	6.4.8	да	да
Определение абсолютной погрешности воспроизведения силы постоянного тока источником-измерителем статических параметров дополнительного канала	6.4.9	да	да
Определение абсолютной погрешности измерения постоянного напряжения источником-измерителем статических параметров дополнительного канала	6.4.10	да	да
Определение абсолютной погрешности измерения силы постоянного тока источником- измерителем статических параметров дополнительного канала	6.4.11	да	да
Определение абсолютной погрешности воспроизведения постоянного напряжения измерительным источником питания	6.4.12	да	да
Определение абсолютной погрешности измерения силы постоянного тока измерительным источником питания	6.4.13	да	да
Определение абсолютной погрешности задания частоты функционального контроля	6.4.14	да	да
Определение длительности фронта и среза перепадов сигналов драйверов	6.4.15	да	да
Определение абсолютной погрешности формирования длительности импульса драйверами	6.4.16	да	да
Определение времени опережения и запаздывания фронта и среза импульса драйверов	6.4.17	да	да
Определение времени опережения и запаздывания строба компараторов	6.4.18	да	да

2 СРЕДСТВА ПОВЕРКИ

2.1 Для проведении поверки должны применяться средства поверки, указанные в таблице 2.

2.2 Применяемые средства поверки должны быть исправны, поверены и иметь документы о поверке.

2.3 Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик стендов с требуемой точностью.

Таблица 2 – Средства поверки

Номер пункта	Рекомендуемый тип			
методики	средства поверки, регистрационный номер			
CA1 CA12	Калибратор-мультиметр цифровой KEITHLEY 2400;			
0.4.1 - 0.4.13	регистрационный номер 25789-08			
6111 6119	Частотомер КЕҮSIGHT 53230А;			
0.4.14 - 0.4.18	регистрационный номер 51077-12			
	Катушка электрического сопротивления РЗ10 0,01 Ом, класс точности 0,01;			
6 1 1 2 6 1 1 2	регистрационный номер 1162-58			
0.4.12, 0.4.15	Катушка электрического сопротивления РЗ21 0,1 Ом, класс точности 0,01;			
	регистрационный номер 1162-58			
	Вспомогательные средства поверки (принадлежности)			
	Адаптер универсальный метрологический на 256 каналов DIB-256-М			
	Адаптер 2-го уровня для автоматического измерения статических параметров			
разделы	R-256-DCA			
6.3, 6.4	Адаптер 2-го уровня для ручного измерения динамических параметров			
	R-256-ACM			
	Кабель для 4-х проводного измерения статических параметров CSL			
	Кабели для аттестации статических параметров при больших токах с			
	помощью катушек электрического сопротивления CSH			
	Кабель для аттестации динамических параметров СНГ			
	Кабель для управления оснасткой USB 2.0 А-В 1.5м			
	Блок питания БПС 18-0.7			

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области электрических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80, «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей».

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ±3) °С;
- относительная влажность воздуха от 30 до 70 %;
- атмосферное давление от 84 до 106.7 кПа.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра проверяются:

- комплектность стенда;
- отсутствие механических повреждений;
- четкость фиксации органов управления и коммутации;
- чистота гнезд, разъемов и клемм блока измерений;
- исправность состояния соединительных проводов и кабелей;
- однозначность и четкость маркировки.

6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого прибора, его направляют в ремонт.

6.2 Опробование и идентификация

6.2.1 Выполнить включение стенда следующим образом:

- перевести во включенное состояние тумблер сетевого электропитания;
- перевести во включенное состояние тумблер управления подачей напряжения от источников вторичного электропитания;
- включить ЭВМ и загрузить операционную систему WINDOWS-7;

6.2.2 Выполнить идентификацию установленного на компьютере программного обеспечения, для чего запустить XperTest, дважды последовательно нажав и отпустив левую клавишу манипулятора типа «мышь» (в дальнейшем, двойной клик левой клавишей), после того как курсор будет перемещён в область соответствующего ярлыка на экране монитора. Наблюдать появление панели оператора среды XperTest(puc. 6.2.1).

	ХрегTest 3.7.7.0 программа 551. Контекст -	46	5Ц1-	00, библ:	иотека So	VMICFT17	Mini 1.0.0.1			
¦ 1	лавное Статистика Настройки Зс	ж	1	<i>21</i> 0 =				- 3670		
}	-Информация	١٢	Оби	цая статис	тика	······	19 - An Santa Banada an Santa Ang Santa Santa Ang S	I	Распределение брака по сай	йтам, % 🤟
1	Устройство:			Результа	Последні	Bcero	Процент			
ł	Лист:		>	Годен						
í	Партия:			Брак						
	Кристелл;			Ошнбка		-				1
1	Время:		ন্থ	Обновлят	ь графики		🗔 Только брак			

Рисунок 6.2.1 – Вид панели оператора среды ХрегТеst.

Убедиться, что номер версии XperTest, указанный в заголовке окна (обведен контуром жёлтого цвета на рис.6.2.1) не ниже 3.8.7.0. Закрыть панель оператора, последовательно нажав и отпустив левую клавишу манипулятора типа «мышь» (в дальнейшем, клик левой клавишей),

после перемещения курсора в область элемента управления 🗵 в правой верхней части окна программы.

6.2.3 Запустить на исполнение двойным кликом мышки программу диагностики C:\HFDT_Diagnostic\bin\Debug\HFDT_Diagnostic.exe, которая выполнит проверку работоспособности ресурсов стенда, указанных в карте C:\HFDT_Diagnostic_Common\StartInit\SegmentMap\SegmentMap.ini.

Наблюдать появление окна программы диагностики, показанное на рисунке 6.2.2.

н HFDT Dignostic варсия номер 5	Mar - Mr & . #	*,	
Найдены контроллеры Cypress USB: 1. VID=FC17 PID=0001 Name=FT-17HF			
Введите команду в строке ввода			
Diagnostic	<u>بر سیمکر بیک کرد کرد. کرد کرد</u> در محکور بیک کرد کرد کرد کرد کرد کرد کرد کرد کرد کر		Y

Рисунок 6.2.2 – окно программы диагностики

В заголовке окна отображается версия программы "Diagnostic".

Версия программы "Diagnostic" должна быть 5 или старше.

Окно программы состоит из двух частей:

- область в которую программа выводит сообщения о своей работе;

- строка ввода, в которую пользователь вводит команды;

6.2.4 Ввести в строку ввода команду "Diagnostic" и нажать клавищу "«Enter»".

Программа начнет выполнять последовательность тестов и отображать на экране количество тестов с результатом "БРАК". Окно программы в процессе работы показано на рисунке 6.2.3.

EP. HPDT Diagnostic версия номер 5	
Количество выполненных проходов по коллекции тестов:0 Количество выполненных тестов:30 ; 28 Количество тестов с результатом "БРАК":	5

Рисунок 6.2.3 – окно программы диагностики в процессе работы

Программа выполнит всю последовательность тестов и выведет сообщение о завершении своей работы, при этом сообщение о количестве тестов с результатом "БРАК" будет присутствовать на экране.

Результаты опробования считать положительными, если количество тестов с результатом "БРАК" равно нулю.

6.2.5 Закрыть программу диагностики, для чего в строку ввода ввести команду "Exit" и нажать клавишу "«Enter»", затем ввести команду "Close" и нажать клавишу "«Enter»".

6.2.6 Завершить работу операционной системы WINDOWS-7 и выключить ЭВМ.

6.2.7 Перевести тумблеры управления электропитанием в выключенное положение.

6.3 Подготовка к измерениям статических параметров

6.3.1 Установить на измерительный блок метрологическую оснастку, собранную из адаптера универсального метрологического на 256 каналов (DIB-256-M) и адаптера 2-го уровня для автоматического измерения статических параметров (R-256-DCA) (рис.6.3.1).

6.3.2. Установить, если необходимо драйвер адаптера USB-COM TRENDNET TU-S9, используя методику из ПРИЛОЖЕНИЯ 1.

6.3.3. Подключить 9-контактую вилку адаптера TU-S9 к ответному разъёму «RS-232» на задней стенке прибора Keithley 2400, а вилку USB адаптера соединить со свободным портом USB на компьютере. Ещё один компьютерный порт USB необходимо соединить кабелем типа A-B с соединителем XS4 на R-256-DCA (рис.6.3.2).

6.3.4 Подключить блок питания БПС 18-0.7 к соединителю ХР6 (рис.6.3.2).

6.3.5 Подключить измерительные входы прибора Keithley 2400 к разъёмам на плате адаптера DIB-256-M, (рис. 6.3.2) с помощью кабеля для 4-х проводного измерения на KEITHLEY для аттестации статических параметров (CSL) в соответствии с таблицей 6.1.

Рисунок 6.3.1 Внешний вид на составные части метрологической оснастки 1 - Адаптер R-256-DCA. 2 – Адаптер DIB-256-M.

стр. 7 из 31

6.3.4. Подключить к выводам разъёма JP1 адаптера DIB-256-М катушки электрического сопротивления P321 и P310, используя кабели для аттестации статических параметров при больших токах CSH в соответствии с таблицей 6.1.

Катушки		Выводы катушен	с сопротивления	
сопротивления	«U1»	«U ₂ »	«Iı»	«I ₂ »
Р321(0.1 Ом)	JP1/6	JP1/7	JP1/5	JP1/8
Р310 (0.01Ом)	JP1/3	JP1/2	JP1/1	JP1/4
	Измерительни	ые входы «HI»	Измерительны	е входы «LO»
Keithley 2400	«НІ»(левый)	«НІ»(правый)	«LO»(левый)	«LO»(правый)
	XP7	JP2/5	XP8	JP2/8

Рисунок 6.3.2 Обозначение соединителей на плате. Адаптер R-256-DCA.

6.3.5 Используя органы управления лицевой панели Keithley 2400, выполнить настройки: MENU/COMMUNICATIONS/RS-232/BAUD/ 9600 MENU/COMMUNICATIONS/RS-232/BITS/ 8; MENU/COMMUNICATIONS/RS-232/PARITY/ NONE MENU/COMMUNICATIONS/RS-232/TERMINATOR/ <LF> MENU/COMMUNICATIONS/RS-232/FLOW CTRL/ NONE

6.3.6 Выполнить включение стенда:

Таблица 61

перевести во включенное состояние тумблер сетевого электропитания;

– перевести во включенное состояние тумблер управления подачей напряжения от источников вторичного электропитания;

- включить ЭВМ и загрузить операционную систему WINDOWS-7;
- включить прибор Keithley 2400
- подключить к сетевому напряжению 220В вилку блока питания БПС 18-0.7

6.3.7. Через 30 минут, необходимые для прогрева оборудования, перейти к выполнению действий по методике следующего пункта.

6.4. Определение метрологических характеристик.

Запустить на исполнение среду для работы со статическими метрологическими характеристиками стенда C:\StaticTuning\bin\StaticTuning.exe. Вид окна сообщений программной среды после запуска показан на рис.6.3.3.

Онно сообщения	
Выполняется инициализация тестера Количество обнаруженных плат: 2	
Слот 3: C100001737BD0801 Слот 4: 3D00001708BD5801	
Ревизии зашивок ПЛИС: CC_Cyclone = 2A04h PIN_GENERAL = OBODh PIN_TPG = 2010h	
Программа ищет xml файлы поправок в папке C:\XperTest\Config\Ft17Hf\	
Поправки загружены в платы номер: 3, 4	
Инициализация успешно завершена.	
Нажмите Enter.	\bigcirc
Окно ввода	$\begin{pmatrix} 1 \end{pmatrix}$
Программа ждет нажатия кнопки "Enter"	/
Enter	
90 <u>0</u> <u>0</u> <u>0</u>	

Рисунок 6.3.3 Вид окна программной среды для работы со статическими метрологическими характеристиками после запуска.

Убедиться, что номер версии StaticTuning, указанный в заголовке окна не ниже 4.3.

Переместить курсор в область отображения программного элемента (сноска 1, рис.6.3.3) и нажать и отпустить левую клавишу «мышки». В появившемсвыпадающем списке выбрать и кликнуть строку с командой «Examination», а затем нажать клавишу «Ввод» на клавиатуре. Наблюдать ход выполнения программы поверки. При необходимости следовать указаниям, появляющимся на экране монитора. Описание методика автоматизированной поверки параметров по п.4-16 таблицы 2 приведено в п.п. 6.4.1 – 6.4.13.

После окончания работы программы отключить прибор Keithley 2400 от измерительной оснастки стенда. Завершить работу программной среды. Перейти к выполнению действий по методике п.п. 6.4.14.

6.4.1 Определение абсолютной погрешности воспроизведения уровней постоянного напряжения драйверами

В таблице 6.2 указаны условные обозначения тестируемых параметров, которые используются в отчете о результате проверки

Таблица 0.2

E

Τροττιηνολιτή παρολοτη	Условное обозначение
тестируемый параметр	тестируемого параметра
Воспроизведение напряжения высокого уровня VH	VH
Воспроизведение напряжения низкого уровня VL	VL
Воспроизведение напряжения среднего уровня VT	VT
Воспроизведение напряжения высоковольтного уровня VHH	HVOUT

FT-17МП-2017 FT-17НF-768, FT-17DT-256. Методика поверки. 01.02.2017

В Таблице 0.3 указаны диапазоны воспроизведения постоянного напряжения драйверами и пределы допускаемой абсолютной погрешности.

T GOMMA OID	Tat	блица	ι 0.3
-------------	-----	-------	-------

Условное обозначение	Диапазон	Пределы абсолютной
тестируемого параметра		погрешности
VH	от минус 1,4 до + 6,0 В	±15 мВ
VL	от минус 1,5 до + 5,9 В	±15 мВ
VT	от минус 1,5 до + 6,0 В	±15 мВ
HVOUT	от 6,0 до + 13,0 В	± (0,001·HVOUT +200 мВ)

Абсолютная погрешность воспроизведения уровней постоянного напряжения драйверами определяется прямым измерением с помощью калибратора-мультиметра KEITHLEY 2400. Поверяемые уровни соответствуют начальной точке, а так же 20%, 50%, 80% и 100 % от

диапазона формирования по табл.6.3.

Значения абсолютной погрешности воспроизведения уровня напряжения вычисляются программой по формуле:

 $\Delta U_{H/L/VT/HVOUT} = U_D - U_A,$

(1)

где U_D – измеренное прибором Keithley 2400 значение уровней VH/VL/VT/HVOUT,

U_A – воспроизводимое значение уровней VH/VL/VT/HVOUT;

Программа выполняет сравнение полученных по формуле (1) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.3.

Данные измерений и значения погрешностей сохраняются в файле отчета.

Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.3.

6.4.2 Определение абсолютной погрешности воспроизведения постоянного напряжения источником-измерителем статических параметров универсальных каналов

В таблице 6.4 указаны условные обозначения тестируемых параметров, которые используются в отчете о результате проверки.

Таблица 6.4

Тестируемый цараметр	Условное обозначение
тотрусмых парамотр	тестируемого параметра
Воспроизведение постоянного напряжения U _x	PMU305_FV

В таблице 6.5 указаны диапазоны воспроизведения напряжения и пределы допускаемой абсолютной погрешности источников-измерителей статических параметров.

Таблица 6.5

Условное обозначение	Диапазон	Пределы абсолютной
тестируемого параметра		погрешности
PMU305_FV	от минус 1,5 до + 6,0 В	$\pm (0,001 \cdot U_{x} + 5 \text{ MB})$

Абсолютная погрешность воспроизведения уровней постоянного напряжения источникомизмерителем статических параметров определяется прямым измерением с помощью калибратора-мультиметра KEITHLEY 2400. Поверяемые уровни соответствуют начальной точке, а так же 20%, 50%, 80% и 100 % от диапазона формирования по табл.6.5.

(2)

Значения абсолютной погрешности воспроизведения напряжения вычисляются по формуле:

 $\Delta U = U_D - U_A,$

где U_D – измеренное Keithley 2400 значение напряжения;

U_A – воспроизводимое значение напряжения.

Программа выполняет сравнение полученных по формуле (2) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.5

Данные измерений и значения погрешностей сохраняются в файле отчета.

Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.5.

6.4.3 Определение абсолютной погрешности воспроизведения силы постоянного тока источником-измерителем статических параметров универсальных каналов

В таблице 6.6 указаны условные обозначения тестируемых параметров, которые используются в отчете о результате проверки.

Таблица 6.6

Τροττιουργιστ	Условное обозначение	
тестируемый параметр	тестируемого параметра	
Воспроизведение силы тока I_x на пределе ± 2 мкА	PMU305_FI_N0_2uA	
Воспроизведение силы тока I_x на пределе \pm 20 мкА	PMU305_FI_N1_20uA	
Воспроизведение силы тока I_x на пределе \pm 200 мкА	PMU305_FI_N2_200uA	
Воспроизведение силы тока I_x на пределе $\pm 2 \text{ мA}$	PMU305_FI_N3_2mA	
Воспроизведение силы тока I_x на пределе \pm 32 мА	PMU305_FI_N4_32mA	

В таблице 6.7 указаны пределы воспроизведения силы тока канальным источникомизмерителем статических параметров и пределы допускаемой абсолютной погрешности. Таблица 6.7

Условное обозначение		Пределы абсолютной
тестируемого параметра	пределы воспроизведения	погрешности
PMU305_FI_N0_2uA	±2 мкА	± (0,001·I _x +10 нА)
PMU305_FI_N1_20uA	± 20 мкА	$\pm (0,001 \cdot I_x + 50 \text{ HA})$
PMU305_FI_N2_200uA	± 200 мкА	$\pm (0,001 \cdot I_x + 500 \text{ HA})$
PMU305_FI_N3_2mA	±2 мА	$\pm (0,001 \cdot I_x + 5 \text{ MKA})$
PMU305_FI_N4_32mA	± 32 мA	$\pm (0,001 \cdot I_x + 100 \text{ MKA})$

Программа последовательно, по всем тестируемым каналам, задает значения силы тока I_A в трёх точках по диапазону для каждого тестируемого параметра из таблицы 6.6:

- крайнее отрицательное значение;

- нулевое значение;

- крайнее положительное значение.

Программа считывает значения силы тока, измеренные прибором Keithley 2400, и вычисляет значения абсолютной погрешности воспроизведения силы тока по формуле:

 $\Delta I = I_D - I_A,$

(3)

где I_D – измеренное Keithley 2400 значение силы тока;

I_A – воспроизводимое значение силы тока.

Программа выполняет сравнение полученных по формуле (3) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.7.

Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.7.

Данные измерений и значения погрешностей сохраняются в файле отчета.

6.4.4 Определение абсолютной погрешности воспроизведения силы постоянного тока активной нагрузкой универсального канала

В таблице 6.8 указаны условные обозначения тестируемых параметров, которые используются в отчете о результате проверки.

Таблица 6.8

Тестируемый параметр	Условное обозначение тестируемого параметра
Воспроизведение силы тока I _x активной нагрузки высокого уровня, при которой ток течет от объекта контроля в нагрузку	ЮН
Воспроизведение силы тока I _x активной нагрузки низкого уровня, при которой ток течет от нагрузки в объект контроля	IOL

В таблице 6.9 указаны диапазоны воспроизведения силы тока активными нагрузками и пределы допускаемой абсолютной погрешности.

Таблица 6.9

Условное обозначение тестируемого параметра	Диапазон	Пределы абсолютной погрешности
IOH	от 0 до минус 12 мА	+(0.001 L + 60.5m)
IOL	от 0 до + 12 мА	$\pm (0,001.1_{\rm X} + 60 \text{ MKA})$

Программа задает напряжение коммутации VCom (порог переключения с IOH на IOL), равным 1,5 В. Программа настраивает прибор Keithley 2400 на воспроизведение напряжения и измерение силы тока. Прибор Keithley 2400 воспроизводит напряжение 3 В для проверки параметра IOH, 0 В для проверки параметра IOL. Программа последовательно, по всем проверяемым каналам задает следующие значения силы тока для каждого тестируемого параметра из таблицы 6.8:

- 0% от диапазона (крайнее нижнее значение);

- 50% от диапазона (среднее значение);

- 100% от диапазона (крайнее верхнее значение).

Активные нагрузки стенда воспроизводят заданные программой значения силы тока. Программа считывает измеренные прибором Keithley 2400 значения силы тока, и вычисляет значения абсолютной погрешности по формуле:

(4)

 $\Delta I = I_D - I_A$

где I_D – измеренное прибором Keithley 2400 значение силы тока;

I_A – воспроизводимое значение силы тока.

Программа выполняет сравнение полученных по формуле (4) значений погрешностей с допускаемыми значениями, рассчитанными по формуле таблицы 6.9

Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.9.

Данные измерений и значения погрешностей сохраняются в файле отчета.

6.4.5 Определение абсолютной погрешности измерения постоянного напряжения компаратором

В таблице 6.10 указаны условные обозначения тестируемых параметров, которые используются в отчете о результате проверки.

Таблица 6.10

	Условное обозначение
тестируемый параметр	тестируемого параметра
Входное напряжение V _{in} высокого уровня	VOH
Входное напряжение V _{in} низкого уровня	VOL

В таблице 6.11 указаны диапазоны установки уровней напряжения компараторов и пределы допускаемой абсолютной погрешности.

Таблица 6.11

Условное обозначение тестируемого параметра	Диапазон	Пределы абсолютной погрешности
VOH/VOL	от минус 1,4 до + 6,0 В	±15 мВ

Программа с помощью прибора Keithley 2400 последовательно по каждому параметру, и по всем проверяемым каналам, задает значения напряжения Vin в трёх точках диапазона по таблице 6.10:

- 0% от диапазона (крайнее нижнее значение);

- 50% от диапазона (среднее значение);

- 100% от диапазона (крайнее верхнее значение).

Значения абсолютной погрешности компаратора вычисляются по формуле:

 $\Delta U = U_D - Vin,$

где U_D – измеренное напряжение на входе компаратора методом поразрядного уравновешивания.

(5)

Vin – задаваемое напряжение на входе компаратора.

Программа выполняет сравнение полученных по формуле (5) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.11. Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.11. Данные измерений и значения погрешностей сохраняются в файле отчета.

6.4.6 Определение абсолютной погрешности измерения постоянного напряжения источником-измерителем статических параметров универсального канала

В таблице 6.12 указаны условные обозначения тестируемых параметров, которые используются в отчете о результате проверки.

Таблица 6.12

Тестируемый параметр	Условное обозначение тестируемого параметра
Измерение постоянного напряжения канальным измерителем	PMII305 MV
статических параметров	11100000_1111

В таблице 6.13 указаны диапазоны измерения напряжения канальным источником-измерителем статических параметров и пределы допускаемой абсолютной погрешности.

Таблица 6.13

Условное обозначение	Лиапазон	Пределы абсолютной
тестируемого параметра	Дианазон	погрешности
PMU305_MV	от минус 1,5 до + 6,0 В	± (0,001·U _x + 6 мВ)

Программа, с помощью прибора Keithley 2400, последовательно, по всем универсальным каналам, задает на входе проверяемого источника-измерителя статических параметров, следующие значения напряжений U_A в диапазоне по таблице 6.12:

- 0% от диапазона (крайнее нижнее значение);

- 50% от диапазона (среднее значение);

- 100% от диапазона (крайнее верхнее значение).

Значения абсолютной погрешности измерения напряжения вычисляются по формуле:

(6)

 $\Delta U = U_D - U_A,$

где U_D – среднее измеренное значение напряжения;

U_A – заданное прибором Keithley 2400 входное напряжение.

Программа выполняет сравнение полученных по формуле (6) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.13. Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.13.Данные измерений и значения погрешностей сохраняются в файле отчета.

6.4.7 Определение абсолютной погрешности измерения силы постоянного тока источником-измерителем статических параметров универсального канала

В таблице 6.14 указаны условные обозначения тестируемых параметров источниковизмерителей, которые используются в отчете о результате проверки.

Таблица 6.14

Τροττιτινοντιτά παταλιστη	Условное обозначение
тестирусмый параметр	тестируемого параметра
Измерение силы тока I _х на пределе ± 2 мкА	PMU305_MI_N0_2uA
Измерение силы тока I_x на пределе ± 20 мкА	PMU305_MI_N1_20uA
Измерение силы тока I_x на пределе ± 200 мкА	PMU305_MI_N2_200uA
Измерение силы тока I_x на пределе ± 2 мА	PMU305_MI_N3_2mA
Измерение силы тока l_x на пределе \pm 32 мА	PMU305_MI_N4_32mA

В таблице 6.15 указаны пределы измерения силы тока канальным источником-измерителем статических параметров и пределы допускаемой абсолютной погрешности.

Таблица 6.15

Условное обозначение тестируемого параметра	Предел измерения	Пределы абсолютной погрешности	
PMU305_MI_N0_2uA	±2 мкА	$\pm (0,001 \cdot I_x + 20 \text{ hA})$	
PMU305_MI_N1_20uA	± 20 мкА	± (0,001·I _x +60 нА)	
PMU305_MI_N2_200uA	± 200 мкА	$\pm (0,001 \cdot I_x + 600 \text{ hA})$	
PMU305_MI_N3_2Ma	±2 мА	± (0,001·I _x ÷ 6 мкА)	
PMU305_MI_N4_32mA	± 32 мА	$\pm (0,001 \cdot I_x + 100 \text{ MKA})$	

FT-17МП-2017 FT-17НF-768, FT-17DT-256. Методика поверки. 01.02.2017

Программа, с помощью прибора Keithley 2400, последовательно, по всем тестируемым каналам, задает по пять значений силы тока I_A, которые соответствуют началу диапазонов и 20%, 50%, 80%, 100% от конкретного диапазона из таблицы 6.14:

Значения абсолютной погрешности измерения силы тока канальным измерителем статических параметров вычисляются по формуле:

 $\Delta \mathbf{I} = \mathbf{I}_{\mathrm{D}} - \mathbf{I}_{\mathrm{A}},$

(7)

где I_D – измеренное среднее значение силы тока;

I_A – заданное прибором Keithley 2400 значение силы тока.

Программа выполняет сравнение полученных по формуле (7) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.15. Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.15. Данные измерений и значения погрешностей сохраняются в файле отчета.

6.4.8 Определение абсолютной погрешности воспроизведения постоянного напряжения источником-измерителем статических параметров дополнительного канала

В таблице 6.16 указаны условные обозначения тестируемых параметров источниковизмерителей, которые используются в отчете о результате проверки.

Таблица 6.16

Тестипуемый цараметр	Условное	обозначение
тоотпрусмын парамотр	тестируемого параметра	
Воспроизведение напряжения каналом типа II	PMU5522_FV	

В таблице 6.17 указаны диапазоны воспроизведения постоянного напряжения проверяемыми каналами источника-измерителя статических параметров и пределы допускаемой абсолютной погрешности.

Таблица 6.17

Условное обозначение	Лиапазон	Пределы абсолютной
тестируемого параметра		погрешности
PMU5522_FV	от минус 4 до + 12,5 В	$\pm (0,001 \cdot U_{x} + 5 \text{ MB})$

Абсолютная погрешность воспроизведения уровней постоянного напряжения источникомизмерителем определяется прямым измерением с помощью калибратора-мультиметра КЕІТНLЕҮ 2400. Поверяемые уровни соответствуют начальной точке, а так же 20%, 50%, 80% и 100 % от диапазона формирования по табл.6.17.

Значения абсолютной погрешности воспроизведения напряжения вычисляются по формуле:

 $\Delta U = U_D - U_A,$

(8)

где U_D – измеренное прибором Keithley 2400 значение напряжения;

U_A – воспроизводимое значение напряжения.

Программа выполняет сравнение полученных по формуле (8) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.17. Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.17. Данные измерений и значения погрешностей сохраняются в файле отчета.

6.4.9 Определение абсолютной погрешности воспроизведения силы постоянного тока источником-измерителем статических параметров дополнительного канала

В таблице 6.18 указаны условные обозначения тестируемых параметров источниковизмерителей, которые используются в отчете о результате проверки.

Таблица 6.18

ر بر

	Условное обозначение
тестируемый параметр	тестируемого параметра
Воспроизведение силы тока I _x на диапазоне ± 5 мкА	PMU5522_FI_N0_5uA
Воспроизведение силы тока I _x на диапазоне ± 20 мкА	PMU5522_FI_N1_20uA
Воспроизведение силы тока I_x на диапазоне ± 200 мкА	PMU5522_FI_N2_200uA
Воспроизведение силы тока I _x на диапазоне ± 2 мА	PMU5522_FI_N3_2mA
Воспроизведение силы тока I _x на диапазоне ± 80 мА	PMU5522_FI_N4_80mA

В таблице 6.19 указаны пределы воспроизведения силы тока и пределы допускаемой абсолютной погрешности.

Таблица 6.19

Условное обозначение		Пределы абсолютной
тестируемого параметра	пределы воспроизведения	погрешности
PMU5522_FI_N0_5uA	± 5 mkA.	± (0,001·I _x +5 нА)
PMU5522_FI_N1_20uA	±20 мкА	± (0,001·I _x +10 нА)
PMU5522_FI_N2_200uA	± 200 мкА	± (0,001·I _x + 100 нА)
PMU5522_FI_N 3 _2mA	±2 мА	± (0,001·I _x +1 мкА)
PMU5522_FI_N4_80mA	± 80 мA	± (0,001·I _x +30 мкА)

Программа последовательно, по всем проверяемым каналам, задает следующие значения тока I_A, . для каждого тестируемого параметра из таблицы 6.18:

- крайнее отрицательное значение;

- нулевое значение;

- крайнее положительное значение.

Прибором Keithley 2400 измеряются значения силы тока I_D с выхода тестируемого канала. Значения абсолютной погрешности воспроизведения силы тока вычисляются по формуле:

(9)

 $\Delta I = I_D - I_A,$

где I_D – измеренное прибором Keithley 2400 значение силы тока;

I_A – воспроизводимое значение силы тока.

Программа выполняет сравнение полученных по формуле (9) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.19. Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.19. Данные измерений и значения погрешностей сохраняются в файле отчета.

стр. 16 из 31

6.4.10 Определение абсолютной погрешности измерения постоянного напряжения источником-измерителем статических параметров дополнительного канала

В таблице 6.20 указаны условные обозначения тестируемых параметров источниковизмерителей статических параметров, которые используются в отчете о результате проверки.

Таблица 6.20

î.

2

Тестипуемый цараметр	Условное обозначение
тестируемым параметр	тестируемого параметра
Измерение напряжения каналом типа П	PMU5522_MV

В таблице 6.21 указаны диапазоны измерения напряжения и пределы допускаемой абсолютной погрешности.

Таблица 6.21

Условное обозначение	Диапазон	Пределы абсолютной
тестируемого параметра		погрешности
PMU5522_MV	от минус 2,7 до + 11,7 В	± (0,001·U _x + 5 мВ)

Программа, управляя прибором Keithley 2400, последовательно, по всем тестируемым каналам, задает следующие значения напряжений U_A по диапазону напряжения из таблицы 6.20:

- 0% от диапазона (крайнее нижнее значение);

- 50% от диапазона (среднее значение);

- 100% от диапазона (крайнее верхнее значение).

Значения абсолютной погрешности измерения напряжения вычисляются по формуле:

(10)

 $\Delta U = U_D - U_A$,

где U_D – среднее значение измеренного напряжения;

U_A – задаваемое прибором Keithley 2400 значение напряжения.

Программа выполняет сравнение полученных по формуле (10) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.21. Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.21. Данные измерений и значения погрешностей сохраняются в файле отчета.

6.4.11 Определение абсолютной погрешности измерения силы постоянного тока источником-измерителем статических параметров дополнительного канала

В таблице 6.22 указаны условные обозначения тестируемых параметров, которые используются в отчете о результате проверки.

Таблица 6.22

Тестируемый цараметр	Условное обозначение
Тестирусмый параметр	тестируемого параметра
Измерение силы тока I_x на пределе ± 5 мкА	PMU5522_MI_N0_5uA
Измерение силы тока I_x на пределе ± 20 мкА	PMU5522_MI_N1_20uA
Измерение силы тока I_x на пределе ± 200 мкА	PMU5522_MI_N2_200uA
Измерение силы тока I _х на пределе ± 2 мА	PMU5522_MI_N3_2mA
Измерение силы тока I_x на пределе \pm 80 мА	PMU5522_MI_N4_80mA

В таблице 6.23 указаны пределы измерения силы тока источником-измерителем статических параметров и пределы допускаемой абсолютной погрешности.

Таблица 6.23

\$

2

L

Условное обозначение		Пределы абсолютной
тестируемого параметра	пределы измерения	погрешности
PMU5522_MI_N0_5uA	± 5 мкА	± (0,001·I _x +20 нА)
PMU5522_MI_N1_20uA	± 20 мкА	$\pm (0,001 \cdot I_x + 30 \text{ HA})$
PMU5522_MI_N2_200uA	± 200 мкА	$\pm (0,001 \cdot I_x + 150 \text{ hA})$
PMU5522_MI_N3_2mA	± 2 мА	± (0,001·I _x + 1,5 мкА)
PMU5522_MI_N4_80mA	± 80 мA	± (0,001·I _x +50 мкА)

Программа, с помощью прибора Keithley 2400, последовательно, по всем тестируемым каналам, задает по пять значений силы тока I_A, которые соответствуют началу диапазонов и 20%, 50%, 80%, 100% от конкретного диапазона из таблицы 6.23.

Значения абсолютной погрешности измерения силы тока источником-измерителем статических параметров вычисляются по формуле:

 $\Delta I = I_D - I_A,$

(11)

где I_D – среднее измеренное значение силы тока;

I_A – задаваемое прибором Keithley 2400 значение силы тока.

Программа выполняет сравнение полученных по формуле (11) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.23. Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.23. Данные измерений и значения погрешностей сохраняются в файле отчета.

6.4.12 Определение абсолютной погрешности воспроизведения постоянного напряжения измерительным источником питания

В таблице 6.24 указаны условные обозначения тестируемых параметров, которые используются в отчете о результате проверки.

Таблица 6.24

Тестируемый параметр	Условное обозначение
	тестируемого параметра
Воспроизведение напряжения U _x	DPS5560_FV

В таблице 6.25 указаны диапазоны воспроизведения напряжения измерительным источником питания и пределы допускаемой абсолютной погрешности.

Таблица 6.25

Условное обозначение	Лиапазон	Пределы абсолютной
тестируемого параметра	Zinanason	погрешности
DPS5560_FV	от минус 5,5 до + 14 В	± (0,001·U _x + 10 мВ)

Программа последовательно, для всех программируемых источников питания, задает следующие значения выходного напряжения U_A по диапазону из таблицы 6.24:

- 0% от диапазона (крайнее нижнее значение);

- 50% от диапазона (среднее значение);

- 100% от диапазона (крайнее верхнее значение).

стр. 18 из 31

Для каждого напряжения U_A, с помощью прибора Keithley 2400, измеряются значения напряжения U_D. Значения абсолютной погрешности воспроизведения напряжения программируемым источником питания вычисляются по формуле:

(12)

 $\Delta U = U_D - U_A$,

È

Ł

где U_D – измеренное прибором Keithley 2400 значение напряжения;

U_A – задаваемое значение напряжения.

Программа выполняет сравнение полученных по формуле (12) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.25. Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.25. Данные измерений и значения погрешностей сохраняются в файле отчета.

6.4.13 Определение абсолютной погрешности измерения силы тока измерительным источником питания.

В таблице 6.26 указаны условные обозначения тестируемых параметров, которые используются в отчете о результате проверки.

Таблица 6.26

	Условное обозначение
тестируемый параметр	тестируемого параметра
Измерение силы тока I_x на пределе \pm 5 мкА	DPS5560_MI_N0_5uA
Измерение силы тока I_x на пределе ± 25 мкА	DPS5560_MI_N1_25uA
Измерение силы тока I_x на пределе ± 250 мкА	DPS5560_MI_N2_250uA
Измерение силы тока I _х на пределе ± 2,5 мА	DPS5560_MI_N3_2dot5mA
Измерение силы тока I_x на пределе ± 25 мА	DPS5560_MI_N4_25mA
Измерение силы тока I_x на пределе \pm 400 мА	DPS5560_MI_N5_400mA
Измерение силы тока I _x на пределе ± 1200 мА	DPS5560_MI_N6_1200mA

В таблице 6.27 указаны пределы измерения силы тока измерительным источником питания и пределы допускаемой абсолютной погрешности.

Таблица 6.27

Условное обозначение тестируемого параметра	Пределы измерения	Пределы абсолютной погрешности
DPS5560_MI_N0_5uA	± 5 mkA	± (0,001 · I _x +20 нА)
DPS5560_MI_N1_25uA	±25 мкА	$\pm (0,001 \cdot I_x + 50 \text{ hA})$
DPS5560_MI_N2_250uA	± 250 мкА	± (0,001 · I _x + 250 нА)
DPS5560_MI_N3_2500uA	±2,5 мА	± (0,001 · I _x + 2,5 мкА)
DPS5560_MI_N4_25mA	±25 мА	± (0,001 · I _x +25 мкА)
DPS5560FI_N5_400mA	± 400 мА (при воспроизведении напряжения от -2В до +7В)	± (0,001·I _x + 1,5 мА)
DPS5560FI_N6_1200mA	± 1,2 А (при воспроизведении напряжения от -2 В до + 3 В)	± (0,005·I _x + 4,0 мА)

Определение абсолотной погрешности измерения силы тока проводится в трёх точках каждого из диапазонов, указанных в таблице 6.27:

- крайнее отрицательное значение;

- нулевое значение;

- крайнее положительное значение.

FT-17МП-2017 FT-17НF-768, FT-17DT-256. Методика поверки. 01.02.2017

Значения абсолютной погрешности измерения силы тока программируемым источником питания вычисляются по формуле:

 $\Delta I = I_D - I_A,$

где I_D – среднее измеренное значение силы тока;

I_A – при поверке на пределах ± 5 мкА,± 25 мкА,± 250 мкА,± 2.5 мА,± 25 мА

заданное прибором Keithley 2400 значение силы тока,

при поверке на пределах ± 400 мA, ± 1.2 A,

рассчитанное по измеренному прибором Keithley 2400 падению напряжения на одной из катушек образцового сопротивления 0.1 Ом (± 400 мА) или 0.01 Ом (± 1.2 А),

(13)

которые включаются последовательно с дополнительным резистором нагрузки.

Программа выполняет сравнение полученных по формуле (13) значений погрешностей с допускаемыми значениями, рассчитанными по формулам таблицы 6.27. Результаты поверки считаются положительными, если значения абсолютной погрешности не превышают пределов, рассчитанных по выражениям из таблицы 6.27. Данные измерений и значения погрешностей сохраняются в файле отчета.

6.4.14 Определение абсолютной погрешности задания частоты функционального контроля.

6.4.14.1 Выполнить выключение стенда следующим образом:

- выключить тумблер управления подачей напряжения от источников вторичного электропитания;

- выключить тумблер сетевого электропитания.

6.4.14.2. Заменить на адаптере DIB-256-M адаптер 2-го уровня R-256-DCA на адаптер для ручного измерения динамических параметров R-256-ACM (рис.6.4.1).

Рисунок 6.4.1 Внешний вид метрологической оснастки для поверки динамических параметров 1 - адаптер для ручного измерения динамических параметров R-256-ACM.

2 – адаптер DIB-256-ACM.

6.4.14.3 Выполнить включение стенда следующим образом:

- включить тумблер сетевого электропитания

- включить тумблер управления подачей напряжения от источников вторичного электропитания.

6.4.14.4 Подготовить к работе частотомер КЕҮЅІGHT 53230А в режиме измерения частоты, подаваемой на первый измерительный вход, используя инструкцию по эксплуатации на этот прибор:

- «Freq Period»
- «Freq»
- «Coupling DC»
- «Impedance 50 Om»
- «Range 5V»
- «BW Limit Off»
- «Probe None»

6.4.14.5 Подключить к первому входу частотомера сигнал с разъёма «1Р10» платы адаптера DIB-256-ACM с помощью кабеля СНГ АСЕД.441329.04 (рис. 6.4.2).

6.4.14.6 Запустить на исполнение среду «ХрегTest», используя рекомендации раздела 2.1 ПРИЛОЖЕНИЕ 2.

6.4.14.7 Открыть окно программного инструмента «FT-17HF TPG» и запустить на исполнение векторную последовательность 3052Hz.xvd, следуя рекомендациям раздела 2.2 ПРИЛОЖЕНИЕ 2

Рисунок 6.4.2 Внешний вид кабеля СНГ АСЕД.441329.04

6.4.14.8 Считать показания отсчётного устройства частотомера.

Результаты поверки считаются положительными, если измеренная величина не превышает предельных значений, приведенных в табл. 6.28 для частоты 3052 Гц.

6.4.14.9 Загрузить на исполнение векторную последовательность 100MHz.xvd, следуя рекомендациям раздела 2.2 ПРИЛОЖЕНИЕ 2

6.4.14.10 Считать показания отсчётного устройства частотомера.

Результаты поверки считаются положительными, если измеренная величина не превышает предельных значений, приведенных в табл. 6.28 для частоты 50 МГц.

Таблица 6.28 Пределы допускаемых значений частоты функционального контроля.

Воспроизводимое	Минимально	Максимально
в значение частоты	допустимое ·	допустимое
I	значение	значение
3052 Гц	3048,948 Гц	3055,052 Гц
100 МГц	99900000 Гц	100100000 Гц

6.4.15 Определение длительности фронта и среза перепадов сигналов драйвера

6.4.15.1 Запустить на исполнение, если необходимо, среду «ХрегTest», используя рекомендации раздела 2.1 ПРИЛОЖЕНИЕ 2.

6.4.15.2 Открыть, если необходимо, окно программного инструмента «FT-17HF TPG» и загрузить на исполнение векторную последовательность Infinite_loop_T0_20ns.xvd, следуя рекомендациям раздела 2.2 ПРИЛОЖЕНИЕ 2

6.4.15.3 Подготовить к работе частотомер KEYSIGHT 53230A в режиме измерения фронта и среза сигнала, подаваемого на первый измерительный вход, используя инструкцию по эксплуатации на этот прибор:

«Coupling DC»; «Impedance 50 Om»; «Range 5V»; «BW Limit Off»

«Probe None»; - «Time Interval»; «Edge Rise».

«Low Level» = +300 mV (20 % установившего уровня от деления сигнала драйвера амплитудой 3В, делителем 1:2, образованным выходным сопротивлением драйвера – 50 Ом и входным сопротивлением частотомера – 50 Ом).

«Upper Level» = +1200 mV(80 % установившего уровня от деления сигнала драйвера амплитудой 3В, делителем 1:2, образованным выходным сопротивлением драйвера – 50 Ом и входным сопротивлением частотомера – 50 Ом). «NoiseRej Off»

6.4.15.4 С помощью кабеля СНГ АСЕД.441329.0 подключать на первый вход частотомера КЕҮSIGHT 53230A, сигнал с разъёма «1Р10» адаптера DIB-256-ACM.

6.4.15.5 Измерить длительность фронта перепада драйвера в режиме частотомера «Edge Rise», а длительность среза - «Edge Fail». Результаты поверки считаются положительными если показания частотомера не превышают 3 нс.

6.4.15.6 Провести действия по методике п.п. 6.4.15.4 и 6.4.15.5 для остальных каналов драйверов (маркировка разъёмов адаптера DIB-256-ACM приведена в таблице 6.28).

Номер платы	Маркирови	ка разъёмов
	1P10-1P17	1P50-1P57
1	1P20-1P27	1P60-1P67
1	1P30-1P37	1P70-1P77
	1P40-1P47	1P80-1P87
	2P10-2P17	2P50-2P57
· · ·	2P20-2P27	2P60-2P67
2	2P30-2P37	2P70-2P77
	2P40-2P47	2P80-2P87
,	3P10-3P17	3P50-3P57
2	3P20-3P27	3P60-3P67
	3P30-3P37	3P70-3P77
l	3P40-3P47	3P80-3P87
	4P10-4P17	4P50-4P57
1	4P20-4P27	4P60-4P67
4	4P30-4P37	4P70-4P77
	4P40-4P47	4P80-4P87

Таблица 6.29

3

стр. 22 из 31

6.4.16 Определение абсолютной погрешности формирования длительности импульса драйверами

6.4.16.1 Подготовить к работе частотомер KEYSIGHT 53230A в режиме измерения фронта и среза сигнала, подаваемого на первый измерительный вход, используя инструкцию по эксплуатации на этот прибор:

«Coupling DC»; «Impedance 50 Om»; «Range 5V»; «BW Limit Off»; «Probe None»;

«NoiseRej Off»; «Time Interval»; «Pulse Width»; «Auto Level On»; «Level» 50 %.

6.4.16.2 Запустить на исполнение, если необходимо, среду «ХрегTest», используя рекомендации раздела 2.1 ПРИЛОЖЕНИЕ 2.

6.4.16.3 Открыть, если необходимо, окно программного инструмента «FT-17HF TPG» и загрузить на исполнение векторную последовательность T0_10ns.xvd, следуя рекомендациям раздела 2.2 ПРИЛОЖЕНИЕ 2.

6.4.16.4 Подключать на первый вход частотомера КЕҮЅІGHT 53230А, с помощью кабеля СНF АСЕД.441329.0 сигнал с разъёма «1Р10» адаптера DIB-256-ACM.

6.4.16.5 Считать показания отсчётного устройства частотомера.

Ł

Результаты поверки считаются положительными если показания частотомера не превышают пределов, указанных в таблице 6.30 для импульса длительностью 10 нс.

таолица 0.50 пред	селы допускаемых значений дли	ельности импульсов драиверами
Длительность	Минимально допустимое	Максимально допустимое
импульса	значение	значение
10 нс	9.490 нс	10.510 нс
163.8 мкс	163.636 мкс	163.964 мкс

Таблица 6.30 Пределы допускаемых значений длительности импульсов драйверами

6.4.16.6 Провести действия по методике п.п. 6.4.16.3 – 6.4.16.5 для определения абсолютной погрепиности формирования импульса длительностью 163.8 мкс, запустив на исполнение векторную последовательность из файла T_163_8us.xvd.

6.4.17 Определение времени опережения и запаздывания фронта и среза импульса драйверов

6.4.17.1 Запустить на исполнение, если необходимо, среду «ХрегTest», используя рекомендации раздела 2.1 ПРИЛОЖЕНИЕ 2.

6.4.17.2 Открыть, если необходимо, окно программного инструмента «FT-17HF TPG» и загрузить на исполнение векторную последовательность Infinite_loop_T0_20ns.xvd, следуя рекомендациям раздела 2.2 ПРИЛОЖЕНИЕ 2.

6.4.17.3 Подготовить к работе частотомер KEYSIGHT 53230А в режиме измерения интервала времени, для чего выполнить следующие установки для первого входа, используя инструкцию по эксплуатации на этот прибор:

«Coupling DC»; «Impedance 50 Om»; «Range 5V»; «Auto Level On»; «Level % 50%»;

«Slope Pos» (фронт импульса); «NoiseRej Off»; «BW Limit Off»; «Probe None».

Выполнить аналогичные установки для второго входа частотомера. Установить режим измерения «Time Interval».

6.4.17.4 Подключить вход №1 частотомера КЕҮЅІGHT 53230А, используя кабель

СНГ АСЕД.44 1329.04 к разъёму «1Р10» адаптера DIB-256-ACM на который выведен сигнал драйвера нулевого канала. Уровень, соответствующий 50% от установившегося значения на фронт и срезе этого сигнала будет использоваться как начало отсчёта для определения абсолютной погрешности задания положения перепадов сигналов драйверов по времени.

6.4.17.5 Определить время опережения и запаздывания фронта импульса драйверов, для чего следует последовательно подключать на второй вход частотомера KEYSIGHT 53230A сигналы с разъёмов адаптера DIB-256-ACM (таблица 6.29) для всех имеющихся в стенде каналов драйверов. Результаты поверки считаются положительными если показания частотомера не выходят за границы допустимых значений ± 800 пс.

6.4.17.6. Провести действия по методике п. 6.4.17.4 для определения время опережения и запаздывания среза импульса драйверов, предварительно изменив установку «Slope с «Pos» на «Neg» для каждого входа частотомера.

6.4.18 Определение времени опережения и запаздывания строба компараторов

6.4.18.1 Запустить на исполнение, если необходимо, среду «ХрегTest», используя рекомендации раздела 2.1 ПРИЛОЖЕНИЕ 2.

6.4.18.2 В главном окне программы кликнуть пункт системного меню «Инструменты», а затем в выпадающем списке кликнуть подпункт «FT-17HF Timing».

CANFIE-17HE	Timing, n	ата, ЦКоха	A04; TU/IV:0x0B0D;	FTIT:0:8008							
SN:	C100001737	7BD0801									
Платы:	TDR 🕂	оверка Кал	ибровка								
2+				Парамет	ры выполнения	паттерна	Стати	стика:			
		γ		Т0, но	: 400			Имя	Мин.	Макс.	Размах
				VIH, E	: 3			Slart	0.000	0.000	0.000
	Enun			VOH.	B: 2.25	•		Finish	0.000	0.000	0.000
		аца измерені	ала С		B. 0.75			Tpd	0.000	0.000	0.000
	O Ha	носекунда	🔘 Бинарная	*OL, 1	u, u.75						
	ß	G	Измерить	🗌 🗹 3arp	узить настройка	и TDC из файла					
	Время	Распростра	нение								
	Измере	енное время	RTD: (Э Начало	🔿 Окончан	ие					
		0	1	2	3	4	5		6	7	
	▶ 1.1.	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	
	1.2.	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	
	1,3.	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	6
	1.4.	0.000	0.000	0.000	0.000	0.000	0.000	(0.000	0.000	
	1.5.	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	
	1.6.	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	
	1.7.	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	
	1.8.	0.000	0.000	0.000	0.000	0.000	0.000	(D.000	0.000	
		1 7 8 5 F. A			R.H. (C.)	<u>Sancoso</u>					
	L										
Настройки	калибровки	и 'ALL' прик	леңены							······································	

Рис. 6.4.3 Вид окна программного инструмента «FT-17HF Timing».

6.4.18.3 В открывшемся окне программного инструмента «FT-17HF Timing» кликнуть левой клавишей мышки закладку «Поверка» (поз.1, рис.6.4.3).

٤

.

6.4.18.4 В окне «Поверка» (рис.6.4.4) программного инструмента «FT-17HF Timing» кликнуть левой клавишей мышки элемент выбора «Загрузить настройки TDC из файла»(поз.1, рис.6.4.4).

6.4.18.5 Кликнуть левой клавишей мышки иконку (поз.3, рис.6.4.4). В стандартном диалоговом окне открытия файлов выбрать файл с поправками, который имеет уникальное имя для конкретного стенда и расширение tdr. Файл поставляется в составе комплекта программного обеспечения стенда.

6.4.18.6 Кликнуть левой клавишей мышки элемент выбора «Применить TDR к TDC»(поз.2, рис.6.4.4).

-н: FT-17HF Timing, платг2, ЦК:0x2A04, ПЛУ:0x0B0D, ГТП:0x800B	
SN: C100001737BD0801	1
Платы: TDR Поверка Калибровка	'
Понерка (калиоровка) Параметры выполнения паттерна Допуск справа СопрагеНіді, Допуск сперав СопрагеLow, по: 390 То, но: 400 Каналы, не прошедшие проверку: VIH, B: 3 VOL, B: 2.25 Каналы, не прошедшие проверку: Каналы, не прошедшие проверку: Каналы, не прошедшие проверку: VIH, B: 3 VOL, B: 2.25 VOL, B: 2.25 3 VI, В: 3 7 Применить ТDR к TDC из файла 3 2 2099_vzpp_ide 4 4 4	пс: 196 эку:
Все каналы успешно прошли поверку /	

Рис.6.4.4 Вид окна «Поверка» программного инструмента «FT-17HF Timing».

6.4.18.7 Кликнуть левой клавишей мышки программную кнопку «Проверить»(поз.4, рис.6.4.4). Программа автоматически определит время опережения и запаздывания строба компараторов, путём выполнения векторной последовательности специального вида. Результаты поверки считаются положительными, если в строке состояния окна «Поверка» после завершения, появляется сообщение «Все каналы успешно прошли поверку»(поз.5, рис.6.4.4).

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

7.1 Протокол поверки

По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:

- полное наименование аккредитованной на право поверки организации;

- номер и дата протокола поверки

- наименование и обозначение поверенного средства измерения

- заводской (серийный) номер;

- обозначение документа, по которому выполнена поверка;

- наименования, обозначения и заводские (серийные) номера использованных при поверке средств измерений, сведения об их последней поверке;

- температура и влажность в помещении;

- фамилия лица, проводившего поверку;

- результаты определения метрологических характеристик по форме таблиц раздела 7 настоящего документа.

Допускается не оформлять протокол поверки отдельным документом, а результаты поверки (метрологические характеристики) указать на оборотной стороне свидетельства о поверке в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

7.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

7.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

приложение 1.

Установка драйвера адаптера USB-COM TRENDNET TU-S9.

Рисунок 1.1 Внешний вид адаптера USB-COM TRENDNET TU-S9, который используется для подключения источника-измерителя Keithley 2400 к компьютеру.

1.1 Для дистанционного программного управления прибором Keithley 2400

на компьютере необходимо установить драйвер адаптера USB-COM TRENDNET TU-S9. Все необходимые для этого файлы собраны в папке «C:\XperTest\FT17Mini\ Драйвер кабеля USB-RS232 TU-S9».

Действия по установке драйвера.

- 1. Запустить файл setup.exe.
- 2. После появления окна (рис. 1.2) нужно переместить курсор в область программной кнопки «Next» и нажать и отпустить(кликнуть) левую клавищу мыши.
- 3. Наблюдать за ходом выполнения установки. А после появления диалогового окна, показанного на рисунке 1.3, кликнуть левой клавишей мышки программную кнопку «Finish».

Рисунок 1..2 Вид окна программы-инсталлятора перед началом установки

драйвера.

ţ

z,

PL-2303 Driver Installer Program	n
	InstallShield Wizard Complete
	The InstallShield Wizard has successfully installed PL-2303 USB-to-Serial. Click Finish to exit the wizard.
	< <u>B</u> ack Finish Cancel

Рисунок 1.3 Вид окна программы инсталлятора после завершения установки

ПРИЛОЖЕНИЕ 2

2.1 Запуск среды выполнения XperTest и авторизация в режиме администратора

2.1.1 Запустить программу по ярлыку на рабочем столе с нажатой клавишей «SHIFT».

2.1.2 Наблюдать появление окна идентификации в среде XperTest (рис.2.1.1). Убедиться, что в поле «Пользователь» указано «Администратор», а поле «Предприятие» не является пустым. Если это поле имеет вид, как показано на рис.2.1.1, следует кликнуть элемент выбора в правой части поля «Предприятие», и из выпадающего списка выбрать любое из имеющихся там имен.

2.1.3 С помощью клавиатуры занести в поле «Пароль» код ограничения доступа.

Конкретное значение кода следует предварительно узнать у специалиста, обслуживающего стенд.

🕄 Идентификац	ия в XperTest ©	
Пользователь:	Администратор	
Пароль:	•••]	
, Предприятие:	aanaan aanaa madadhaa kary mada arbahan karana karang iyo a	ļ,
2 7 7	🗹 Запомнить меня	
	ринять Х Отменить	
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		

Рис. 2.1.1 – Вид окна идентификации XperTest

- 2.1.4 Нажать кнопку «Принять».
- 2.1.5 Наблюдать появление главного окна программы «СредаХрегTest».

2.2 Запуск инструмента «FT17-HF TPG», загрузка файла тестовых векторов и запуск его на исполнение

2.2.1 Загрузить на исполнение среду XperTest по методике п.2.1 Приложения 2.

1

5

2.2.2 В открывшемся главном окне программы кликнуть пункт системного меню «Инструменты», а »затем в выпадающем списке кликнуть подпункт «FT-17HF TPG» (рис.2.2.1)

ſ	🖥 Среда	XperTest	a a a a a a a a a a a a a a a a a a a	· · · ·	i protection	« «	*	a set a s
	Файл	Редактор	Инструменты	Настройки	Статистика	Окна	Помощь	
١٢			🚸 FT-17HFA	D5522			<u></u>	and the second
			🕲 FT-17HF A	D5560	•			
	×		😳 FT-17HF A	DATE207		~		
ľ	•		🧔 FT-17HF A	DATE305		. * .		Y
			🕅 FT-17HF Fa	n				
			🏠 FT-17HFT	iming				
			🦸 FT-17HFT	PG			* *	
,					***			3

Рис.2.2.1. Вид выпадающего меню «Инструменты» главного окна среды XperTest

FT17-HF FTO, r	илат:2, ЦК:0x2A04	, ПЛУ:0х0ВОД,	LTLI:0x800B				
Загрузка файла	вПЛ						
Файл для загр	лузки:]	xvd / zi
Количество са	йтов: 🚺 🚖	Многокра Очистка к	итная запись Коша команд и вектор	Настройки ТDC оз (ම) Загрузить из файла	а 🕐 Сбросињ	Применить TDR к TDC	Записать
одули команд:						Управление ГТП	
Метка	Адрес	Кол-во	Останов Перехо	д Поиск	¥	Останов при браке	
	*	A				🖸 Останов при пустом	векторе
						🖸 Разрешение перехо	да ЈСриА
						🔲 Разрешение перехо	ga JCpuB
						Annec.cranta h	0000000
			1	an ay 24/7248 at a managang ang ang ang ang ang ang ang ang	ýne (Valenda Melala da Santa Andrea da Santa	Адрес перехода, h:	0000000
Сайты Сохране	жие файла из ГТГ	1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Адрес перехода, h: Таймаут поиска:	0000000
Сайты Сохране	жие файла из ГТІ	П] Карта ош	ибок:			Адрес перехода, h: Таймаут поиска:	0000000 0 🖾 Cron
Сайты Сохрани	зние файла из ГТІ зА []] JCpuB	Т] Карта ош	ибок:		4*************************************	Адрес перехода, h: Таймаут поиска: Старт Перезапуск ГТП пр	0000000 0 Ш Стоп и останове
Сайты Сохрани	ние файла из ∏1 ⊮А []] "Ср⊾В стактов:	Т] Карта ош	ибок:			Адрес перехода, h: Таймаут поиска: Старт Перезапуск ГТП пр	0000000 0 Ш Стоп и останове
Сайты Сохрани	ние файла из ГТІ 9А [] ЈСрцВ «тактов: с команд:	Т] Карта ош	ибок:		•	Адрес перехода, h: Таймаут поиска: Старт Перезапуск ГТП пр Размерность карты оши Королог X: [15, [5]]	0000000 0 Ш Стоп и останове ибок
Сайты Софани Софани Софани Счетчия Первыя	ние файла из ∏1 иА [] ЈСрџВ «тактов: «команд: 1 обой:	Т] Карта ош	ибок:			Адрес перехода, h: Таймаут поиска: Старт Перезапуск ГТП пр Размерность карты оши Колонок, X: [16 [+]	0020000 0 Ш Стоп и останове ибок Строк, Y: [16
Сайты Сохрани	ние файла из П зА П ЈСр.В «тактов: «команд: й обой:) оцибок:	Т <u>)</u> Карта ош	ибок:			Адрес перехода, h: Таймаут поиска: Старт Перезапуск ГТП пр Размерность карты оши Колонок, X: [16 [+]] Фрагментов в ячейке, й	0020000 0 Ш Стоп и останове ибок Строк, Y: [16 Z:64
Сайты Сохрани	ние файла из ГП иА [] ЈСрцВ с тактов: с команд: й обой: э ощибок: э статуса:	<u>]</u> Карта ош	ибок:			Адрес перехода, h: Таймаут поиска: Старт Перезапуск ГТП пр Размерность карты оши Колонок, X: 16 [] Фрагментов в ячейке, й Параметры захеата	0020000 0 С. Стоп и останове ибок Строк, Y: [16 Z:64
Сайты Сохрани	ние файла из П и Срц.В к тактов: с команд: й обой: р ощибок: э статуса: т заданный:	Т] Карта ош	ибок:			Адрес перехода, h: Таймаут поиска: Старт Перезапуск ГТП пр Размерность карты ошя Колонок, X: [16]] Фрагментов в ячейке, й Параметры захвата Фрагментов, X*Y*Z =	0020000 0 Ш Стоп и останове ибок Строк, Y: [16 Z: <u>64</u> 16384
Сайты Софани Софани Счетчия Счетчия Первыя Регист Таймаз Таймаз	ние файла из ∏1 ыА [] ЈСрцВ к тактов: с команд: й сбой: р ошибок: р статуса: т заданный: т действит.:	Т] Карта ош	ибок:			Адрес перехода, h: Таймаут поиска: Старт Перезапуск ГТП пр Размерность карты оши Колонок, X: 16 5 Фрагментов в ячейке, й Параметры захвата Фрагментов, X*Y*Z = Начальный тахт	ООСОООО 0 Ш Стоп и останове ибок Строк, Y: [16 2: <u>64</u> 16384
Сайты Сохрани Сохрани Сохрани Счетчии Счетчии Счетчии Первыя Регист Таймау Таймау Таймау	ние файла из ∏і иА [] ЈСрцВ к тактов: к команд: й сбой: р ошибок: р статуса: гт заданный: т действит.: т общий:	<u>٦]</u> Карта ош	ибок:			Адрес перехода, h: Таймаут поиска: Старт Перезапуск ГТП пр Размерность карты оши Колонок, X: [16] [1] Фрагментов в ячейке, й Параметры захвата Фрагментов, X*Y*Z= Начальный такт:	ООСОООО 0 Ш Стоп и останове ибок Строк, Y: [16 Z:64 16384 [1
Сайты Сохрани	ние файла из ГТІ и Ср.В к тактов: к команд: й сбой: р ошибок: р ошибок: р статуса: гт заданный: т действит.: т общий: не фрагменты:	Т <u>]</u> Карта ош	ибок:			Адрес перехода, h: Таймаут поиска: Старт Перезапуск ГТП пр Размерность карты оши Колонок, X: 16 (*) Фрагментов в ячейке, й Параметры захвата Фрагментов, X*Y*Z = Начальный тахт:	0020000 0 С. Стоп и останове ибок Строк, Y: [16 Z: _64_ 16384 [1 ой команде

Рис. 2.2.2 Вид окна инструмента «FT-17HF TPG»

2.2.4 Кликнуть изображение программной кнопки «xvd» (поз.1, рис. 2.2.2).

2.2.5 В открывшемся стандартном диалоговом окне выбрать файл векторов, имя которого указано в методике выполняемого пункта.

2.2.6 Кликнуть кнопку «Записать» (поз.2, рис.2.2.2).

2.2.7 Скопировать содержимое поля редактирования «Адрес старта» (поз.1, рис.2.2.3) в поле редактирования «Адрес перехода» (поз.2, рис.2.2.3) и с помощью левой клавиши мышки установить состояние следующих переключателей (рис.2.2.3):

«Останов при браке» - не выбран

«Останов при пустом векторе» - выбран

«Разрешение перехода JCpuA» - выбран

«Разрешение перехода JCpuB» - выбран.

Рис. 2.2.3 Фрагмент окна инструмента «FT-17HF TPG»

2.2.8 Запустить на исполнение векторную последовательность, кликнув левой клавишей мышки изображение программной кнопки « Старт» (поз. 3, рис.2.2.3).