СОГЛАСОВАНО

Ген. директор ООО «ИЭЭ НГТУ»

С.В. Роденко

«02» 2016

УТВЕРЖДАЮ

Зам. директора ФГУП «СНИИМ»

Е. С. Коптев

2016

КОМПЛЕКТ АППАРАТУРЫ ДЛЯ ИЗМЕРЕНИЯ ЗНАЧЕНИЙ НАВЕДЕННОГО НАПРЯЖЕНИЯ

МЕТОДИКА ПОВЕРКИ

МП 4226-002-69866598-2016

МП 4226-002-69866598-2016

Содержание

1 Операции поверки	3
2 Средства поверки	
3 Требования к квалификации поверителей	
4 Требования безопасности	4
5 Условия поверки	5
6 Подготовка к поверке	5
7 Проведение поверки комплекта аппаратуры	6
8 Оформление результатов поверки	8
Приложение А	10

Настоящая методика поверки распространяется на комплект аппаратуры для измерения значений наведенного напряжения (далее по тексту — комплект аппаратуры) и устанавливает методику их первичной и периодической поверки. Поверку проводят согласно Приказу Минпромторга России №1815 от 02 июля 2015 г.

Межповерочный интервал – 2 год.

1 Операции поверки

- 1.1 Комплект аппаратуры состоит из штанги-измерителя напряжения прикосновения и штанги-измерителя наведенного напряжения (далее по тексту ШИП и ШИН соответственно). Поверке подвергают каждую штангу-измеритель, входящую в комплект аппаратуры.
 - 1.2 При поверке выполняются операции, указанные в таблице 1.
- 1.3 При получении отрицательных результатов при выполнении любой из операций поверка отбракованной штанги-измерителя прекращается и штанга-измеритель бракуется.

Таблица 1 – Операции поверки

Наименование операции	Номер	Проведение операции при			
	пункт	первичной	периодическо		
	a	поверке	й поверке		
1 Внешний осмотр	7.1	+	+		
2 Проверка электрической прочности изоляции	7.2	+	+		
3 Опробование	7.3	+	+		
4 Проверка поддиапазона измерений	7.4	+	+		
действующих значений напряжения переменного					
тока промышленной частоты					
5 Проверка пределов основной относительной	7.5	+	+		
погрешности измерения напряжения переменного					
тока					

Примечания: 1) знаком «+» указана необходимость поверки, знаком «-» отсутствие поверки

2 Средства поверки

2.1 При проведении поверки должны применяться средства измерений, перечисленные в таблице 2.

Таблица 2 – Эталонные и вспомогательные средства поверки

№ п/п методики	Наименование и тип	Метрологические характеристики
поверки	средства поверки	
7.3-7.5	Прибор для поверки	класс точности 0,1
	вольтметров переменного	диапазон измерений 100 мкВ – 1000 В
	тока В1-9	
	Киловольтметр С196	класс точности 1
		диапазон измерений (2-30) кВ
	Аппарат испытания	Диапазон регулирования действующих
	диэлектриков АИД-70М	значений напряжения переменного тока
		частотой 50 Гц (2-50) кВ, относительная
		погрешность ±3%

- 2.2 Допускается проведение поверки комплекта аппаратуры с применением эталонных средств измерений и вспомогательных средств поверки, не указанных в таблице 2, но обеспечивающих контроль метрологических характеристик поверяемого комплекта аппаратуры с требуемой точностью.
- 2.3 Все средства измерений должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

3 Требования к квалификации поверителей

К проведению поверки допускается персонал, прошедший обучение в соответствии с требованиями ГОСТ 12.0.004-2015, изучивший инструкцию по эксплуатации комплекта аппаратуры, прошедший проверку знаний правил техники безопасности и эксплуатации электроустановок напряжением свыше 1 кВ и имеющий группу по электробезопасности не ниже III.

4 Требования безопасности

- 4.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.3.019-80 и ГОСТ 22261-94.
- 4.2 Подготовку комплекта аппаратуры к поверке, сборку и разборку измерительных схем следует выполнять при отсутствии напряжения и остаточного заряда.
- 4.3 Снятие напряжения и остаточного заряда с объекта поверки и предупреждение ошибочного появления на нем напряжения необходимо обеспечивать:
 - отключением источников питания;
 - заземлением корпусов приборов, применяемых в испытаниях;
 - разрядкой заряжающихся элементов фильтров питания;
 - наложением заземлений на высоковольтные выводы генераторов напряжения.

MII 4226-002-69866598-2016

- 4.4 В цепях питания используемых средств поверки должны быть предохранители или автоматические выключатели.
- 4.5 Помещения, предназначенные для поверки, должны удовлетворять требованиям пожарной безопасности по ГОСТ 12.1.004-91.
 - 4.6 Помещение для поверки должно иметь:
 - шину заземления;
 - аварийное освещение или переносные светильники с автономным питанием;
 - средства пожаротушения;
 - средства для оказания первой помощи пострадавшим.

5 Условия поверки

5.1 Поверка проводится при нормальных условиях по ГОСТ 22261-94, см. таблицу 3.

Таблица 3 – Нормальные условия применения

Влияющая величина	Значение влияющей величины
Температура окружающего воздуха, оС	20±5
Относительная влажность воздуха, %	30-80
Атмосферное давление, кПа	84-106
Частота измеряемого напряжения, Гц	50±0,5
Коэффициент несинусоидальности кривой напряжения измеряемого напряжения, %, не более	5

5.2 На первичную поверку должны предоставляться ШИП и ШИН, принятые отделом технического контроля предприятия-изготовителя или уполномоченными на то представителями организации, проводившей ремонт.

б Подготовка к поверке

Перед поверкой должны быть выполнены следующие подготовительные работы:

- Проверены документы, подтверждающие электрическую безопасность.
- Проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75.
- Выполнены операции по подготовке к работе, предусмотренные руководствами по эксплуатации комплекта аппаратуры.

7 Проведение поверки комплекта аппаратуры

A.

7.1 Внешний осмотр.

При проведении внешнего осмотра должно быть установлено соответствие поверяемого комплекта аппаратуры следующим требованиям:

- В паспортах в ШИП и ШИН должны стоять отметки о приемке ОТК.
 - Комплектность должна соответствовать паспорту.
- При сборке звеньев резьбовое соединение должно быть скручено до упора. Люфт между звеньями не допускается.
- Не должно быть механических повреждений корпуса, переключатель питания должен быть исправен. Все надписи должны быть четкими и хорошо читаемыми.
- Все разъемы, клеммы и провода не должны иметь повреждений, следов окисления и загрязнений.

При наличии дефектов поверяемая штанга-измеритель бракуется и подлежит ремонту.

7.2 Проверка электрической прочности изоляции

ВНИМАНИЕ! Проверка электрической прочности изоляции заключается в проверке наличия протоколов испытаний электрической прочности изоляции ШИП и ШИН пятиминутным напряжением промышленной частоты 11 кВ и 40 кВ соответственно, см. методику высоковольтных испытаний в руководстве по эксплуатации.

При отсутствии протокола испытаний электрической прочности штанга-измеритель не допускается к дальнейшим испытаниям.

7.3 Опробование

При включении ШИП и ШИН проверяют исправность индикации: должно установиться значение, близкое к нулю, должны светиться 3 последних знака и индикатор «В».

Для проведения опробования ШИП и ШИН собирают схемы в соответствии с Приложением А настоящей методики. Подготавливают ШИП и ШИН к измерениям в соответствии с указаниями п. 6 настоящей методики и проводят измерения переменного напряжения согласно таблицам 4 и 5.

Результаты опробования считаются удовлетворительными, если при выполнении вышеперечисленных операций формат индикации соответствует, указанной в таблицах 4 и 5.

Таблица 4 – Отображение числовых значений на индикаторе ШИП

Измеряемое напряжение, В	Поддиапазон измерения	Формат отображения на индикаторе	Светится индикатор				
2,0-9,9		0X.X	В				
10,0-99,9	2-199 B	XX.X	В				
100-199		XXX.	В				
200-999	0,2-1,99 кВ	.XXX	кВ				
1000-1990		X.XX	кВ				
2000-5000	2.5 mD	X.XX	кВ				
более 5000*	2-5 кВ	X.XX	кВ				
* проводить измерения запрещено							

Таблица 5 – Отображение числовых значений на индикаторе ШИН

Измеряемое напряжение, В	Поддиапазон измерения	Формат отображения на индикаторе	Светится индикатор
2,0-9,9		0X.X	В
10,0-99,9	2-199 B	XX.X	В
100-199		XXX.	В
200-999	0.2.1.00 D	.XXX	кВ
1000-1990	0,2-1,99 кВ	X.XX	кВ
2000-9990		X.XX	κВ
10000-20000	2-20 кВ	XX.X	кВ
более 20000		1.	кВ

При несоответствии индикации, указанной в таблицах 4 и 5, или при неполном/ошибочном отображении цифр штанга-измеритель бракуется и подлежит ремонту.

7.4 Проверка поддиапазонов измерений действующих значений напряжения переменного тока

По схемам, приведенным в Приложении А настоящей методики, на ШИП и ШИН плавно устанавливают напряжение согласно таблицам 4 и 5.

Наблюдают изменение измеряемого напряжения, фиксируют значения измеряемого напряжения, при котором происходит автоматическое переключение пределов измерений ШИП и ШИН.

Автоматическое переключение пределов измерений напряжения переменного тока должно происходить при значениях, соответствующих паспортным данным ШИП и ШИН.

При невыполнении этого условия штанга-измеритель считается не прошедшей поверку и направляется в ремонт.

7.5 Проверка пределов основной относительной погрешности проводится следующим образом. По схемам, представленным в Приложении А, на ШИП и ШИН устанавливают напряжение согласно таблице 6.

Таблица 6 – Значения напряжений для ШИН-20 и ШИП-5

Наименование		Напряжение, кВ, при диапазонах измерения										
средств		0.002.0	100			0.20	1.00			2-	20	
измерения	0,002-0,199			0,20-1,99			2-5					
ШИП-5	0,01	0,05	0,1	0,15	0,25	0,5	0,75	1,1	2,5	3	4	5
ШИН-20	0,01	0,05	0,1	0,15	0,25	0,5	0,75	1,1	2,5	5	10	19,5

Для каждой из точек определяют основную относительную погрешность ΔU по формуле 1:

$$\Delta U = \frac{|U_{\text{IIIM}} - U_{\text{9T}}|}{U_{\text{9T}}} \cdot 100\%; \tag{1}$$

где:

 $U_{\rm IIII}$ — показания штанги-измерителя, В;

 $U_{\rm ЭT}$ — показания эталонного вольтметра, В.

Полученную относительную погрешность сравнивают с пределом допускаемой основной относительной погрешностью измерения ШИП и ШИН, рассчитанной по формуле 2.

$$\delta = \left[5 + 0.5 \cdot \left(\left| \frac{U_K}{U_{\text{PT}}} \right| - 1 \right) \right], \%; \tag{2}$$

где:

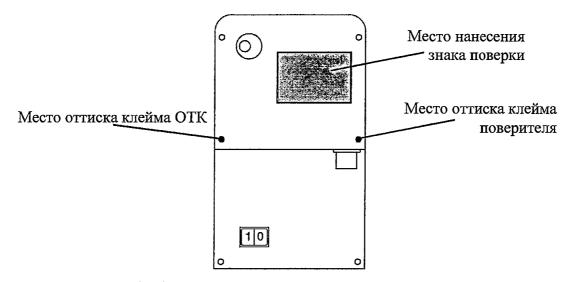
 $U_{\rm { T}}$ — показания эталонного вольтметра, В;

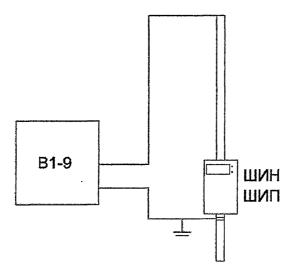
 U_{K} – верхний предел поддиапазона измерений напряжения, В.

При превышении основной относительной погрешности ΔU допускаемой основной относительной погрешности измерения δ штанга-измеритель считается не прошедшей поверку и направляется в ремонт.

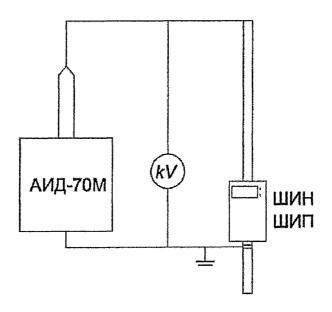
8 Оформление результатов поверки

8.1 Положительные результаты первичной поверки оформляют записью в соответствующих разделах паспортов ШИП и ШИН и нанесением знака поверки в виде оттиска поверительного клейма. ШИП и ШИН пломбируют двумя оттисками поверительного клейма в установленных местах в соответствии с рисунком 1 и выдаются свидетельства о поверке на каждую штангу-измеритель.




Рисунок 1 — Внешний вид задней панели измерительного модуля. Места нанесения оттиска поверительного клейма на ШИП и ШИН

- 8.2 Положительные результаты периодической поверки оформляются свидетельством о поверке и записью в соответствующих разделах паспортов ШИП и ШИН, аннулируют знак предыдущей поверки и наносится знак поверки в виде оттиска поверительного клейма. ШИП и ШИН пломбируют двумя оттисками поверительного клейма в установленных местах в соответствии с рисунком 1.
- 8.3 При отрицательных результатах поверки ШИП или ШИН оформляют извещение о непригодности штанги-измерителя.


Штанга-измеритель не допускается к дальнейшему применению, в паспорт вносится запись о непригодности штанги-измерителя к эксплуатации, клеймо предыдущей поверки гасится, свидетельство о поверке аннулируется и выдается извещение о непригодности.

Приложение А

(обязательное)

B1-9 — прибор для поверки вольтметров переменного тока Рисунок A.1 — Схема контроля параметров в диапазоне напряжений от 2 B до 1,1 кВ

AUД-70М — аппарат испытания диэлектриков, kV — эталонный киловольтметр. Рисунок A.2 — Схема контроля параметров в диапазоне напряжений от 1 кВ до 20 кВ