УТВЕРЖДАЮ

Государственная система обеспечения единства измерений Приборы измерения параметров электрических средств взрывания КОПЕР-2

МЕТОДИКА ПОВЕРКИ

ОЦСМ 32621-2016 МП

Настоящая методика поверки распространяется на приборы измерения параметров электрических средств взрывания КОПЕР-2 (в дальнейшем — приборы) и устанавливает методику их первичной поверки, периодической поверок.

Интервал между поверками – два года

1 Операции поверки

1.1 При проведении поверки должны выполняться операции, приведенные в таблице 1.

Таблица 1 – Операции поверки

	Номер пункта	Обязательно	ость проведения
Наименование операции	методики	операции при поверке*	
	поверки	первичной	периодической
Внешний осмотр	6.1	+	+
Проверка сопротивления изоляции цепей питания	6.2.1	+	-
Проверка прочности изоляции цепей питания	6.2.2	+	_
Опробование	6.3	+	+
Определение относительной погрешности	6.4	+	+
* где «+» — операция проводится; «-» — операция не проводится			

1.1.2 Если при проведении той или иной операции поверки получен отрицательный результат, поверку прекращают, прибор признается непригодным к дальнейшей эксплуатации, выдается извещение о непригодности, с указанием причин непригодности в соответствии с приложением 2 Приказа Минпромторга РФ от 02.07.2015 г. №1815.

2 Средства поверки

- 2.1 При проведении поверки применяют основные и вспомогательные средства поверки, приведенные в таблице 2.
- 2.2 Все средства измерений должны быть исправны, поверены и иметь действующие свидетельства о поверке или оттиск поверительного клейма на приборе или в технической документации.
- 2.3 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик приборов с требуемой точностью.

3 Требования безопасности

Приборы включать только в сеть переменного тока напряжением 230 В, 50 Гц с заземленной нейтралью, предварительно убедившись в исправности шнура питания.

отсутствуют.

Таблица 2 – Основные и вспомогательные средства поверки

Номер пункта методики поверки	Наименование и тип основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего основные технические требования и (или) метрологические и основные технические характеристики средства поверки
	Мегаомметр М4100/3:
601	- номинальное выходное напряжение 500 В;
6.2.1	- диапазон измерений от 0 до 100 МОм;
	- класс точности 1,0
	Установка пробойная универсальная УПУ-10М:
6.2.2	- выходное напряжение переменного тока 1,5 кВ;
	- частота переменного тока 50 Гц
	Генератор импульсов Г5-56:
6.3, 6.4	- диапазон установки амплитуды основных импульсов от 0,1 до 10,0 В;
, , , , , ,	- диапазон установки длительности основных импульсов от 1 нс до 1 с
	Частотомер электронно-счетный Ч3-34:
6.4	- диапазон измерений длительности импульсов от 10 мкс до 100 с;
	- дискретность 1 мкс
	Прибор комбинированный цифровой Щ301-1:
6.4	- диапазон измерений напряжения постоянного тока от 1 мкВ до 1 кВ;
	- класс точности 0,02/0,05
	Цифровой измеритель L, C, R E7-8:
6.4	- диапазон измерений сопротивления от 0,001 Ом до 10 МОм;
	- пределы допускаемой погрешности измерения ±(0,001·(l+tgφ)·Rx+l ед. сч.)
	Термометр по ГОСТ 28498-90:
6.1-6.4	- диапазон измерений от 0 до 100 °C;
	- цена деления 0,1 °C
	Психрометр аспирационный МВ-4-М:
6.1-6.4	- диапазон измерений относительной влажности от 10 до 100 %;
	- пределы допускаемой погрешности в зависимости от температуры от ±2 до ±6 %
	Барометр-анероид контрольный М-67:
6.1-6.4	- диапазон измерений от 610 до 790 мм рт. ст.;
	- пределы допускаемой погрешности ±0,8 мм рт. ст.

4 Условия поверки

- механические воздействия

при проведении поверки должны соолюдаться следующие условия:		
- температура окружающего воздуха, °С	(20±5);	
- относительная влажность окружающего воздуха, %	от 30 до 80;	
- атмосферное давление, кПа (мм рт. ст.)	от 84,0 до 106,7 (от 630 до 800);	
- напряжение питания переменного тока	(230±23);	
- частота питания переменного тока	(50±1);	

5 Подготовка к поверке

Перед проведением поверки выполнить следующие подготовительные работы:

- выдержать приборы в помещении, где проводится поверка в течение времени, необходимого для выравнивания их температуры с температурой помещения;
 - изучить содержание руководства по эксплуатации на приборы;
- подготавливают к работе основные **и** вспомогательные средства поверки в соответствии с требованиями их эксплуатационной документации.

6 Проведение поверки

6.1 Внешний осмотр

При внешнем осмотре установить соответствие прибора следующим требованиям:

- отсутствие грубых механических повреждений корпуса, влияющих на работоспособность и безопасность прибора;
- наличие маркировки и оттиска клейма ОТК (при первичной поверке) и оттиска клейма поверителя (при периодической поверке);
 - соответствие комплектности (при выпуске), маркировки и номера прибора формуляру.

6.2 Проверка сопротивления и прочности изоляции

6.2.1 Проверка сопротивления изоляции цепей питания

- 6.2.1.1 Электрическое сопротивление изоляции цепей питания определять с помощью мегаомметра следующим образом:
- испытательное напряжение не менее 500 В приложить между соединенными входами цепи питания и контактом защитного заземления прибора;
- отсчет показаний производить по истечении одной минуты после приложения напряжения;
- 6.2.2.2 Результаты проверки считать положительными, если измеренное сопротивление составляет не менее 20 МОм.

6.2.2 Проверка электрической прочности изоляции цепей питания

- 6.2.2.1 Проверку электрической прочности изоляции цепи питания проводить при выключенном переключателе «СЕТЬ» на пробойной установке следующим образом:
- испытательное напряжение переменного тока 1,5 кВ, частотой (50±1) Гц приложить между соединенными входами цепи питания и контактом защитного заземления прибора, повышая его плавно, начиная с 0 до 1,5 кВ со скоростью не более 200 В/с;

- по истечении одной минуты после приложения напряжения плавно понизить испытательное напряжение с 1,5 до 0 кВ.
- 6.2.2.2 Результаты проверки считать положительными, если не произошло пробоя или перекрытия изоляции. Появление коронного разряда или шума при испытании не является признаком неудовлетворительных результатов проверки.

6.3 Опробование

- 6.3.1 Подключить к прибору напряжение питания переменного тока 230 В частотой (50±1) Гц. Переключить рокерный переключатель «СЕТЬ» в положение «I», при этом начинает светиться индикатор переключателя «СЕТЬ», на LCD-индикатор выводится наименование типа прибора и версия программного обеспечения прибора. Версия программного обеспечения должна быть не ниже 1.0.
- 6.3.2 Подать от генератора импульсов на зажимы «ВХОД» импульс положительной полярности амплитудой 10 В длительностью 9,5 мс и периодом 1 с. На индикаторном табло должно появиться значение параметров импульса: величина, длительность, амплитуда напряжения. Изменяя длительность подаваемого импульса, убедится, что при длительности импульса более 12 мс на табло индицируется значение «12.000 мс». Если показания табло не соответствуют указанному выше, то прибор к дальнейшей поверке не допускается.

6.4 Определение относительной погрешности

- 6.4.1 Погрешность измерения прибора определять для каждого измерительного тракта.
- 6.4.2 Определение относительной погрешности измерения импульса тока
- 6.4.2.1 Относительную погрешность измерения импульса тока определять по формуле:

$$\delta I_i = \delta R + \delta I_{MTi}, \tag{1}$$

где δR — относительная погрешность измерения импульса тока, вносимая резистором входной цепи прибора, %;

 $\delta I_{\text{ИТ i}}$ — относительная погрешность измерения импульса тока, вносимая измерительным трактом, %;.

- 6.4.2.2 Относительную погрешность измерения импульса тока, вносимую резистором входной цепи прибора, определять следующим образом:
 - подключить цифровой измеритель к зажимам «- ВХОД» и «Rн» (черного цвета);
 - измерить сопротивление входной цепи прибора, R_{изм}, Ом;
- определить относительную погрешность измерения импульса тока, вносимую резистором входной цепи прибора, по формуле:

$$\delta R = 2 \cdot \frac{R_{\text{H3M}} - R_0}{R_0} \cdot 100 \%, \tag{2}$$

где $R_{\text{изм}}$ — сопротивление входной цепи прибора, измеренное с помощью цифрового измерителя , Ом;

 R_0 — значение сопротивления входной цепи согласно технической документации $(R_0=1,0), \, {\rm Om}.$

Сопротивление резистора рассчитывается как показание измерительного прибора за вычетом сопротивления вносимого зажимами равного 0,005 Ом

- 6.4.2.3 Относительную погрешность измерения импульса тока, вносимую измерительным трактом, определять следующим образом:
 - подключить выход и общий провод от генератора к зажимам «ПРОВЕРКА ПРИБОРА»;
 - включить питание при помощи переключателя «СЕТЬ»;
- переключить прибор при помощи переключателя «РЕЖИМ РАБОТЫ» в положение «ПРОВЕРКА»;
- с помощью кнопки «ВЫБОР ТОКА ОГР.» на лицевой панели установить режим 0 (без ограничения тока).
 - выполнить следующие операции для каждой поверяемой точки:
 - установить генератор в режим автоматического запуска, а длительность импульса генератора больше периода следования. ВНИМАНИЕ! Не оставлять генератор в этом режиме на длительное время;
 - задать амплитуду импульса генератора, соответствующую поверяемой точке. Постоянное напряжение на выходе генератора измерять вольтметром;
 - установить частоту следования импульсов ($1\pm0,2$) Γ ц и длительность импульса, соответствующую поверяемой точке. Длительность импульса измерять частотомером;
 - считать показание прибора $1_{\rm MT}$ і. Измерение величины импульса тока в каждой поверяемой точке выполняют не менее трех раз. Значения амплитуды напряжения и длительности, соответствующие значениям поверяемых точек, приведены в таблице 3.

Таблица 3

Диапазон измерений,	Поверяемая точка,	Параметры импульса генератора	
A ² ·мc	$I_{MT0 i}$, A^2 ·MC	амплитуда, U _i , B	длительность, t _i , мс
от 1,00 до 19,99	1,00	1,000	1,000
	5,00	1,000	5,000
	10,00	2,000	2,500
	18,00	3,000	2,000
от 20,00 до 199,99	20,00	2,000	5,000
	50,00	2,500	8,000
	100,0	5,000	4,000
	190,0	5,000	7,600

- определить относительную погрешность измерения импульса тока, вносимую измерительным трактом, по формуле:

$$\delta I_{\text{NT i}} = \frac{I_{\text{NT i}} - I_{\text{NT0 i}}}{I_{\text{NT0 i}}} \cdot 100 \%, \tag{3}$$

6.4.3 Определение относительной погрешности измерения длительности импульса

Определение относительной погрешности измерения длительности импульса проводить следующим образом:

- включить питание при помощи переключателя «СЕТЬ»;
- переключить прибор при помощи переключателя «РЕЖИМ РАБОТЫ» в положение «ПРОВЕРКА».
- поочередно подать от генератора импульсы положительной полярности амплитудой 1,0 В длительностью 0,100; 1,000; 4,000; 7,000; 9,000, 11,700 мс на зажимы «ПРОВЕРКА ПРИБОРА»;
 - длительность импульсов генератора измерить частотомером;
 - относительную погрешность измерения длительности импульса определить по формуле:

$$\delta T_{i} = \pm \left(\frac{T_{i} - T_{0 i}}{T_{0 i}}\right) \cdot 100 \%, \tag{4}$$

где T_i — длительность импульса генератора в i-ой поверяемой точке по показанию прибора, мс; $T_{0\,i}$ — длительность импульса генератора в i-ой поверяемой точке по частотомеру, мс.

6.4.4 Определение относительной погрешности измерения амплитуды импульса

6.4.4.1 Относительную погрешность измерения амплитуды импульса определять по формуле:

$$\delta U_{i} = \delta \mathcal{I} + \delta U_{\text{WT}}, \tag{5}$$

где $\delta Д$ — относительная погрешность измерения амплитуды напряжения, вносимая входным делителем напряжения, %;

 $\delta U_{\text{ИТ}\,i}$ — относительная погрешность измерения амплитуды напряжения, вносимая измерительным трактом, %;

- 6.4.4.2 Относительную погрешность измерения амплитуды напряжения, вносимую входным делителем напряжения, определять следующим образом:
 - отключить питание прибора;
 - переключить переключатель «РЕЖИМ РАБОТЫ» в положение «ИЗМЕРЕНИЕ»;
- подать постоянное напряжение (10±0,1) В на входные зажимы прибора, соблюдая полярность;
 - измерить напряжение цифровым вольтметром на входе прибора, Uвх, В;

- измерить напряжение цифровым вольтметром на выходе делителя на зажимах «ПРОВЕРКА ПРИБОРА», U_{вых}, В;
- определить относительную погрешность измерения амплитуды напряжения, вносимую входным делителем напряжения, по формуле:

$$\delta \Pi = \frac{K - \frac{U_{\text{вых}}}{K}}{K} \cdot 100 \%, \tag{6}$$

где К – коэффициент деления напряжения согласно технической документации (К = 0,001).

- 6.4.4.3 Относительную погрешность измерения амплитуды напряжения, вносимую измерительным трактом, определять следующим образом:
 - переключить переключатель «РЕЖИМ РАБОТЫ» в положение «ПРОВЕРКА»;
 - выполнить следующие операции для каждой поверяемой точки:
 - установить генератор в режим автоматического запуска, установить частоту следования импульсов ($1\pm0,2$) Γ ц, а длительность импульса генератора больше периода следования. ВНИМАНИЕ! Не оставлять генератор в этом режиме на длительное время;
 - задать амплитуду и длительность импульса генератора, соответствующую поверяемой точке. Постоянное напряжение на выходе генератора измерять вольтметром;
 - считать показание прибора U_{ит і}. Измерение амплитуды напряжения в каждой поверяемой точке выполняют не менее трех раз. За результат измерений принять среднее арифметическое значение амплитуды напряжения. Значения амплитуды напряжения и длительности, соответствующие значениям поверяемых точек, приведены в таблице 4.

Таблица 4

Диапазон измерений,	Поверяемая точка,	Параметры импульса генератора	
В	U _{MT0 i} , B	амплитуда, U _i , В	длительность, t _i , мс
от 100 до 1999	300	0,3	1,000
	600	0,6	1,000
	1000	1,0	1,000
	1400	1,4	1,000
	1800	1,8	1,000

- определить относительную погрешность измерения амплитуды напряжения, вносимую измерительным трактом, по формуле:

$$\delta U_{\text{MT i}} = \frac{U_{\text{MT i}} - U_{\text{MTo i}}}{U_{\text{MTo i}}} \cdot 100 \%, \tag{7}$$

6.4.5 Результаты поверки считают положительными, если значения погрешностей в каждой проверяемой точке не превышают пределов допускаемых относительных погрешностей, приведенных в таблице 5, по каждому тракту измерения.

Таблица 5

Измеряемая физическая	Пионором ирморомий	Пределы допускаемой относительной		
величина	Диапазон измерений	погрешности измерений, %		
M a Dove	от 1,00 до 19,99 А ² ·мс	±(4+0,5·[Ik/I-1])*		
Импульс тока	от 20,00 до 199,99 А ² ·мс	±(4+0,1·[Iκ/I-1])*		
Длительность импульса	от 0,090 до 11,994 мс	±(1+0,1·[Tк/T-1])*		
Амплитуда напряжения	от 100 до 1999 В	±(3+2·[Uк/U-1])*		
* где 1к – верхний предел диапазона измерений, A ² ·c; I – измеренное значение, A ² ·c;				
Тк – верхний предел диапазона измерений, мс; Т – измеренное значение, мс;				
Uк – верхний предел диапазона измерений, B; U – измеренное значение, B.				

7 Оформление результатов поверки

- 7.1 Результаты поверки оформляют протоколом поверки произвольной формы.
- 7.2 Положительные результаты первичной поверки оформляют оттиском поверительного клейма в формуляре и (или) свидетельством о поверке в соответствии с приложением 1 Приказа Минпромторга РФ от 02.07.2015 г. №1815. Место нанесения знака поверки в виде наклейки на прибор указано на рисунке 1.
- 7.3 Положительные результаты периодической поверки оформляют свидетельством о поверке в соответствии с приложением 1 Приказа Минпромторга РФ от 02.07.2015 г. №1815. Место нанесения знака поверки на прибор указано на рисунке 1.

Рисунок 1 – Место нанесения знака поверки

- 7.4 При отрицательных результатах первичной поверки прибор считают непригодным и к эксплуатации не допускается.
- 7.5 При отрицательных результатах периодической поверки прибор считают непригодным и к эксплуатации не допускают, свидетельство о поверке аннулируют, оттиск поверительного клейма гасят и выдают извещение о непригодности, с указанием причин непригодности в соответствии с приложением 2 Приказа Минпромторга РФ от 02.07.2015 г. №1815.