УТВЕРЖДАЮ:

Заместитель директора

по производственной метрологии

ФГУП «ВНИИМС»

_Н.В. Иванникова

helpamp 20

2017 г.

Датчики давления и температуры серии xQuartzPT

МЕТОДИКА ПОВЕРКИ

МП 207.1-004-2017

1 Общие положения

- 1.1 Настоящая методика поверки распространяется на Датчики давления и температуры серии xQuartzPT (далее приборы), изготавливаемых фирмой «Weatherford International Ltd», США, и устанавливает методы и средства их первичной и периодической поверок.
 - 1.2 Первичную поверку приборов выполняют до ввода в эксплуатацию и после ремонта.
- 1.3 Периодическую поверку приборов выполняют в процессе эксплуатации через установленный интервал между поверками.
 - 1.4. Интервал между поверками 15 лет.

2 Операции поверки

2.1 При проведении первичной и периодической поверок выполняют операции, приведённые в таблице 1.

т	_	4
10	ОЛИЦ	'a 1
14	OJIND	аı

	Hoyean	Проведение операции при			
Наименование операции	Номер пункта МП	первичной	периодической		
	пункта ічні	поверке	поверке		
1 Внешний осмотр	8.1	да	да		
2 Опробование	8.2	да	да		
3 Проверка идентификационных данных программного обеспечения	8.3	да	да		
4 Проверка метрологических характеристик	8.4	да	да		

3 Средства поверки

- 3.1 При проведении поверки применяют основные и вспомогательные средства поверки, перечень которых приведён в таблице 2.
- 3.2 Средства поверки должны иметь действующие свидетельства о поверке или оттиски поверительных клейм.

Таблица 2

таолица 2							
Номер пункта методики поверки	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования и (или) метрологические и основные технические характеристики средства поверки						
8.2	Персональный компьютер с предустановленным специализированным программным обеспечением						
8.3.1	Манометр грузопоршневой МП-600, диапазон воспроизведения давления от 1 до 60 МПа, эталонный 1-го разряда по ГОСТ Р 8.802-2012. Манометр грузопоршневой МП-2500, диапазон воспроизведения давления от 5 до 250 МПа, эталонный 1-го разряда по ГОСТ Р 8.802-2012. Трубка медная: диаметр от 6 до 8 мм, длина от 1,5 до 3,0 м. Масло касторовое по ГОСТ 18102-95.						
8.3.2	Термометр сопротивления платиновый эталонный ЭТС-100 3-го разряда по ГОСТ 8.558-2009, диапазон измерений температуры от минус 196 до плюс 660 °С. Измеритель температуры многоканальный прецизионный МИТ 8.15, диапазон измерений от минус 200 до плюс 500 °С (при $Iusm=1 \text{ мA}$), $II\Gamma$: $\pm (0,001+3\cdot10^{-6}t)$ (для $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$						
Примечание – Допускается применение средств, не приведённых в таблице, но обеспечивающих							
определение (контроль) метрологических характеристик приборов с требуемой точностью							

4 Требования к квалификации поверителей

4.1 Поверка приборов должна выполняться специалистами, аттестованными в качестве поверителей средств измерений и освоившими работу с прибором.

5 Требования безопасности

- 5.1 При проведении поверки необходимо соблюдать требования безопасности, установленные в следующих документах:
- ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности;
 - «Правила технической эксплуатации электроустановок потребителей»;
- «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок» ПОТ Р М-016-2001, РД 153-34.0-03.150-00;
- требования разделов «Указания мер безопасности» эксплуатационной документации на применяемые средства поверки.

6 Условия поверки

6.1 При проведении поверки соблюдают нормальные условия:

 температура окружающего воздуха, °С 	от +15 до +25;
– атмосферное давление, кПа	от 84 до 106,7;
- относительная влажность воздуха, %	от 30 до 80;
- напряжение питания переменного тока, В	от 198 до 242;
- частота питающей сети, Гц	от 49 до 51.

7 Подготовка к поверке

- 7.1 Перед выполнением операций поверки необходимо изучить настоящий документ и эксплуатационную документацию на поверяемые приборы.
- 7.2 Непосредственно перед проведением поверки необходимо подготовить средства поверки к работе в соответствии с их эксплуатационной документацией.
 - 7.3 Подготавливают прибор к поверке в соответствии с Руководством по эксплуатации.

8 Проведение поверки

8.1 Внешний осмотр

- 8.1.1 При внешнем осмотре устанавливают:
- соответствие внешнего вида, комплектности прибора технической и эксплуатационной документаций;
 - наличие и четкость маркировки;
- отсутствие механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
 - отсутствие обрывов и нарушения изоляции интерфейсного кабеля;
 - прочность соединения кабеля, отсутствие следов коррозии.

Результат проверки положительный, если выполняются все вышеперечисленные требования. При оперативном устранении недостатков, замеченных при внешнем осмотре, поверка продолжается по следующим операциям.

8.2 Опробование

8.2.1 При опробовании проверяют работоспособность прибора в соответствии с Руководством по эксплуатации: на вторичном блоке сбора данных или на мониторе ПК должны отображаться текущие показания давления и температуры.

8.3 Проверка идентификационных данных программного обеспечения

- 8.3.1 На персональном компьютере запускают программное обеспечение (ПО), затем открывают вкладку с информацией о ПО.
 - 8.3.2 В качестве идентификатора ПО принимается идентификационный номер ПО.

8.3.3 Датчик считается прошедшим поверку с положительным результатом, если идентификатор ПО соответствует значению, указанному в таблице 3. Если данные требования не выполняются, то датчик считается непригодным к применению, к эксплуатации не допускается, выписывается свидетельство о непригодности, дальнейшие пункты методики не выполняются.

Таблица 3

Идентификационные данные (признаки)	Значение							
Идентификационное наименование ПО	Weatherford CM	Weatherford						
	Common Platform	RMS/nForm						
Номер версии (идентификационный номер) ПО(1)	2.4.11	RMS 11.0						
Цифровой идентификатор программного обеспечения	по номеру версии	по номеру версии						
Примечание: (1) – и более поздние версии.								

8.4 Проверка метрологических характеристик

8.4.1 Проверка диапазона и допускаемой приведенной погрешности канала измерений избыточного давления.

Проверку диапазона и допускаемой абсолютной погрешности канала измерений давления проводят при помощи грузопоршневых эталонных манометров МП-600 и МП-2500 (в зависимости от диапазона измерений поверяемого прибора) следующим образом:

- а) при помощи специальных трубок подключают поверяемый прибор к грузопоршневому манометру;
- б) погружают прибор в жидкостной термостат переливного типа на глубину, обеспечивающую минимальное (в температурном эквиваленте) равномерное распределение температуры по глубине и закрепляют его в таком положении;
- в) открывают окно ПО с текущими показаниями прибора или смотрят показания вторичного прибора сбора данных;
- г) устанавливают в термостате первую контрольную температурную точку: плюс 25⁺² °C (при этом, температуру в термостате контролируют при помощи помещенного в рабочий объем термостата на нормируемую глубину, эталонного термометра типа ЭТС-100);
- д) подают на прибор от грузопоршневого манометра МП-600 или МП-2500 давление $P_{3.i}$, МПа и на вторичном приборе или мониторе ПК фиксируют показания прибора $P_{u.i}$, МПа в контрольных точках в соответствии с таблицей 4, 5 или 6 в зависимости от диапазона измерений прибора. При этом, на грузопоршневом манометре МП-600 или МП-2500 задают и фиксируют сначала давление при подходе со стороны меньших значений, при достижении максимального значения диапазона измерений выдерживают прибор в течение пяти минут и повторно фиксируют показания прибора, а затем устанавливают давление со стороны больших значений;
- е) результаты измерений заносят в таблицу 4, 5, 6 или 7 в зависимости от диапазона измерений прибора;

Таблица 4 (от 0 до 68.9 МПа)

Таолица 4 (от о до об, 2 мита)													
Номин.	Показания	Показания поверяемого прибора (Ризм), МПа							a	Δ_p ,			
значен.	эталонного	1										МПа	γ _p ,
измер.	прибора	1 n	икл	2 ц	икл	3 ц	икл	4 ц	икл	5 ц	икл		МПа
парам.,	(Р _{зад}), МПа	ļ,	, , , , , , , , , , , , , , , , , , , ,]			
МПа		ПХ	OX	ПХ	OX	ПХ	OX	ПХ	OX	ПХ	OX		
1,0000													
15,0000													
30,0000													
45,0000													
60,0000													

Таблица 5 (от 0 до 110,3 МПа)

Номин.	Показания		Показания поверяемого прибора (Ризм), МПа								$\Delta_{\rm p}$,	γ _p ,	
значен.	эталонного										_	МПа	МПа
измер.	прибора	11	цикл	2 ц	икл	3 ц	икл	4 ц	икл	5 ц	икл	ĺ	
парам.,	(Р _{зад}), МПа	TTV	OV	1777	07/	TTV	037	TTV	OV	mv	037		
МПа		IIX	OX	ПХ	OX	ПХ	OX	ПХ	OX	ПХ	OX		
1,0000													
25,0000		_											
50,0000													
75,0000													_
100,0000	-		_							_			

Таблица 6 (от 0 до 137,9 МПа)

Номин.	Показания		Показания поверяемого прибора (Ризм), МПа								Δ_{p} ,	γ _p ,	
значен.	эталонного											МПа	МПа
измер.	прибора	1 1	икл	2 ц	икл	3 ц	икл	4 ц	икл	5 ц	икл		
парам.,	(Р _{зад}), МПа	TTV	OX	пу	ox	ПХ	OX	TTV	ox	TTV	OX		
МПа		ПХ	UX	ПХ	UX	IIX	UX	ПХ	UX	ПХ	UX		
1,0000													
30,0000													l
60,0000								_		_			
90,0000													
110,0000								_					
130,0000													

ж) рассчитывают значение приведенной погрешности канала измерений давления для каждой контрольной точки Δ_v , МПа по формуле (1):

$$\Delta_p = Pu - Ps \quad (1)$$

где: P_u и P_3 — измеренное и заданное значения давления, МПа.

з) рассчитывают значение нормируемой погрешности в каждой контрольной точке по формуле (2):

 $\pm (0.02\%$ (от диапазона измерений) $\pm 0.01\%$ (от измеряемой величины)) (2)

и) далее проводят операции по п.п. г)...3) при следующих контрольных температурных точках: плюс 50 ± 2 °C, плюс 80 ± 2 °C, плюс 120 ± 2 °C и плюс 150 ± 2 °C (или 170 ± 2 °C) — в зависимости от верхнего предела диапазона измерений по каналу измерений температуры поверяемого прибора.

Результат проверки считается положительный, если значения полученной погрешности в каждой контрольной точке при 5-ти значениях температуры не превышают нормированного значения предельно допускаемой погрешности.

8.4.2 Проверка диапазона и допускаемой абсолютной погрешности канала измерений температуры

Проверку диапазона и допускаемой абсолютной погрешности канала измерений температуры проводят параллельно с проверкой по п. 8.4.1 в жидкостных термостатах переливного типа. Проверку проводят следующим образом:

- а) открывают окно ПО с текущими показаниями прибора или смотрят показания вторичного прибора сбора данных;
- б) при установившемся значении температуры фиксируют показание эталонного термометра сопротивления ЭТС-100 T_{ycm} , °C и показание прибора T_{uzm} , °C, отображаемое на вторичном приборе или на мониторе ПК;
- в) рассчитывают значение абсолютной погрешности измерений температуры Δ_T , °C, по формуле (3):

$$\Delta_T = T_{um} - T_{vcm} (3)$$

г) результаты измерений и вычислений заносят в таблицу 7.

Таблица 7

The same of the sa			
$T_{3a\partial}$, °C	T _{ycm} , °C	$T_{u_{3M}}$, °C	Δ_T , °C
25			
40			
60			
80			
100			
120			
135			
150 (170)			

Результат проверки считается положительный, если значения полученной погрешности в каждой контрольной точке не превышают предельно допускаемого значения: ± 0.1 °C.

8.4.3 При периодической поверке по согласованию с пользователем изделия допускается поверка прибора в диапазонах измерений температуры и избыточного давления, лежащих внутри нормируемых значений верхнего и нижнего предела соответствующих диапазонов, при этом делается соответствующая запись в паспорте и (или) в свидетельстве о поверке.

9 Оформление результатов поверки

- 9.1 Датчики давления и температуры серии хQuartzPT, прошедшие поверку с положительным результатом, признаются годными и допускаются к применению. На них оформляются свидетельства о поверке в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г. и (или) ставится знак поверки в паспорт и делается соответствующая запись в разделе «Свидетельство о поверке».
- 9.2 При отрицательных результатах поверки, в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г., оформляется извещение о непригодности.

Разработчики настоящей МП:

Начальник лаб. 207.2 ФГУП «ВНИИМС»

Начальник НИО 207 ФГУП «ВНИИМС»

А.И. Гончаров

А.А. Игнатов