Государственная система обеспечения единства измерений

Акционерное общество «Приборы, Сервис, Торговля» (АО «ПриСТ»)

УТВЕРЖДАЮ Главный метролог

АО «ПриСТ» А.Н. Новиков

«17» февраля 2017 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ОСЦИЛЛОГРАФЫ ЦИФРОВЫЕ ЗАПОМИНАЮЩИЕ СЕРИЙ WaveRunner 8000R, HDO9000R

МЕТОДИКА ПОВЕРКИ ПР-01-2017МП

ВВЕДЕНИЕ

Настоящая методика устанавливает методы и средства первичной и периодических поверок осциллографов цифровых запоминающих серий WaveRunner 8000R, HDO9000R, изготавливаемых ««Teledine LeCroy»», США.

Осциллографы цифровые запоминающие серий WaveRunner 8000R, HDO9000R (далее по тексту — осциллографы) предназначены для исследования формы и измерения амплитудных и временных параметров электрических сигналов.

Межповерочный интервал 1 год.

Периодическая поверка осциллографов в случае их использования для измерений (воспроизведения) меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» описания типа, допускается на основании письменного заявления владельца измерителей, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке приборов.

1 ОПЕРАЦИИ ПОВЕРКИ

Таблица 1 – Операции поверки

Таолица 1 — Операции поверки			
	Номер пункта	Проведение	е операции при
Наименование операции	методики	первичной	периодической
	поверки	поверке	поверке
1 Внешний осмотр	7.1	Да	Да
2 Опробование	7.2	Да	Да
3 Проверка программного обеспечения	7.3	Да	Да
4 Определение сопротивления, входных каналов осциллографа	7.4	Да	Да
5 Определение абсолютной погрешности измерения напряжения постоянного тока	7.5	Да	Да
6 Определение абсолютной погрешности измерения напряжения постоянного тока постоянным смещением	7.6	Да	Да
7 Определение ширины полосы пропускания	7.7	Да	Да
8 Определение времени нарастания переходной характеристики	7.8	Да	Да
9 Определение относительной погрешности частоты внутреннего опорного генератора	7.9	Да	Да
10 Определение абсолютной погрешности установки уровня срабатывания цифрового логического анализатора	7.10	Да	Да

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки должны применяться средства поверки, перечисленные в таблицах 2 и 3.
- 2.2 Допускается применять другие средства поверки, обеспечивающие измерение значений соответствующих величин с требуемой точностью.
- 2.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

Таблица 2 – Средства поверки

	редства поверки
Номер пункта МП	Тип средства поверки
7.4	Калибратор осциллографов Fluke 9500В. Диапазон измерений сопротивления от 10 Ом до 12 МОм. Относительная погрешность измерения сопротивления от ±0,1 до ±0,5 %
7.5	Калибратор осциллографов Fluke 9500В. Диапазон выходного напряжения постоянного тока от 1 мВ до 5 В на нагрузке 50 Ом, от 1 мВ до 200 В на нагрузке 1 МОм. Пределы допускаемой абсолютной погрешности воспроизведения напряжения постоянного тока ± (0,00025Uвых + 25 мкВ).
7.6	Калибратор осциллографов Fluke 9500В. Диапазон выходного напряжения постоянного тока от 1 мВ до 5 В на нагрузке 50 Ом, от 1 мВ до 200 В на нагрузке 1 МОм. Пределы допускаемой абсолютной погрешности воспроизведения напряжения постоянного тока ± (0,00025Uвых + 25 мкВ).
7.7	Генератор сигналов MG3694C. Диапазон частот от 0,1 Γ ц до 40 Γ Γ ц (с опциями 5 и 22). Пределы допускаемой относительной погрешности установки частоты $\pm 2 \cdot 10^{-9}$
7.8	Калибратор осциллографов Fluke 9500B с формирователем 9530. Время нарастания не более 150 пс. Генератор испытательных импульсов Picosecond 4005. Время нарастания не более 11 пс. Делитель напряжения ДН-1 из комплекта И1-15. Диапазон ослаблений от 0 до 41 дБ с шагом 1 дБ.
7.9	Калибратор осциллографов Fluke 9500В. Пределы допускаемой относительной погрешности установки частоты генератора ±2,5·10 ⁻⁷ .
7.10	Калибратор осциллографов Fluke 9500В. Диапазон установки напряжения постоянного тока от 0 до 200 В на нагрузке 1 МОм. Пределы допускаемой абсолютной погрешности воспроизведения напряжения постоянного тока ±(0,00025Uвых + 25 мкВ).

Таблица 3 – Вспомогательные средства поверки

Измеряемая ве-	Диапазон изме-	Класс точности, по-	Тип средства поверки	
личина	рений	грешность		
Температура	от 0 до 50 °C.	± 0,25 °C	Цифровой термометр- гигрометр Fluke 1620A	
Давление	от 30 до 120 кПа	± 300 Па	Манометр абсолютного давления Testo 511	
Влажность	от 10 до 100 %	±2 %	Цифровой термометр- гигрометр Fluke 1620A	

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке допускаются лица, изучившие эксплуатационную документацию на поверяемые средства измерений, эксплуатационную документацию на средства поверки и соответствующие требованиям к поверителям средств измерений согласно ГОСТ Р 56069-2014.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования ГОСТ 12.27.0-75, ГОСТ 12.3.019-80, ГОСТ 12.27.7-75, требованиями правил по охране труда при эксплуатации электроустановок, утвержденных приказом Министерства труда и социальной защиты Россий-

ской Федерации от 24 июля 2013 г № 328Н.

4.2 Средства поверки, вспомогательные средства поверки и оборудование должны соответствовать требованиям безопасности, изложенным в руководствах по их эксплуатации.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха (25 ± 5) °C;
- относительная влажность от 30 до 80 %;
- атмосферное давление от 84 до 106 кПа или от 630 до 795 мм рт. ст.;

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.27.0-75;
- проверить наличие действующих свидетельств поверки на основные и вспомогательные средства поверки.
- 6.2 Средства поверки и поверяемый прибор должны быть подготовлены к работе согласно их руководствам по эксплуатации.
- 6.3 Проверено наличие удостоверения у поверителя на право работы на электроустановках с напряжением до 1000 В с группой допуска не ниже III.
- 6.4 Контроль условий проведения поверки по пункту 5 должен быть проведен перед началом поверки.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр.

Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие поверяемого прибора следующим требованиям:

- не должно быть механических повреждений корпуса. Все надписи должны быть четкими и ясными;
- все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемый прибор бракуется и подлежит ремонту.

7.2 Опробование.

Опробование осциллографов проводят путем проверки их на функционирование в соответствии с руководством по эксплуатации.

При отрицательном результате проверки прибор бракуется и направляется в ремонт.

7.3 Проверка программного обеспечения.

Проверка программного обеспечения осциллографов осуществляется путем вывода на дисплей прибора информации о версии программного обеспечения. Вывод системной информации осуществляется по процедуре, описанной в руководстве по эксплуатации на прибор.

Результат считается положительным, если версия программного обеспечения соответствует данным, приведенным в таблице 4.

Таблица 4 – Характеристики программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	XStreamDSO
Номер версии (идентификационный номер ПО)	не ниже 7.3.0.5

7.4 Определение сопротивления входных каналов осциллографа

Определение сопротивления входных каналов осциллографа проводить методом прямого измерения сопротивления калибратором осциллографов Fluke 9500B в следующей последовательности:

- 7.4.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.4.2 На калибраторе установить режим измерения сопротивления.
- 7.4.3 Включить осциллограф и выполнить сброс на заводские настройки согласно инструкции по эксплуатации.
- 7.4.4 В меню «Утилиты» в разделе «Калибровка» установить режим «Динамическая калибровка»
- 7.4.5 Провести измерения сопротивления входа осциллографов при настройках, приведенных в таблице 5.
 - 7.4.6 Провести измерения по п.п. 7.4.1 7.4.4 для каждого канала осциллографа.
- 7.4.7 Определить отклонение сопротивления входных каналов осциллограф от номинального значения Δ_R по формуле (1):

$$\Delta_{R} = R$$
изм - Rном (1)

где: Rизм — значение сопротивления входного канала, измеренное калибратором осциллографов Fluke 9500B, Ом;

Rном – значение сопротивления входного канала, установленного в осциллографе, Ом.

Таблица 5 — Определение отклонения сопротивления входных каналов осциллографа от номинальных значений

Номер канала	Установленный коэффициент от-клонения, мВ/дел.	Номинальное зна- чение входного сопротивления, Ом	Измеренное значение входного сопротивления, Ом	Отклонение от номинального значения сопротивления, Ом	Допустимое от- клонение от но- минального со- противления, Ом
1	50 200	50			±1
1	50 200	1.106			±2·10 ⁴
2	50 200	50			±1
	50 200	1·10 ⁶			±2·10 ⁴
3	50 200	50			±1
	50 200	1·10 ⁶			±2·10 ⁴
4	50 200	50			±1
	50 200	1·10 ⁶			±2·10 ⁴

Результаты поверки считаются удовлетворительными, если измеренные значения находятся в пределах, приведенных в таблице 5.

7.5 Определение абсолютной погрешности измерения напряжения постоянного тока

Определение погрешности измерения напряжения производится с помощью калибратора осциплографов Fluke 9500B с использованием формирователя 9530.

- 7.5.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.5.2 Органы управления осциллографа устанавливают в следующие положения:
- канал 1 Включен, связь входа DC 50 Ом, ограничение полосы пропускания $20~\mathrm{MTu}$;
 - режим HD-включен (только для серии HDO9000R);
 - режим «Динамическая калибровка» включен
 - синхронизация: режим Авто;
 - режим измерения Среднее значение (Mean), статистика измерений включена;
 - коэффициент отклонения устанавливается из таблицы 6;
- 7.5.3 Для получения результата измерения на передней панели нажать «Очистка экрана» и произвести считывание среднего значения результата измерения при числе статистки измерений не менее 50.
- 7.5.4 Измерения провести при значениях коэффициента отклонения, входного сопротивления, выходного напряжения с калибратора, указанных в таблице 6.
 - 7.5.5 Повторить измерения по п.п. 7.5.1 7.5.4 для остальных каналов осциллографа.

Таблица 6 - Определение абсолютной погрешности измерения напряжения постоянного тока

Коэффициент отклонения		Выходное напряжение, В	Пределы допускаемой абсолютной погрешности измерения постоянного напряжения, В	
$R_{BX} = 50 \text{ Om}$	R _{BX} =1 MOM		стоянного напряжения, в	
1	2	3	4	
2 мВ/дел	2 мВ/дел	+0,006	±0,00116	
2 МЭ/ДОЛ	2 МЭ/ДОЛ	-0,006	10,00110	
5 мВ/дел	5 мВ/дел	+0,015	10.0014	
э мь/дел	ј эмв/дел 	-0,015	±0,0014	
10 - D/	10 - D/	+0,030	10.0010	
10 мВ/дел	10 мВ/дел	-0,030	±0,0018	
20 vsD/====	20 xD/zoz	+0,06	10,000	
20 мВ/дел	20 мВ/дел	-0,06	±0,0026	
50 мВ/дел	50 мВ/дел	+0,15	±0,005	
эо мыдол	30 MD/ACII	-0,15	10,003	
100 мВ/дел	100мВ/дел	+0,300	±0,009	
100 мгж, дол	TOUMB/ACM	-0,300	10,009	
200 мВ/дел	200 мВ/дел	+0,600	±0,017	
200 MB/Ach	200 МЭ/ДОЛ	-0,600	±0,017	
500мВ/дел	500мВ/дел	+1,5	10.041	
эоомы дел	300MB/ACII	-1,5	±0,041	
1 В/дел	1 В/дел	+3,0	10.001	
т в/дел	т в/дел	-3,0	±0,081	
	2 D/war	+6,0	10.001	
<u>-</u>	2 В/дел	-6,0	$\pm 0,081$	
	5 D/ror	+15	10.404	
	5 В/дел	-15	±0,401	
	10 P/	+30,0		
-	10 В/дел	-30,0	±0,801	

Результаты поверки считаются удовлетворительными, если полученные значения погрешностей не превышают пределов допускаемой абсолютной погрешности, приведенных в таблице 6.

7.6 Определение абсолютной погрешности измерения напряжения постоянного тока постоянным смещением

Определение абсолютной погрешности измерения постоянного напряжения со смещением проводить с помощью калибратора осциллографов Fluke 9500В с использованием формирователя 9530.

- 7.6.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.6.2 Органы управления осциллографа устанавливают в следующие положения:
- канал 1 Включен, связь входа DC 50 Ом, ограничение полосы пропускания 20 МГц;
 - синхронизация: тип режим Авто;
 - режим «Динамическая калибровка» включен;
 - режим HD-включен (только для серии HDO9000R);
 - режим измерения Среднее значение (Mean), статистика измерений включена;
 - коэффициент отклонения устанавливается из таблицы 7.
- 7.6.3 Регулятором «Смещение» установить сигнал по центральной горизонтальной линии осциллографа.
- 7.6.4 Подать напряжение положительной полярности (U+), значение которого приведено в таблице 7, с калибратора на вход канала 1 осциллографа. Значение напряжения не должно превышать максимально допустимый уровень на входе осциллографа.
- 7.6.5. Произвести установку напряжения смещения, равного по величине выходному напряжению калибратора, но имеющему противоположный знак.
- 7.6.6 Произвести измерения заданного постоянного уровня с калибратора при помощи автоматических измерений осциллографа.
- 7.6.7 Определить абсолютную погрешность измерения постоянного напряжения со смещением по формуле (2):

$$\Delta = |\mathbf{U}_{\mathbf{H}\mathbf{3}\mathbf{M}}| - |\mathbf{U}_{\mathbf{K}}| \tag{2}$$

где Uизм – значение напряжения, измеренное поверяемым осциллографом, B; Uк – значение напряжения, установленное на калибраторе, B.

- 7.6.8 Провести измерения по п. 7.6.1-7.6.7 при остальных значениях коэффициента отклонения и значениях уровня постоянного напряжения, включая отрицательные значения, указанных в таблице 7.
- 7.6.9 Провести измерения по п.п. 7.6.1 7.6.8 для остальных каналов осциллографа. При этом неиспользуемые каналы должны быть отключены.
- 7.6.10 Провести измерения по п.п. 7.6.1 7.6.9 при входном сопротивлении каналов 1 МОм.

Таблица 7

таолица /					
Коэффициент осцилл	г отклонения ографа	Установленный уровень постоянного напряжения с калибратора, В		Пределы допускаемой абсолютной погрешности измерения напряжения постоянного тока со смещением, В	
R _{вх} =50 Ом	$R_{BX}=1 \text{ MOM}$	R _{вх} =50 Ом	R _{BX} =1 MO _M	$R_{BX}=50 O_M$	R _{BX} =1 MO _M
1	2	3	4	5	6
2 мВ/дел	2 мВ/дел	±0,5	±0,5	±0,00866	±0,00866

Продолжение таблицы 7

1	2	3	4	. 5	6
5 мВ/дел	5 мВ/дел	±1,4	±1,4	±0,0224	±0,0224
10 мВ/дел	10 мВ/дел	±2,8	±2,8	±0,0438	±0,0438
20 мВ/дел	20 мВ/дел	±4	±6	±0,0626	±0,0926
-	200 мВ/дел	-	±60	-	±0,9026
	10 В/дел	-	±160	-	±3,201

Результаты поверки считаются удовлетворительными, если во всех поверяемых точках погрешность измерения, не превышает пределов, приведенных в таблице 9.

7.7 Определение ширины полосы пропускания

Определение ширины полосы пропускания осциллографа проводить методом прямого измерения поверяемым прибором частоты испытательного сигнала, воспроизводимого эталонной мерой — калибратором осциллографов Fluke 9500В или генератором высокочастотным (для осциллографов с полосой пропускания 4 ГГц) в следующей последовательности:

- 7.7.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.7.2 Установить на осциллографе:

входное сопротивление канала 50 Ом; коэффициент отклонения осциллографа — минимальный (согласно таблицы 8); коэффициент развертки 100 мкс/дел; интерполяция — sinx/x, ограничение полосы пропускания — выключено; режим HD-выключен (только для серии HDO9000R).

- 7.7.3 Установить на выходе калибратора Fluke 9500В (или генератора) синусоидальный сигнал частотой 50 кГц и установить размах сигнала от 4 до 6 делений по вертикали. Измерить размах сигнала Uопорное при помощи автоматических измерений осциллографа.
- 7.7.4 Установить на выходе калибратора Fluke 9500В сигнал с частотой, соответствующей верхней граничной частоте полосы пропускания поверяемого осциплографа.
- 7.7.5 Установить на поверяемом осциллографе величину коэффициента развертки 10 нс/дел.
- 7.7.6 Увеличивать частоту сигнала с калибратора до тех пор, пока размах сигнала на экране осциллографа не станет равным 0,708 Uопорное. Для осциллографов с шириной полосы пропускания 4 ГГц использовать генератор высокочастотный с диапазоном частот не менее 4 ГГц.
- 7.7.7 Записать установленную частоту с дисплея калибратора (или генератора), которая будет соответствовать частоте полосы пропускания осциллографа.
- 7.7.8 Провести измерения по п.п. 7.7.1 7.7.7 для остальных коэффициентов отклонения осциллографа до 1 В/дел включительно.
 - 7.7.9 Провести измерения по п.п. 7.7.1 7.7.7 для остальных каналов осциллографа.
- 7.7.10 Провести измерения по п.п. 7.7.1 7.7.9 для всех каналов осциллографа при входном сопротивлении 1 МОм. При этом неиспользуемые каналы должны быть отключены.

Таблица 8 - Полоса пропускания по уровню -3 дБ

Характеристика	Модификации	Значение
11	2	3
Полоса пропускания по уровню	WaveRunner 8054R, WaveRunner 8054R-MS	500
-3 дБ, при входном сопротив- лении 50 Ом, МГц, не менее	WaveRunner 8104R, WaveRunner 8104R-MS	1000
- при коэффициенте отклонения не менее 2 мВ/дел	HDO9104R, HDO9104R-MS	1000

Продолжение таблицы 8

Продолжение таолицы 8		
1	2	3
Полоса пропускания по уровню	WaveRunner 8254R, WaveRunner 8254MR	
3 дБ, при входном сопротивле-	WaveRunner 8254R-MS,	2500
нии 50 Ом, МГц, не менее	WaveRunner 8254MR-MS	
- при коэффициенте	WaveRunner 8404R, WaveRunner 8404MR,	
отклонения не менее	WaveRunner 8404MR-MS,	4000
5 мВ/дел	WaveRunner 8404R-MS	
	HDO9204R, HDO9204R-MS	2000
,	HDO9304R, HDO9304R-MS	3000
1	HDO9404R, HDO9404R-MS	4000
Полоса пропускания по уровню -3 дБ, МГц, не менее - при входном сопротивлении 1 Мом	WaveRunner 8054R, WaveRunner 8104R, WaveRunner 8254R, WaveRunner 8404R, WaveRunner 8254MR, WaveRunner 8404MR, WaveRunner 8054R-MS, WaveRunner 8104R-MS, WaveRunner 8254R-MS, WaveRunner 8404R-MS, WaveRunner 8404R-MS, WaveRunner 8404MR-MS	500
	HDO9104R, HDO9104R-MS HDO9204R, HDO9204R-MS HDO9304R, HDO9304R-MS HDO9404R, HDO9404R-MS	1000

Результаты поверки считаются удовлетворительными, если значение полосы пропускания осциллографа не менее значения, приведенного в таблице 8.

7.8 Определение времени нарастания переходной характеристики

7.8.1 Определение времени нарастания переходной характеристики (ПХ) производится путем подачи на вход осциллографа импульса с малым временем нарастания от эталона, указанного в таблице 9.

Таблица 9 - Определение времени нарастания переходной характеристики

Эталон	Модификация	Допускаемое значе-
	осциллографов	ние ПХ осцилло-
		графа, пс, не более
1	2	3
КалибраторFluke 9500 с формирователем 9530	WaveRunner 8054R,	700
	WaveRunner 8054R-MS	700
	WaveRunner 8104R,	415
	WaveRunner 8104R-MS	413
Генератор испытательных импульсов Picosec-	WaveRunner 8254R,	
ond 4005, делитель напряжения ДН-1 из ком-	WaveRunner 8254MR,	160
плекта калибратора И1-15	WaveRunner 8254R-MS,	100
	WaveRunner 8254MR-MS	
Генератор испытательных импульсов Picosec-	WaveRunner 8404R,	
ond 4005, делитель напряжения ДН-1 из ком-	WaveRunner 8404MR,	100
плекта калибратора И1-15	WaveRunner 8404MR-MS,	100
	WaveRunner 8404R-MS	
	HDO9104R, HDO9104R-MS	415
КалибраторFluke 9500 с формирователем 9530	HDO9204R, HDO9204R-MS	200

1	2	3
Генератор испытательных импульсов Picosec-	HDO9304R, HDO9304R-MS	
ond 4005, делитель напряжения ДН-1 из ком-	1	134
плекта калибратора И1-15		
Генератор испытательных импульсов Picosec-	HDO9404R, HDO9404R-MS	
ond 4005, делитель напряжения ДН-1 из ком-		100
плекта калибратора И1-15		

- 7.8.2 Выход формирователя подключить на вход первого канала поверяемого осциллографа. При использовании генератора испытательных импульсов Picosecond 4005 выход генератора подключать к осциллографу через ступенчатый аттенюатор с шагом не более 1 дБ и диапазоном ослабления не менее 40 дБ.
 - 7.8.3 Органы управления осциллографа устанавливают в следующие положения:
- канал 1 Включен, связь входа DC 50 Ом, ограничение полосы пропускания Выключено:
 - синхронизация: тип Фронт, источник Канал 1 (проверяемый), режим Авто;
- развертка эквивалентная; минимальное значение коэффициента развертки, при котором наблюдается фронт импульса;
 - режим HD-выключен (только для серии HDO9000R);
- режим измерения: Время нарастания (Rise (10%-90%)) (При использовании генератора испытательных импульсов Picosecond 4005 использовать режим измерения Времени спада (Fall (10%-90%)), статистика измерений включена;
 - коэффициент отклонения ≥ 10 мВ/дел.
- 7.8.4 Установить амплитуду импульса на экране осциллографа не меньше 4 делений по вертикали. Нажать на передней панели осциллографа кнопку «Очистка экрана» и произвести считывание среднего значения результата измерения времени нарастания при числе статистки измерений не менее 50.
 - 7.8.5 Определить время нарастания переходной характеристики по формуле (3):

$$t_{\text{IIX}} = \sqrt{t_{\text{X}}^2 - t_{\text{O}}^2} \tag{3}$$

где t_X — значение времени нарастания, измеренное поверяемым осциллографом, пс; t_0 — значение времени нарастания формирователя калибратора, пс.

- 7.8.6 Повторить измерения по п.п. 7.8.1 7.8.5 для коэффициентов отклонения 20 мВ/дел, 50 мВ/дел, 100 мВ/дел, 200 мВ/дел, 500мВ/дел, 1 В/дел.
 - 7.8.7 Повторить измерения по п.п. 7.8.1 7.8.6 для остальных каналов осциллографа.

Результаты поверки считаются удовлетворительными, если вычисленные по формуле (3) значения времени нарастания не превышают значений, приведенных в таблице 9.

7.9 Определение относительной погрешности частоты внутреннего опорного генератора

Определение относительной погрешности частоты внутреннего опорного генератора проводить методом стробоскопического преобразования с помощью калибратора осциллографов Fluke 9500B.

- 7.9.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.9.2 Выполнить следующие установки осциллографа:
- канал 1 Включен, связь входа DC 50 Ом, ограничение полосы пропускания Выключено;
 - синхронизация: режим Авто;
 - режим HD-выключен (только для серии HDO9000R);

- режим измерения частота, статистика измерений включена;
- коэффициент отклонения 100 мВ/дел;
- 7.9.3 Подать на вход осциллографа синусоидальный сигнал с калибратора, частотой frect=10,008 МГц. Амплитуду сигнала с калибратора установить не менее б делений по вертикальной шкале осциллографа
- 7.9.3 Установить минимальное значение длины памяти осциллографа (в настройках развертки выбрать установки длинны записи и установить 500).
- 7.9.4 Установить коэффициент развертки осциллографа 500 мкс/дел. На экране осциллографа будет наблюдаться низкочастотный сигнал Fстроб.
- 7.9.5 Нажать на передней панели осциллографа кнопку «Clear Sweeps» (Очистка экрана) и произвести считывание среднего значения результата измерения частоты при числе статистки измерений не менее 50.
- 7.9.6 Определить абсолютную погрешность частоты внутреннего опорного генератора Δ_F по формуле (4):

$$\Delta_{\rm F} = \text{Fcrpof} - 8000, \tag{4}$$

где: Fстроб— частота низкочастотного сигнала, наблюдаемого на экране осциллографа, Гц.

7.9.7 Вычислить относительную погрешность частоты внутреннего опорного генератора по формуле (5)

$$\delta_{\rm F} = \Delta_{\rm F} / 10^7,\tag{5}$$

где: Δ_F – абсолютная погрешность частоты внутреннего опорного генератора, определенная по п.7.9.6, Γ ц.

Результаты поверки считаются удовлетворительными, если вычисленное по формуле (5) значение погрешности не превышает $\pm 1,5\cdot 10^{-6}$.

- 7.10 Определение абсолютной погрешности установки уровня срабатывания цифрового логического анализатора (только для модификаций с логическим анализатором)
- 7.10.1 Определение погрешности проводить с помощью калибратора осциллографов Fluke 9500B, используя логический пробник из комплекта осциллографа в следующей последовательности:
- 7.10.2 Произвести сброс всех настроек осциллографа и установить заводские настройки.
- 7.10.3 Подключить логический пробник из комплекта осциллографа к разъему логического анализатора на передней панели осциллографа.
- 7.10.4 Включить цифровые каналы в осциллографе, аналоговые каналы должны быть отключены.
- 7.10.5 Выход калибратора подключить к адаптеру, вид которого приведен на рисунке 1. Сигнальный разъем логического пробника, начиная с канала D0 подключить к адаптеру, вид которого приведен на рисунке 1.

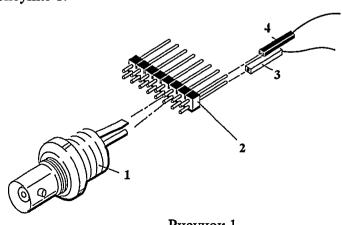


Рисунок 1

где

- 1. BNC-разъем (к калибратору)
- 2. Соединительная планка (2 шт.)
- 3. Сигнальный разъем логического пробника
- 4. «Земляной» разъем логического пробника
- 7.10.6 В меню логического анализатора осциллографа установить следующие параметры:
 - тип логики определенный пользователем;
 - порог уровня согласно таблице 10;
 - гистерезис согласно таблице 10.
- 7.10.7 Задать уровень сигнала с калибратора согласно таблицы 10.
- 7.10.9 Плавно увеличивать напряжение на выходе калибратора до уровня U1, при котором канал D0 осциллографа переходит в состояние «логической единицы». Зафиксировать значение напряжения U1.
- 7.10.10 Плавно уменьшать напряжение на выходе источника до уровня U0, при котором канал D0 осциллографа переходит в состояние «логического нуля». Зафиксировать значение напряжения U0.
- 7.10.11 Повторить измерения по п.п. 7.10.5 7.10.10 для остальных цифровых каналов D1 D15 осциллографа.
- 7.10.12 Определить абсолютную погрешность установки уровня срабатывания по формуле (5):

$$\Delta = U1 - U0; \tag{5}$$

find_

Таблица 10

Установленный	Установленный	Выходное напряжение	Пределы допускаемой
уровень	гистерезис, В	калибратора, В	абсолютной погрешности
срабатывания, В			установки уровня срабатывания, В
+ 10,00	0,1	+ 10,00	±0,4
	1,4		±1,7
0,00	0,1	0,00	±0,4
	1,4		±1,7
-10,00	0,1	- 10,00	±0,4
	1,4		±1,7

Результаты поверки считаются удовлетворительными, если во всех поверяемых точках абсолютная погрешность, определяемая по формуле (5) не превышает значений, приведенных в таблице 10.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки нагрузок оформляется свидетельство о поверке в соответствии с приказом Минпромторга России от 02.07.2015 № 1815 "Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке".
- 8.2 При отрицательных результатах поверки прибор не допускается к дальнейшему применению, в паспорт вносится запись о непригодности его к эксплуатации, знак предыдущей поверки гасится, свидетельство о поверке аннулируется и выдается извещение о непригодности.

Главный метролог АО «ПриСТ»

А.Н. Новиков