УТВЕРЖДАЮ

Первый заместитель генерального директора — заместитель по научной работе ФГУП/ВНИИФТРИ

А.Н. Ципунов

2016 г.

Инструкция

ТЕРМОГИРЛЯНДЫ

Методика поверки МГФК.405219.002 МП

СОДЕРЖАНИЕ

		Стр.
1	введение .	3
2	ОПЕРАЦИИ ПОВЕРКИ	3
3	СРЕДСТВА ПОВЕРКИ	3
4	ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	3
5	УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ	4
6	ПРОВЕДЕНИЕ ПОВЕРКИ	4
7	ИДЕНТИФИКАЦИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	5
8	ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	· 5

1 ВВЕДЕНИЕ

Настоящая методика поверки распространяется на термогирлянды и устанавливает методы и средства их первичной и периодической поверок.

Интервал между поверками – два года.

2 ОПЕРАЦИИ ПОВЕРКИ

Таблица 1- Операции поверки

Операции поверки	Пункт методики	Проведение операций	
		первичная	периодическая
		поверка	поверка
1 Внешний осмотр	6.1	Да	Да
2 Определение абсолютной погрешности измерений температуры	6.2	Да	Да
3 Идентификация программного обеспечения (ПО)	7	Да	Да

3 СРЕДСТВА ПОВЕРКИ

Таблица 2 – Средства поверки

					
Номер	Наименование и тип основного и вспомогательного средства поверки; обозначение				
пункта	нормативного документа, регламентирующего технические требования и (или)				
Методики	метрологические и основные технические характеристики средства поверки				
поверки					
6.2	Термостат жидкостный, переливной типа ТПП-1.3, зав.№381 с нестабильностью				
	поддержания температуры не хуже ±0,01 °C, неравномерность температурного поля в				
<u> </u>	рабочем пространстве ±0,01 °C				
6.2	Термометр сопротивления платиновый вибропрочный эталонный ПТСВ-4-2;				
	зав.№717, диапазон измерений температуры от минус 50 до плюс 232°C; пределы				
допускаемой абсолютной погрешности измерений ±0,02 °C					

Примечания:

- 1 Допускается применение других средств измерений, удовлетворяющих требованиям настоящей методики поверки и обеспечивающих определение метрологических характеристик с требуемой точностью.
- 2 Применяемые средства измерений должны иметь действующие свидетельства о поверке.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 К проведению поверки допускаются лица, имеющие опыт работы в области теплофизических измерений, ежегодно проходящие проверку знаний по технике безопасности, аттестованные в качестве поверителей и ознакомленные с документом "Термогирлянда. Руководство по эксплуатации. МГФК.405219.002 РЭ" (далее РЭ).
- 4.2 При проведении поверки должны соблюдаться меры предосторожности в соответствии с правилами техники безопасности, указанными в эксплуатационной документации.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

Поверка должна производиться при нормальных условиях:

- температура окружающего воздуха, °С

- относительная влажность, не более, %

- атмосферное давление, кПа

 $20 \pm 5;$

80;

от 84 до 106,7.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

- 6.1.1 При внешнем осмотре должно быть установлено соответствие поверяемой термогирлянды следующим требованиям:
 - отсутствие механических повреждений, влияющих на работу;
 - надежность и чистоту разъемных соединений.
- 6.1.2 Результаты внешнего осмотра считать положительными, если выполняются требования п. 6.1.1. В противном случае антенны к дальнейшей поверке не допускается.

6.2 Определение абсолютной погрешности измерений температуры

- 6.2.1 Перед проведением поверки термокосу и термометр промыть водой.
- 6.2.2 Заполнить водяной термостат пресной водой.
- 6.2.3 Собрать схему проведения испытаний согласно рисунку 1.
- 6.2.4 Соединение блока управления МГФК.468332.144 и термокосы произвести перемычками согласно схемы на рисунке 2.

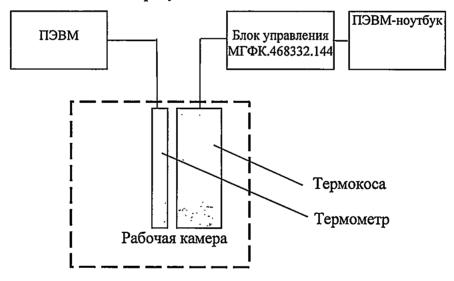


Рисунок 1 – Схема проведения поверки

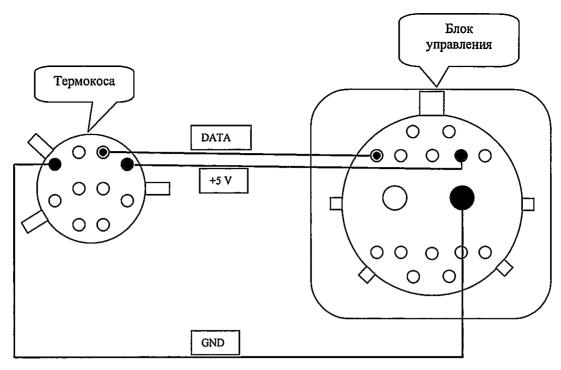


Рисунок 2 — Схема соединения блока управления и термокосы

- 6.2.5. Термокосу погрузить в рабочую камеру термостата так чтобы все датчики были в воде.
 - 6.2.6 Погрузить в рабочую камеру термостата чувствительный элемент термометра.
 - 6.2.7 Определение погрешности измерений температуры производить при значениях температуры теплоносителя: 0,5, 10, 20, 30 °C.

Для каждого значения температуры в режиме стабилизации температуры одновременно регистрировать измерения:

- температуры воды, измеренной термометром ПТСВ t_{і В};
- температуры воды, измеренной цифровыми датчиками температуры термокосы t_{i A}
- 6.2.8 Результаты измерений по п. 6.2.5 занести в таблицу 1.

Таблица 1

Значение	Значение температуры,	Абсолютная погрешность
температуры теплоносителя	измеренное термокосой	измерений
t _{iB} , °C	t _{i A} , ⁰C	$\Delta t_i = t_{i A} - t_{i B}$
1		

6.2.9 Результаты поверки считать положительными, если значения погрешности измерений температуры находятся в пределах $\pm 0,3$ °C.

7 ИДЕНТИФИКАЦИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- 7.1 Проверить документацию в части программного обеспечения (ПО).
- 7.2 Провести проверку идентификационных данных, приведенныйх в РЭ Проверить наименование и номер версии (идентификационный номер) ПО.
- 7.3 Результаты поверки считать положительными, если при запуске в диалоговом окне интерфейса оператора отображается наименование, номер версии (идентификационный номер) и идентификационный код (контрольная сумма) ПО. В противном случае изделие к дальнейшему проведению поверки не допускается.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Результаты измерений, обработки и расчета погрешностей занести в протокол, составленный в произвольной форме.
- 8.2 В случае положительных результатов поверки оформляют свидетельство о поверке установленной формы.

Знак поверки наносится на свидетельство о поверке антенны.

8.3 В случае отрицательных результатов поверки термогирлянда к дальнейшему применению не допускается. На нее выдается извещение о непригодности к дальнейшей эксплуатации с указанием причин забракования.

Maryl

Научный сотрудник ФГУП "ВНИИФТРИ"

Ю.А. Ломовацкий