УТВЕРЖДАЮ Технический директор ООО «ИЦРМ» Millionarchatak М.С. Казаков HAMANCE pagagotok BOQUEON HEITOLOUNA «15» февраля 2017 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ВОЛЬТМЕТРЫ САМОПИШУЩИЕ Flash-Recorder-3

Методика поверки

4226-003-63806098-2016 МП

г. Видное 2017

введение

Настоящая методика предусматривает методы и средства проведения первичной и периодической поверок вольтметров самопишущих Flash-Recorder-3, изготавливаемых ООО «НПФ АДСилаб», г. Москва.

Вольтметры самопишущие Flash-Recorder-3 (далее – приборы) предназначены для измерения напряжения постоянного и переменного тока, временных интервалов.

Межповерочный интервал - 6 лет.

Допускается проведение первичной поверки приборов при выпуске из производства до ввода в эксплуатацию на основании выборки по ГОСТ Р ИСО 2859-10-2008.

Периодическая поверка средств измерений в случае их использования для измерений меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» Описания типа, допускается на основании письменного заявления владельца приборов, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке приборов.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При поверке выполняются операции, указанные в таблице 1.

1.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и прибор бракуется.

Наименование операции	Номер	Проведение операции при	
	пункта методики поверки	первичной поверке	периодичес кой поверке
1. Внешний осмотр	7.1	Да	Дa
2. Опробование	7.2	Да	Да
3. Определение пределов допускаемой основной приведенной погрешности измерений напряжения постоянного тока	7.3	Да	Да
 Определение пределов допускаемой основной приведенной погрешности измерений среднеквадратического значения напряжения переменного тока 	7.4	Да	Да
 Определение пределов допускаемой основной абсолютной погрешности измерений временных интервалов 	7.5	Дa	Да

Таблица 1 – Операции поверки

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства измерений, перечисленные в таблицах 2 и 3.

2.2 Допускается применять другие средства измерений, обеспечивающие измерение значений соответствующих величин с требуемой точностью.

2.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

Номер пункта методики поверки	Тип средства поверки
7.1	Визуально.
7.2	Визуально. Внешний ПК с предустановленной операционной системой
7.3	Источник питания постоянного тока АКИП-1120. Диапазон выходного напряжения от 0 до 32 В. Пределы допускаемой абсолютной погрешности воспроизведения выходного напряжения ±(0,001·Uyct.+0,02) В. Диапазон выходного тока от 0 до 3 А. Пределы допускаемой абсолютной погрешности воспроизведения выходного тока ±(0,001·Iyct.+0,02) А. Вольтметр универсальный В7-78/1. Пределы измерений напряжения постоянного тока от 0,1 до 1000 В. Пределы допускаемой абсолютной погрешности измерений напряжения постоянного
7.4	тока на пределе 10 В ±(0,000035.00и3м.+ 0,000003.0пр.) В Генератор сигналов специальной формы АКИП-3413/1. Размах выходного сигнала на нагрузке 50 Ом от 2 мВ до 10 В. Размах выходного сигнала на высокоомной нагрузке от 4 мВ до 20 В. Пределы допускаемой абсолютной погрешности установки амплитуды ±(0,01.U+0,01) В. Диапазон частот синусоидального сигнала от 1 мкГц до 80 МГц. Разрешение по частоте 1 мкГц. Пределы допускаемой абсолютной погрешности частоты опорного генератора ± 0,0001 Гц. Вольтметр универсальный В7-78/1. Пределы измерений напряжения переменного тока от 0,1 до 750 В. Диапазон частот напряжения переменного тока от 3 Гц до 300 кГц. Пределы допускаемой абсолютной погрешности измерений напряжения переменного тока на пределе 10 В в диапазоне частот от 10 Гц до 20 кГц ±(0,0006.010.01.01.00.000.01.00.00.00.00.00.00.0
7.5	Генератор сигналов специальной формы АКИП-3413/1. Размах выходного сигнала на нагрузке 50 Ом от 2 мВ до 10 В. Размах выходного сигнала на высокоомной нагрузке от 4 мВ до 20 В. Пределы допускаемой абсолютной погрешности установки амплитуды ±(0,01·U+0,01) В. Диапазон частот синусоидального сигнала от 1 мкГц до 80 МГц. Разрешение по частоте 1 мкГц. Диапазон частот импульсного сигнала от 500 мкГц до 10 МГц. Длительность импульса от 20 нс до 1800 с. Пределы допускаемой абсолютной погрешности частоты опорного генератора ± 0,0001 Гц.

Таблица 2 – Средства поверки

Таблица 3 – Вспомогательные средства поверки

Измеряемая величина	Диапазон измерений	Класс точности, погрешность	Тип средства поверки
Температура	от −20 до +60 °С	±0,3 °C	Термогигрометр Ива-6А
Влажность	от 0 до 98 %	±0,1 %	Термогигрометр Ива-6А
Давление	от 80 до 106 кПа	±200 Па	Барометр-анероид метеорологический БАММ-1

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются поверители из числа сотрудников организаций, аккредитованных на право проведения поверки в соответствии с действующим законодательством РФ, изучившие настоящую методику поверки, руководство по эксплуатации на поверяемое средство измерений и имеющие стаж работы по данному виду измерений не менее 1 года.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

К проведению поверки допускаются лица, прошедшие проверку знаний правил техники безопасности и эксплуатации электроустановок напряжением до 1 кВ и имеющие квалификационную группу по технике безопасности не ниже III.

Все средства измерений, участвующие в поверке должны быть надежно заземлены.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха (20±5) °С;
- относительная влажность от 30 до 80 %;
- атмосферное давление от 84 до 106 кПа или от 630 до 795 мм. рт. ст.

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед поверкой должны быть выполнены следующие подготовительные работы:

- 1. Проверены документы, подтверждающие электрическую безопасность.
- Проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75.
- 3. Средства измерения, используемые при поверке, подготовлены к работе согласно их руководствам по эксплуатации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр.

При проведении внешнего осмотра должно быть установлено соответствие приборов следующим требованиям:

- 1. Комплектность и маркировка должны соответствовать руководству по эксплуатации.
- Все органы управления и коммутации должны действовать плавно и обеспечивать надежность фиксации во всех позициях.
- Не должно быть механических повреждений корпуса, лицевой панели, дисплея, органов управления. Незакрепленные или отсоединенные части должны отсутствовать. Внутри корпуса не должно быть посторонних предметов. Все надписи на панелях должны быть четкими и ясными.
- Все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемые приборы бракуются и направляются в ремонт.

7.2 Опробование.

Опробование проводят в следующей последовательности:

- 1. Подключить прибор к компьютеру с установленной операционной системой Windows 7/10, с помощью удалённого рабочего стола в соответствии с руководством по эксплуатации;
- Подключить выход источника питания АКИП-1120 между параллельно соединенными входами прибора и вольтметра В7-78;
- 3. Прогреть приборы согласно эксплуатационной документации на них;
- 4. В зависимости от модификации прибора согласно инструкции по эксплуатации для модификаций Flash-Recorder-3 M1-M3 запустить программу «DEVS» для измерений напряжений постоянного тока и записи напряжений переменного тока, а также «LokALF» для просмотра и маркерных измерений напряжений переменного тока. После запуска программы «DEVS» в окнах программы появятся измеряемые значения в Вольтах каждого канала (описание интерфейса программы смотрите в приложении №1 к методике поверки). Для модификаций Flash-Recorder-3 M4-M6 задать параметры сбора данных в конфигурационном файле ini (см. руководство по эксплуатации);
- Установить пороговые значения в пределах допуска относительно показаний вольтметра В7-78;
- 6. Включить запись в файл в меню выбора каналов системы или в файле ini;
- 7. Включить опрос проверяемых измерительных каналов, установив «галочки» в полях программы DEVS или текстовые параметры в файле конфигурации прибора ini;
- 8. Включить запись проверяемых измерительных каналов, установив «галочки» в полях программы или текстовые параметры в файле конфигурации прибора ini;
- 9. Подать на вход системы с источника питания АКИП-1120 значения напряжения постоянного тока согласно таблице 4, поочередно устанавливая значения напряжения из таблицы 4, и зафиксировать соответствующие показания в файле программы для каждого из заданных измерительных каналов в зависимости от модификации прибора;

Таблица 4

Поддиапазон	Значения напряжения постоянного тока,
измерений, В	устанавливаемые на выходе источника питания АКИП-1120, мВ*
10	9500; 5000; 2500; 0; -2500; -5000; -9500

Примечание: * – значения могут отличаться от табличных на величину ±10 %, при расчете используются значения, измеренные вольтметром В7-78.

Результат опробования считают положительным, если показания в окнах каждого из измерительных каналов программы не превышают пороговые значения заданные из показаний вольтметра В7-78. При не соблюдении этих требований прибор бракуется и направляется в ремонт.

7.3 Определение пределов допускаемой основной приведенной погрешности измерений напряжения постоянного тока

Определение пределов допускаемой основной приведенной погрешности измерения напряжения постоянного тока проводить в следующей последовательности:

- 1. Выполнить операции 1 8 по п. 7.2;
- Подать на вход прибора с источника питания АКИП-1120 значения напряжения постоянного тока согласно таблице 5, и зафиксировать соответствующие показания в файле программы для каждого измерительного канала;

Таблица 5

Поддиапазон	Значения напряжения постоянного тока,
измерений, В	устанавливаемые на выходе источника питания АКИП-1120, мВ*
10	9500; 5000; 2500; 200; 0; -200; -2500; -5000; -9500

Примечание: * - значения могут отличаться от табличных на величину ±10 %, при расчете

5

используются значения, измеренные вольтметром В7-78.

 Рассчитать для каждого установленного согласно таблицы 5 напряжения на выходе АКИП-1120 и каждого измерительного канала прибора основную приведенную погрешность измерения напряжения постоянного тока γ₀ по формуле:

$$\gamma_o = \frac{U_{uxm} - U_0}{U_\kappa} \cdot 100\%, \tag{1}$$

где U_{изм} – показание в окне измерений ПО «DEVS», мВ;

*U*₀ – показание вольтметра В7-78, мВ;

U_к – конечное значение установленного поддиапазона измерений, мВ.

Результаты поверки считаются удовлетворительными, если во всех поверяемых точках полученные значения γ_0 находятся в пределах $\pm 0,1$ % (опционально $\pm 0,01$ %).

При невыполнении этих требований, прибор бракуется и направляется в ремонт.

7.4 Определение пределов допускаемой основной приведенной погрешности измерений среднеквадратического значения напряжения переменного тока

Определение пределов допускаемой основной приведенной погрешности измерения среднеквадратического значения напряжения переменного тока проводить в следующей последовательности:

- 1. Выполнить операции 1 6 по п. 7.2;
- 2. Включить опрос одного измерительного канала, установив «галочку» в поле номера канала программы «DEVS»;
- 3. Установить поочередно в окне программы, частоту преобразования АЦП в соответствии с таблицей 7 и подать на вход вольтметра с генератора АКИП-3413/1 значения напряжения переменного тока согласно таблице 6, контролируя действующее значение напряжений вольтметром В7-78 с частотой согласно таблице 7; нажать кнопку «Старт» и произвести запись соответствующие измерения в виде файла, создаваемого программой для данного опрашиваемого измерительного канала;
- Повторить операцию по п. 3 для установленного опроса всех каналов в зависимости от модификации прибора с частотой преобразования согласно таблице 8 в режиме работы «Многоканальный» для 4, 6, 8 или каналов;

Таблица 6

Поддиапазон измерений, В	Действующие значения напряжения переменного тока, устанавливаемые на выходе генератора АКИП-3413/1, мВ*
10	500; 2000; 5000; 7500; 9500

Примечание: * – значения могут отличаться от табличных на величину ±10 %, при расчете используются значения, измеренные вольтметром В7-78.

Таблица 7

Модификация	Режим работы	Частота преобразования АЦП на канал, кГц	Частота напряжения на выходе генератора АКИП-3413/1, Гц
Flash-Recorder-3M1-M3	Одноканальный	3000	50
Flash-Recorder-3M4-M6	Одноканальный	100	50

5. Включить опрос 4, 6, 8 или 16 измерительных каналов, выбирая в их в поле программы «DEVS» или в конфигурационном файле в зависимости от модификации прибора;

- 6. Установить поочередно в окне программы частоту преобразования АЦП в соответствии с таблицей 8 и подать на вольтметр с генератора АКИП-3413/1 значения напряжения переменного тока согласно таблице 6 с частотой согласно таблице 8; записать соответствующие измерения в виде файла. Контроль заданного напряжения производить с помощью вольтметра В7-78;
- 7. Рассчитать для всех установленных значений напряжения, частот преобразования АЦП и всех измерительных каналов вольтметра основную приведенную погрешность измерений среднеквадратического значения напряжения переменного тока уоа в процентах по формуле:

$$\gamma_{oa} = \frac{U_{uou} - U_0}{2U_{\nu}} \cdot 100\%,$$
 (2)

где $U_{\mu_{3M}}$ – показания значения между маркерами 1, 2, установленными на минимальном и максимальном значении амплитуды записанного сигнала с генератора АКИП-3413/1 в окне программы «LookALF», мВ;

 U_0 – показания вольтметра В7-78, мВ;

U_к – конечное значение установленного поддиапазона измерений, мВ.

Модификация	Режим работы	Частота преобразования на канал, кГц	Частота входного сигнала (частота напряжения на выходе генератора АКИП-3413/1), кГц
Flash-Recorder-3 M1-M3	Многоканальный (6 каналов)	500	0,05; 1; 10
	Многоканальный (8 каналов)	375	0,05; 1; 10
Flash-Recorder-3 M4, M6	Многоканальный (8 каналов)	25	0,05; 1
	Многоканальный (16 каналов)	12,5	0,05; 1
Flash-Recorder-3 M5	Многоканальный (4 канала)	50	0,05; 1
	Многоканальный (8 каналов)	25	0,05; 1

Результаты поверки считаются удовлетворительными, если во всех поверяемых точках полученные значения γ_{0a} находятся в пределах ± 1 % (опционально $\pm 0,1$ %).

При невыполнении этих требований, прибор бракуется и направляется в ремонт.

- Включить опрос необходимого числа измерительных каналов, в соответствии с модификацией прибора, выбирая в их в поле «Опрос» и «Запись» программы «DEVS» или в конфигурационном файле ini в зависимости от модификации прибора;
- 9. Для каждого из измерительных каналов установить поочередно в окне программы или в конфигурационном файле ini в зависимости от модификации прибора, частоту преобразования АЦП в соответствии с таблицей 8 и подать на вход вольтметра с генератора АКИП-3413/1 значения напряжения переменного тока согласно таблице 6 с частотой согласно таблице 8; зафиксировать соответствующие показания в окне измерений программы. Контроль заданного напряжения производить с помощью вольтметра B7-78;

10. Используя записанные данные измерений в файле, рассчитать для всех установленных значений напряжения, частот преобразования АЦП и всех измерительных каналов вольтметра основную приведенную погрешность измерений среднеквадратического значения напряжения переменного тока *γ*_{oa} в процентах по формуле:

$$\gamma_{oa} = \frac{U_{uxw} - U_0}{2U_s} \cdot 100\%, \tag{3}$$

где $U_{u_{2M}}$ – показания значения между маркерами 1, 2, установленными на минимальном и максимальном значении амплитуды записанного сигнала с генератора АКИП-3413/1 в окне программы «LookALF», мВ, мВ;

*U*₀ – показания вольтметра В7-78, мВ;

U_к – конечное значение установленного поддиапазона измерений, мВ.

Результаты поверки считаются удовлетворительными, если во всех поверяемых точках полученные значения γ_{oa} находятся в пределах ± 1 % (опционально $\pm 0,1$ %).

При невыполнении этих требований, прибор бракуется и направляется в ремонт.

7.5 Определение пределов допускаемой основной абсолютной погрешности измерений временных интервалов (Пункт выполняется при оснащении прибора регистратором временных интервалов РВИ-8-84)

7.5.1 Опробование РВИ-8-84.

опробование проводят в следующей последовательности:

 Установить тумблеры регистратора временных интервалов РВИ-8-84 в положение НО (левое), устанавливая режим работы нормально разомкнутых входов;

2) Включить тумблер питания в положение ВКЛ. Должен загореться зелёный светодиод справа от тумблера;

 Проверить срабатывание кнопок СТАРТ и СБРОС, нажав на каждую поочерёдно, на время нажатия должны загораться светодиоды, расположенные над кнопками соответственно;

 Проверить срабатывание индикации работы входов регистрации временных интервалов, последовательно замыкая входные цепи перемычками, при замкнутом входе должны гореть светодиоды красного свечения слева от каждого пронумерованного замкнутого входа;

Результат опробования считают положительным, если все пункты с п. 1) по 4). пройдены успешно. Если хотя бы один пункт не выполнен, прибор бракуется.

7.5.2. Определение метрологических характеристик

1) Установить тумблеры регистратора временных интервалов РВИ-8-84 в положение НО (левое), устанавливая режим работы нормально разомкнутых входов. Включить тумблер питания;

2) Подключить на вход 1 регистратора временных интервалов РВИ-8-84, выход канала 1 генератора АКИП-3413/1, (согласно схеме подключения, приложение 3), параллельно подключить выход канала 1 на вход синхронизации выхода канала 2, выход канала 2 подключить на остальные 2-8 входы, соединенные параллельно. Перевести генератор в режим генерации однократных импульсов прямоугольной формы с параметрами согласно таблице 9;

3) нажать кнопку старт и произвести сбор данных в течение некоторого интервала времени заведомо большего, чем заданная длительность согласно таблице 9;

4) запустить программу RVI884, появится окно с предложенным выбором дальнейших действий;

5) нажать цифру 1 на клавиатуре, считать значения измеренного интервала времени, которые запишутся в текстовый файл, в папке DATA;

Таблица 9

Амплитуда импульса, В	Длительность фронта, нс	Длительность импульса, мкс
5	20	1; 100; 1000; 10 000; 100 000; 1 000 000; 50 000 000

6) повторить операции по п. 1) – п. 5) для следующего входа РВИ-8-84, повторяя операции для каждого входа последовательно, задавая длительности импульсов в соответствии с таблицей 9 для каждого входа РВИ-8-84;

В результате получить файлы со значениями временных интервалов для каждого из входов и длительностей.

7) установить тумблеры регистратора временных интервалов РВИ-8-84 в положение НЗ (правое), устанавливая режим работы нормально замкнутых входов;

8) подключить на вход 1 коммутационной коробки регистратора временных интервалов РВИ-8-84, настроить выдачу импульсов с выхода генератора в инверсном режиме, выход канала 1 генератора АКИП-3413/1, выход канала 2 подключить на остальные 2-8 входы, соединенные параллельно. Перевести генератор в режим генерации однократного импульса прямоугольной формы длительностью согласно таблице 9;

9) повторить операции по п. 3) – п. 5);

 в результате получить файлы текстового формата с записанными в них измеренными регистратором временными интервалами;

11) рассчитать погрешность по формуле:

$$\Delta T = |T_{u_{3M}} - T_{3ao}|,\tag{4}$$

где *Т*_{изм} – измеренное значение интервала времени, мкс; *Т*_{зад} – показания генератора АКИП-3413/1, мкс.

Результаты поверки считаются удовлетворительными, если во всех поверяемых точках полученные значения интервала времени *∆Т* находятся в пределах, указанных в таблице 10.

При невыполнении этих требований, прибор бракуется и направляется в ремонт.

Таблица 10

Интервал времени, мкс	Пределы допускаемой основной абсолютной погрешности измерений временных интервалов, мкс
от 0,1 до 1 000	±0,1
от 1 000 до 1 000 000	±25
от 1 000 000 до 50 000 000	±250

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

При положительных результатах поверки на корпус прибора наносится знак поверки, и (или) выдается свидетельство о поверке.

При отрицательных результатах поверки прибор не допускается к дальнейшему применению, знак предыдущей поверки гасится, свидетельство о поверке аннулируется и выдается извещение о непригодности.

Начальник отдела испытаний ООО «ИЦРМ»

П.С. Казаков

Описание интерфейса программного обеспечения «DEVS»

Программное обеспечение «DEVS» предназначено для визуального контроля входных сигналов в виде цифр, а также непрерывной регистрации измеренных значений с высокой частотой дискретизации в файл формата ALF для дальнейшего просмотра его в виде графиков и значений в текстовом формате программой LookALF.exe.

Описание работы программы

Принцип работы программы построен на основе непрерывного сбора данных с многоканального регистратора Flash-Recorder-3 и обработки результатов в реальном времени с отображением текущих значений в окне программы и анализа измеренных значений путём сравнения их с заданными заранее загруженной конфигурацией. Программа анализирует превышение текущего значения над заданным в течение установленного периода времени, и при выполнении заданного условия записывает измеряемые значения интервала измерений в виде файла с учетом некоторой предыстории и истории всех регистрируемых параметров с высокой частотой дискретизации для последующего просмотра и анализа, с целью дальнейшей их обработки.

Программа предназначена так же для измерения и записи сигналов различных процессов, протекающих во времени в одном или нескольких измерительных каналах. Это могут не только электрические величины (напряжение, сила тока), но и неэлектрические величины (температура, давление, ускорение и т.п.), представленные в виде электрических сигналов напряжения и силы тока с выхода соответствующих датчиков. Для синхронизации моментов регистрации данных, системы имеют встроенные часы реального времени.

Использование в составе системы мощного процессора под управлением операционной системы открывает пользователю широкие возможности по удаленному администрированию, передаче и хранению данных, а так же обработки и выводу результатов в реальном времени. Система имеет большой набор интерфейсов для передачи данных и подключения периферийных устройств. При подключении внешнего ПК к Ethernet-интерфейсу системы оператор может удаленно считать имеющиеся записанные файлы и просмотреть их в виде графиков.

К системам опционально может быть подключен сенсорный дисплей для визуального наблюдения за контролируемыми параметрами. Системы имеют возможность приема цифровой информации от внешних устройств и ее передачи в ПК для обработки или передачи цифровой информации из ПК на внешние устройства. Цифровые входы/выходы используются для сигнализации, внешнего запуска, управления внешними исполнительными устройствами и механизмами и т.д.

Для хранения результатов измерений в системах используется специализированный бинарный формат файлов ADCLABFF (*.alf), разработанный изготовителем для хранения больших объемов данных. Данный формат обеспечивает возможность быстрой последовательной записи данных и быстрый доступ к данным при чтении.

С помощью специализированного программного обеспечения данные из бинарного формата ADCLABFF могут быть экспортированы в файл в виде таблицы MS Excel (*.csv), текстовый формат (*.txt) и бинарный файл (*.data).

Графический интерфейс программы «DEVS» показан на рисунке 1

Рисунок 1 - Основное окно программы DEVS

В зависимости от заданных параметров окно может выглядеть иначе, чем показано на рисунке.

Внешний вид конфигурационного файла ini для Flash-Recorder-3 модификаций М4-М6 с примером задания параметров 8-ми каналов представлен ниже:

; ini file for adc_server

[SYSTEM] ;Имя устройства. Используется в названии файла name = SBC1

[log] ;Опции логгирования

facility = 4 ;facility local[0-7]. 3 - стандартный путь. 4 на USB

LogLevel = 7 ;Уровень отладочных сообщений:

;0 system is unusable

;1 action must be taken immediately

;2 critical conditions

;3 error conditions. ошибки, вызвавшие остановку демона

;4 warning conditions. с этим уровнем идут сообщения об изменяемых параметрах.

;5 normal but significant condition

;6 informational

;7 debug-level messages все сопутствующие сообщения. для отладки

[ADC] ;Параметры АЦП

library = /lib/liblcomp.so ;файл драйвера

device = /lib/E440 ;Файл bios используемой платы

slot = 0 ;слот подключения АЦП

AutoInit = 1 ;циклический 1 / 0 одиночный сбор

dRate = 100.0 ;частота опроса в кадре (кГц)

dKadr = 0.0 ;задержка между кадрами (мс)

NCh = 2 ;Количество каналов в цикле опроса, 1-127

;Аппартатная синхронизация.

SynchroType = 3 ;0 – нет синхронизации;

;1 - цифровая синхронизация старта, остальные параметры синхронизации не используются;

;2 - сбор одного кадра при цифровой синхронизации;

;3 – аналоговая синхронизация старта по выбранному каналу АЦП

;4 -программная синхронизация. В плане реализации.

SynchroSensitivity = 1 ;0 – аналоговая синхронизация по уровню;

;1 - аналоговая синхронизация по переходу;

SynchroMode = 0 ;0 – по уровню «выше» или переходу «снизу-вверх»;

;1 - по уровню «ниже» или переходу «сверху-вниз»;

AdChannel = 0 ;канал, выбранный для аналоговой синхронизации;

AdPorog = 100 ;пороговое значение для аналоговой синхронизации в коде АЦП;

FIFO = 2480 ;размер половины аппаратного буфера FIFO на плате

IrqStep = 2400 ;шаг генерации прерываний. кратен числу каналов. должен быть меньше, чем FIFO

Pages = 10 ;размер кольцевого буфера в шагах прерываний. Может меняться системой. см. размер в лог.

IrqEna = 1 ;разрешение генерации прерывания от платы (1/0)

AdcEna = 1 ; разрешение работы АЦП (1/0)

en_corr = 1 ;заводская коррекция. 1 - включена, 0 - выключена

Chn0 = 0 ;Порядок каналов в кадре. Первый в кадре канал 0

Chn1 = 1 ;второй в кадре канал 1

Chn2 = 2 ;третий в кадре канал 2

Chn3 = 3 ;четвертый канал 3

Chn4 = 4 ;пятый канал 4

Chn5 = 5 ;шестой канал 5

- Chn6 = 6 ;седьмой канал 6
- Chn7 = 7 ;восьмой канал 7

;Chnx = x ;параметры для остальных используемых каналов включать здесь

RChn0 = 0 ;Режим канала 0: 0/1. 0 - дифференциальный. 1 - общая земля

RChn1 = 0 ;Режим канала 1: 0/1. 0 - дифференциальный. 1 - общая земля

RChn2 = 0 ;Режим канала 2: 0/1. 0 - дифференциальный. 1 - общая земля

RChn3 = 0 ;Режим канала 3: 0/1. 0 - дифференциальный. 1 - общая земля

RChn4 = 0; Pe	жим канала 4: 0/1. 0 - дифференциальный. 1 - общая земля
RChn5 = 0; Pe	жим канала 5: 0/1. 0 - дифференциальный. 1 - общая земля
RChn6 = 0; Pe	жим канала 6: 0/1. 0 - дифференциальный. 1 - общая земля
RChn7 = 0 ;Pe	жим канала 7: 0/1. 0 - дифференциальный. 1 - общая земля
;RChnx = x ;na	араметры для остальных используемых каналов включать здесь
KUChn0 = 0 ;	индекс(0-3) в таблице коэффициентов усилений (1,4,16,64) для канала 0
KUChn1 = 0 ;	индекс(0-3) в таблице коэффициентов усилений (1,4,16,64) для канала 1
KUChn2 = 0 ;	индекс(0-3) в таблице коэффициентов усилений (1,4,16,64) для канала 2
KUChn3 = 0 ;	индекс(0-3) в таблице коэффициентов усилений (1,4,16,64) для канала 3
KUChn4 = 0 ;	индекс(0-3) в таблице коэффициентов усилений (1,4,16,64) для канала 4
KUChn5 = 0 ;	индекс(0-3) в таблице коэффициентов усилений (1,4,16,64) для канала 5
KUChn6 = 0 ;	индекс(0-3) в таблице коэффициентов усилений (1,4,16,64) для канала 5
KUChn7 = 0 ;	индекс(0-3) в таблице коэффициентов усилений (1,4,16,64) для канала 5
;KUChnx = x	параметры для остальных используемых каналов включать здесь
	;дробная часть отделяется точкой
ChnRangeMin0 = -	10 ;минимальное значение напряжение канала0,персчитанное к входу
системы.	
ChnRangeMax0 =	10 ;максимальное значение напряжение канала0, пересчитанное ко входу
системы	
ChnRangeMin1 = -	10 ;минимальное значение напряжение канала1, пересчитанное ко входу
системы	
ChnRangeMax1 =	10 ;максимальное значение напряжение канала1, пересчитанное ко входу
системы	
ChnRangeMin2 = -	10 ;минимальное значение напряжение канала2, пересчитанное ко входу
системы	
ChnRangeMax2 =	10 ;максимальное значение напряжение канала2, пересчитанное ко входу
системы	
ChnRangeMin3 = -	10 ;минимальное значение напряжение канала3, пересчитанное ко входу
системы	
ChnRangeMax3 =	10 ;максимальное значение напряжение канала3, пересчитанное ко входу
системы	
ChnRangeMin4 =	-10 ;минимальное значение напряжение канала4, пересчитанное ко входу
системы	
ChnRangeMax4 =	10 ;максимальное значение напряжение канала4, пересчитанное ко входу
системы	
ChnRangeMin5 =	-10 ;минимальное значение напряжение канала5, пересчитанное ко входу
системы	
ChnRangeMax5 =	10.0 ;максимальное значение напряжение канала5, пересчитанное ко входу
системы	
ChnRangeMin6 =	-10.0 ;минимальное значение напряжение каналаб, пересчитанное ко входу

системы

ChnRangeMax6 = 10.0 ;минимальное значение напряжение каналаб, пересчитанное ко входу системы

ChnRangeMin7 = -10.0 ;минимальное значение напряжение канала7, пересчитанное ко входу системы

ChnRangeMax7 = 10.0 ;минимальное значение напряжение канала7, пересчитанное ко входу системы

;ChnRangeMinx = -x ;параметры для остальных используемых каналов включать здесь ;ChnRangeMaxx = x

[proc] ;обработка собранных данных

prule = 0 ;0 - только запись собранных данных без обработки

[storage] ;параметры записи. минимальный размер файла IrqStep*Pages/2

fpath = /media/usb/ ;путь для записи файлов данных. usb для управления АЦП должна включаться первой.

fcycle = 1 ;непрерывная/однократная запись (1/0)

fflag = 1 ;выбор параметра записи (0/1), по числу отчетов на канал / по времени записи

fsize = 200 ;размер записи (К точек) на канал. если fflag=0

ftime = 4 ;длительность записи. секунды. если fflag=1

Описание интерфейса управления программного обеспечения «LookALF»

Назначение

ПО «LookALF» предназначено для использования совместно с системами Flash-Recorder-2, Flash-Recorder-3 всех модификаций для проведения процедуры просмотра и маркерных измерений записанных файлов с данными, которое используется для последующего подробного просмотра записанных в файл измеренных значений. ПО «LookALF» может отображать в виде графиков до 32-х величин сигналов на соответствующих входах систем.

ПО «LookALF» позволяет просматривать файлы формата ALF, а также сохранять выбранные фрагменты в текстовом формате в виде измеренных значений в столбцах.

Рисунок 2 - Основное окно программы LookALF

В зависимости от открытого в программе файла окно может выглядеть иначе, чем показано на рисунке.

Данное окно настраивается в зависимости от разрешения экрана и кол-ва включенных для отображения каналов. Отображаемые каналы и их цвета могут быть выбраны в меню «File/Параметры» смотрите рис.3

Рисунок 3 - Параметры

В меню параметры можно выбрать каналы для отображения на графике и назначить им цвета, а также выбрать номер канала для работы с курсорными измерениями.

Описание подменю File:

Открыть – предназначено для открытия файла с записанными данными.

Сохранить фрагмент как - предназначено для сохранения фрагмента выбранного между двумя курсорами в файл с возможностью записи этого фрагмента в текстовом или ALFформате.

Показать Мин-Макс – функция программы, которая выполняет следующую процедуру: пробегает весь файл или его фрагмент, отображаемый в данный момент на экране программы, разбивает его на блоки, включающие число точек возможных для отображения на экране данного разрешения, находит в блоках максимальное и минимальное значения и отображает их на экране исходя из возможного текущего разрешения экрана, таким образом, пользователь получает возможность отобразить экстремумы всего фрагмента на текущем ограниченном разрешении экрана монитора.

Схемы подключения при определении основной погрешности

Рисунок 4 - Схема подключения при определении основной приведенной погрешности измерений напряжения постоянного тока

Примечание:

Показано подключение 8-ми канальной модификации, при 4, 6, 8, 16-ти канальной, каналы либо не используются, либо дополнительно добавляются

- A1 Flash-Recorder-3
- A2 B7-78
- АЗ АКИП-1120

Рисунок 5 - Схема подключения при определении основной приведенной погрешности измерений среднеквадратического значения напряжения переменного тока Примечание:

A1 – Flash-Recorder-3

A2 – B7-78

А4 – АКИП-3413/1

Примечание:

Выход 1 А2 последовательно подключается на входы 1-7, выход 2 соответственно подключается на свободные входы РВИ-8-84

А1-РВИ-8-84

А2 – АКИП-3413/1