УТВЕРЖДАЮ

Первый заместитель генерального ниректора - заместитель по научной произрад работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов

"<u>15" О1 2</u>017 г.

Инструкция Анализатор цепей векторный MS4644A

> Методика поверки МП 160-17-03

1 Основные положения

1.1 Настоящая методика предназначена для проведения поверки анализатора цепей векторного Anritsu MS4644A, зав. № 1240350, изготовленного фирмой «Anritsu Company», США. (далее – ВАЦ).

2 Операции поверки

2.1 При проведении поверки должны производиться операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование этапа испытаний	Ссылка на пункт программы испытаний	Проведение операции при первичной поверке	Проведение операции при периодиче- ской поверке
1 Внешний осмотр и опробование	7.1	Да	Да
2 Определение относительной погрешности установки частоты источника выходного сигнала	7.2	Да	Да
3 Определение абсолютной погрешности измерений модуля коэффициента передачи	7.3	Да	Да
4 Определение абсолютной погрешности измерений фазы коэффициента передачи	7.4	Да	Да
5 Проверка программного обеспечения	7.5	Да	Да

2.2 При получении отрицательных результатов в процессе выполнения операций по любому из пунктов таблицы 1 ВАЦ признается непригодным и к эксплуатации не допускается.

3 Средства поверки

3.1 Основные средства поверки приведены в таблице 2.

Таблица 2 - Основные средства поверки

	Наименование рабочих эталонов или вспомогательных средств поверки; номер до-
Пункт	кумента, регламентирующего технические требования к рабочим эталонам или
МΠ	вспомогательным средствам; разряд по государственной поверочной схеме и (или)
	метрологические и основные технические характеристики средства поверки
7.2	Стандарт частоты и времени рубидиевый FS725, выходные частоты 5 и 10 МГц,
	пределы допускаемой относительной погрешности выходной частоты 1,5·10 ⁻¹² .
	Частотомер 53230А, пределы допускаемой относительной погрешности измерений
	частоты $\pm 1,5 \cdot 10^{-12}$ (с внешним источником опорной частоты)
7.3	Аттенюатор ступенчатый программируемый 84905М, диапазон частот от 0 до 50
	ГГц, диапазон вводимых ослаблений от 0 до 60 дБ. Пределы допускаемой абсо-
	лютной погрешности установки ослабления от 0,5 до 1,8 дБ.
	Аттенюатор 10 дБ S.M. Electronics 2,4 мм SA50-10, 2 шт.
7.4	Анализатор цепей векторный ZVA50, диапазон частот от 0 до 50 ГГц,
	мощность выходного сигнала от минус 30 до 10 дБм. Абсолютная погрешность
	установки уровня выходной мощности составляет 0,8 дБ в диапазоне до 24 ГГц и
	2,0 дБ – от 24 ГГц и выше.

- 3.2 Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик с требуемой точностью.
- 3.3 Применяемые при поверке средства измерений и рабочие эталоны должны быть поверены и иметь свидетельства о поверке с неистекшим сроком действия на время проведения поверки или оттиск поверительного клейма на приборе или в документации.

4 Требования безопасности при поверке

- 4.1 При проведении операций поверки должны быть соблюдены меры безопасности, указанные в соответствующих разделах эксплуатационной документации на средства измерений, используемых при поверке.
- 4.2 К проведению поверки ВАЦ допускается инженерно-технический персонал со среднетехническим или высшим радиотехническим образованием, имеющим опыт работы с радиотехническими установками, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке и имеющий право на поверку (аттестованными в качестве поверителей).

5 Условия поверки

5.1. При проведении поверки должны соблюдаться следующие условия по ГОСТ 22261-94:

- температура окружающего воздуха, °С	от 10 до 35;
- атмосферное давление, кПа	от 84 до 106,7;
- относительная влажность окружающего	
воздуха, %	от 30 до 80;
- изменение температуры воздуха в течение	
этапа поверки не должно превышать, °С	2;
- напряжение питания, В	$220 \pm 2,2;$
- частота питающей сети, Гц	$50 \pm 0,5.$

6 Подготовка к поверке

- 6.1 Поверитель должен изучить руководство по эксплуатации или техническое описание поверяемого ВАЦ и используемых средств поверки.
- 6.2 Поверяемый ВАЦ должен быть выдержан в помещении в расположении средств поверки не менее 2-х часов.
- 6.3 ВАЦ и средства поверки должны быть подготовлены к работе в соответствии с РЭ.

7 Методы (методики) поверки

7.1 Внешний осмотр и опробование

Поверку ВАЦ по позиции 1 таблицы 1 проводить в следующем порядке.

7.1.1 Проверка комплектности поставки

На поверку должен быть поставлен комплект оборудования в следующем составе:

- анализатор цепей векторный MS4644A , зав. № 1240350	– 1шт.;
- набор калибровочный Anritsu K Calibration Kit Model 3652A	
зав. № 1240005	– 1 шт.;
- кабельные сборки для тестовых портов	−2 шт.;
- сетевой кабель питания	– 1шт.;
- программное обеспечение на CD-R	−1 шт.;
- руковолство по эксплуатации	− 1кн.;

- паспорт

- методика поверки

— 1 бр.

− 1 бр.;

7.1.2 ВАЦ не должны иметь видимых повреждений.

7.1.3 Опробование ВАЦ

Опробование проводить путем сборки всего комплекта в соответствии с РЭ и проведения пробного включения в соответствии с РЭ.

7.1.4 ВАЦ считать выдержавшим поверку по позиции 1 таблицы 1, если: комплектность поставки соответствует указанной в паспорте (ПС), ВАЦ не имеет видимых повреждений, ВАЦ обеспечивает загрузку ПО, старт режима измерений и отсутствуют сообщения об отказах.

В случае выявления нарушений ВАЦ бракуют.

7.2 Определение относительной погрешности частоты источника выходного сигнала

- 7.2.1 Поверку по позиции 2 таблицы 1 проводить с применением частотомера 53230A и стандарта частоты рубидиевого FS725, используемого в качестве источника опорной частоты для частотомера.
- 7.2.2 Соединить выход «10 MHz Out» ВАЦ (F_{ycr}) с измерительным входом частотомера. Выход «10 MHz» стандарта частоты FS725 соединить с разъемом «Ext ref In» частотомера, расположенным на задней панели. Настроить частотомер на внешний опорный генератор. Провести измерение частоты (Fизм), результаты занести в таблицу 3.

Значение относительной погрешности установки частоты определить по формуле (1):

$$\delta_{\rm F} = \left(F_{\rm ycr} - F_{\rm изм} \right) / F_{\rm изм} \tag{1}$$

7.2.3 ВАЦ считать выдержавшим поверку, если значения относительной погрешности установки частоты находятся в пределах $\pm 5 \cdot 10^{-7}$.

В противном случае ВАЦ бракуют.

Таблица 3 – Поверка ВАЦ по относительной погрешности установки частоты

Установленная частота F_{ycr} , М Γ ц	Измеренная частота Гизм, МГц	$\delta_{\rm F} = \pm (\ F_{\rm yct} - F_{\rm \scriptscriptstyle H3M})/\ F_{\rm \scriptscriptstyle H3M}$	Пределы допускаемой погрешности	Годен
10			± 5·10 ⁻⁷	Да/Нет

7.3 Определение абсолютной погрешности измерений модуля коэффициента передачи

- 7.3.1 Подготовить ВАЦ к работе.
- 7.3.2 Провести полную двухпортовую калибровку ВАЦ с использованием калибровочного набора.
 - 7.3.3 Включить режим измерения коэффициента передачи (вкладка Response -> S₂₁).
- 7.3.4 Собрать схему, как это показано на рисунке 1, где A это фиксированные аттенюаторы 10 дБ, A1 переменный от 0 до 60 дБ с шагом 10 дБ.
 - 7.3.5 Установить А1 в положение 0 дБ.
 - 7.3.6 С помощью кнопок навигации открыть меню VIEW TRACE:

MAIN | Display | View Trace | VIEW TRACE,

Data Mem. Op. – должно быть Data/Mem.

Нажать кнопку «Store Data to Memory».

Установить А1 в положение 10 дБ.

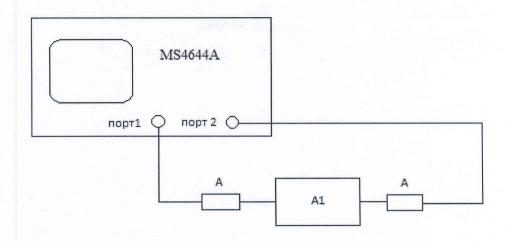


Рисунок 1 — Схема для определения абсолютной погрешности измерений модуля коэффициента передачи (S₂₁)

7.3.7 Используя маркеры, последовательно определить максимальное ($K_{x \text{ max}}$) и минимальное ($K_{x \text{ min}}$) значения модуля коэффициента передачи в диапазоне от 0,1 до 40 ГГц при заданном ослаблении A1. Данные занести в таблицу 4.

7.3.8 Повторить п. 7.3.7 для значений ослабления 20, 30, 40 и 50 дБ.

Посчитать значение ΔK по формуле (2):

$$\Delta K = \max(|K_{x \max} - K_0|; |K_{x \min} - K_0|), \tag{2}$$

где K_0 – положение A1.

Заполнить таблицу 4.

Абсолютная погрешность измерения модуля коэффициента передачи ΔK_{np} определяется как максимальное из значений ΔK .

Таблица 4 - Измерение модуля коэффициента передачи

Ослабление, Ко	$\mathbf{K}_{\text{x max}}$	K _{x min}	ΔK
10			
20			
30			
40			
50			

7.3.9 ВАЦ считать выдержавшим поверку, если значения абсолютной погрешности измерений модуля коэффициента передачи $\Delta K_{\text{пр}}$ находятся в пределах \pm 0,2 дБ.

7.4 Определение абсолютной погрешности измерений фазы коэффициента передачи

- 7.4.1 Определение абсолютной погрешности измерений фазы коэффициента передачи проводить с применением прибора ZVA50.
- 7.4.2 Подготовить приборы к работе: прогреть, откалибровать с помощью калибровочного набора, настроить на измерение фазы коэффициента передачи.
- 7.4.3 К порту "1" ВАЦ присоединить нагрузку "XX" из набора. Записать значения фазы коэффициента передачи в точках 0.1, 4, 8, 12, 16, 20, 30 и 40 ГГц (Ψ_{2XX}) в таблицу 5.1.

К порту "1" ZVA50 присоединить нагрузку "XX" из набора. Записать значения фазы коэффициента передачи в точках 0.1, 4, 8, 12, 16, 20, 30 и 40 ГГц (Ψ_{1XX}). Сравнить полученные значения, посчитать разницу Δ_{XX} соответствующих значений.

Таблица 5.1

XX (ZY	XX (ZVA50)		ХХ (ВАЦ)	
Частота, ГГц	Фаза _{Чіхх} , °	Частота, ГГц	Фаза _{Ч2ХХ} , °	$\Delta_{ m XX}$
0.1		0.1		
4		4		
8		8		
12		12		
16		16		
20		20		
30		30		
40		40		

7.4.4 К порту "1" ВАЦ присоединить нагрузку "К3" из набора. Записать значения фазы коэффициента передачи в точках 0.1, 4, 8, 12, 16, 20, 30 и 40 ГГц (Ψ_{2K3}).

К порту "1" ZVA50 присоединить нагрузку "КЗ" из набора. Записать значения фазы коэффициента передачи в точках 0.1, 4, 8, 12, 16, 20, 30 и 40 ГГц (Ψ_{1K3}) в таблицу 5.2. Сравнить полученные значения, посчитать разницу Δ_{K3} соответствующих значений.

 $\Delta_{K3} = \Psi_{2K3} - \Psi_{1K3} \tag{4}$

Таблица 5.2

K3 (ZV	A50)	КЗ (ВАЦ)		٨
Частота, ГГц	Фаза Чікз, о	Частота, ГГц	Фаза _{Ч2К3} , °	Δ_{K3}
0,1		0,1		
4		4		
8		8		
12		12		
16		16		
20		20		
30		30		
40		40		

7.4.5 ВАЦ считать выдержавшим поверку, если значения Δ_{XX} , Δ_{K3} находятся в пределах $\pm~1^{\circ}$.

7.5 Проверка программного обеспечения

- 7.5.1 Проверку соответствия заявленных идентификационных данных программного обеспечения (ПО) ВАЦ проводить в следующей последовательности:
 - проверить идентификационное наименование ПО;
 - проверить номер версии (идентификационный номер) ПО;
- 7.5.2 Результаты поверки считать положительными, если идентификационные данные ПО соответствуют идентификационным данным, приведенным в таблице 6.

Таблица 6

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	AC_GUI Main.exe
Номер версии (идентификационный номер) ПО	V1.7.2

8 Оформление результатов поверки

- 8.1 При положительных результатах поверки на ВАЦ выдают свидетельство установленной формы.
 - 8.2 На оборотной стороне свидетельства о поверке записывают результаты поверки.
- 8.3 В случае отрицательных результатов поверки ВАЦ к дальнейшему применению не допускается. На него выдается извещение об его непригодности к дальнейшей эксплуатации с указанием причин непригодности.

Начальник лаборатории 160 НИО-1 ФГУП «ВНИИФТРИ»

А.В. Титаренко