Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева» ФГУП «ВНИИМ им. Д.И. Менделеева»

УТВЕРЖДАЮ

Директор

ФГУП «ВНИИМ им Д.И.Менделеева»

В.Гоголинский

ноября 2016 г. Зам. директора Е.П. Кривцов Дозеренность №15

Дозеренность №15 от 1 мая 2016 г.

Государственная система обеспечения единства измерений

Генераторы газовых смесей GDC-703

Методика поверки

МП-242-2057-2016

Руководитель научно-исследовательского

отдела госэталонов в области

физико-химических измерений

ФГУП "ВНИИМ им. Д. И. Менделеева"

Л.А. Конопелько

Инженер А.А. Нечаев

Санкт-Петербург 2016 г. Настоящая методика поверки распространяется на все генераторы газовых смесей GDC-703 (далее – генераторы) находящиеся в эксплуатации. Генераторы предназначены для приготовления бинарных газовых смесей методом динамического разбавления исходных ГС.

Допускается проведение поверки отдельных измерительных каналов расхода из состава генераторов в соответствии с заявлением владельца генераторов, с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.

Интервал между поверками – 1 год.

1.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1.При проведении поверки должны быть выполнены операции, приведенные в таблице

Таблица 1.

	Номер пункта	Проведение с при	перации
Наименование операции	инструкции по поверке	Первичной поверке	Периоди- ческой поверке
1.Внешний осмотр	6.1	Да	Да
2.Опробование	6.2	Да	Да
2.1 Проверка общего функционирования	6.2.1	Да	Да
2.2 Проверка герметичности	6.2.2	Да	Да
3. Подтверждение соответствия программного обеспечения	6.3	Да	Да
4 Определение метрологических характеристик: 4.1 Определение относительной погрешности	6.4		
задания расхода газа по каналам 4.3 Определение относительной погрешности	6.4.1	Да	Да
заданного значения объемной (молярной) доли	6.4.2	Да	Да _

^{1.2.} Если при проведении той или иной операции поверки получен отрицательный результат, дальнейшая поверка прекращается.

2 СРЕДСТВА ПОВЕРКИ

2.1. При проведении поверки должны быть выполнены операции и применены средства поверки, указанные в таблице 2.

Таблица 2.

Номер	Наименование основного и вспомогательного средства поверки, номер документа,
пункта	требования к СИ, основные технические и (или) метрологические характеристики
НТД по	
поверке	
6.2, 6.4	Трубка медицинская поливинилхлоридная (ПВХ) по ТУ6-01-2-120-73, 6×1,5 мм Азот газообразный особой чистоты сорт 1-й по ГОСТ 9293-74.
0.2, 0.4	Редуктор баллонный газовый одноступенчатый БКО-50-4 соответствует ГОСТ 13861.
6.2.2	Манометр эталонный МО, кл. 0,4, верхний предел измерений 0,25 МПа. Тройник со штуцерами на трубки 4×1,5 и 6×1,5 мм.
6.3	-

Номер пункта НТД по поверке	Наименование основного и вспомогательного средства поверки, номер документа, требования к СИ, основные технические и (или) метрологические характеристики
6.4.1	Государственный рабочий эталон 1 разряда единиц объема в диапазоне от 0,1 до 10000 дм ³ в области измерений объемного расхода газа в диапазоне от 0,002 до 50 дм ³ /мин, регистрационный номер 3.1.ZZB.0143.2015.
6.4.2	Эталонные комплексы аппаратуры для передачи размера единиц молярной доли и массовой концентрации компонентов в газовых средах, входящие в состав Государственного первичного эталона ГЭТ 154-2011 Газовые смеси - эталоны сравнения по ГОСТ 8.578-2014 (перечень газовых смесей представлен в приложении Б) Газовые смеси — рабочие эталоны 0, 1 и 2-го разрядов, входящие в комплект

Примечание: допускается использовать средства поверки, не приведенные в перечне, но обеспечивающие применение (контроль) метрологических характеристик генераторов с требуемой точностью.

3.ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- Помещение, в котором проводится поверка, должно быть оборудовано приточновытяжной вентиляцией.
- 3.2. При работе с газовыми смесями в баллонах под давлением должны соблюдаться "Правила устройства и безопасной эксплуатации сосудов, работающих под давлением", утвержденные Госгортехнадзором.
- 3.3. При проведении поверки должны соблюдаться требования техники безопасности, приведенные в п.п. 2.1.2 руководства по эксплуатации на генератор.

4 УСЛОВИЯ ПОВЕРКИ

4.1.При проведении поверки соблюдаются следующие условия: температура воздуха в помещении (293 \pm 5) К; атмосферное давление от 90,6 до 104,8 кПа; относительная влажность воздуха от 30 до 80 %.

5 ПОДГОТОВКА К ПОВЕРКЕ

- Леред проведением поверки должны быть выполнены следующие подготовительные работы;
- 1. Генератор должен быть подготовлен к работе в соответствии с руководством по эксплуатации.
- 2. Государственный рабочий эталон 1 разряда единиц объема в диапазоне от 0,1 до 10000 дм³ в области измерений объемного расхода газа в диапазоне от 0,002 до 50 дм³/мин, регистрационный номер 3.1.ZZB.0143.2015, должен быть подготовлен к работе в соответствии с эксплуатационной документации (ЭД) на него.
- 3. Баллоны с газами должны быть выдержаны при температуре помещения, где проводится поверка, (293 \pm 5) К:
 - баллон вместимостью 40 л 16 ч;
 - баллон меньшей вместимости 8 ч;
 - 4. Должна быть включена приточно-вытяжная вентиляция.
- 5. Газоанализаторы и генераторы, входящие в эталонные комплексы Хд 1.456.445, Хд 1.456.447, Хд 1.456.448, Хд 1.456.449, Хд 1.456.451, должны быть подготовлены к работе в соответствии с нормативной документацией на них.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

- 6.1. Внешний осмотр
- 6.1.1. При внешнем осмотре должно быть установлено:
- соответствие маркировки и комплектности рабочего эталона требованиям НТД;
- отсутствие внешних повреждений, влияющих на работоспособность прибора;
- четкость всех надписей на лицевой панели прибора;
- исправность органов управления, настройки (кнопки, переключатели, тумблеры).

Генератор считается выдержавшим внешний осмотр удовлетворительно, если он соответствует всем перечисленным выше требованиям.

- 6.2. Опробование
- 6.2.1 Проверка общего функционирования

При проверке общего функционирования включить генератор. На передней панели должны гореть индикатор «PWR» и мигать индикатор «OPE».

6.2.2 Проверка герметичности

Проверка герметичности газовой системы генератора проводится следующим образом:

- подсоединить редуктор к баллону с азотом (воздухом, инертным газом), а выход редуктора – к входному штуцеру «N₂» генератора; через тройник подсоединить к выходу генератора образцовый манометр с пределом измерения 0,10 МПа (1,0 кгс/см²);
 - закрыть заглушкой остальные входы генератора;
- установить с помощью редуктора давление в газовой системе генератора (0,10 ±0,005)
 МПа (1,0±0,05 кгс/см²), герметично перекрыть линию подачи газа от редуктора к рабочему эталону. Зафиксировать показания образцового манометра. Через 10 мин. повторно зафиксировать показания манометра. Спад давления не должен превышать 0,01 МПа (0,1 кгс/см²).
 - 6.3 Подтверждение соответствия программного обеспечения

Программное обеспечение генераторов встроенное - «GDC-703». Идентификация программного обеспечения генератора проводится путем отправки в генератор команды (ASCII кода) на запрос системной информации (82) через программу HyperTerminal (или любой другой программы позволяющей эмулировать работу терминала при взаимодействии с удалёнными устройствами по последовательной шине (RS-232C)). В ответ на команду генератор должен прислать ответ в виде нормальной реакции (82OK) и информацию о текущем состоянии генератора (режим генератора, выбранный целевой газ, заданная концентрация целевого компонента на выходе). В случае неисправности генератор выдаст команду аномальной реакции (??NG).

6.4 Определение метрологических характеристик

При определении метрологических характеристик генератора управление его работой выполняется согласно РЭ при помощи программы HyperTerminal, включенной в операционную систему семейства Windows (98, ME, XP и др) или любой другой программы позволяющей эмулировать работу терминала при взаимодействии с удалёнными устройствами по последовательной шине (RS-232C).

6.4.1 Определение относительной погрешности заданного расхода газа по каналам Оценивается разность показаний заданного расхода газа генератора GDC-703 и рабочего эталона по каждому из каналов.

Поверка проводится на газе азоте следующим образом:

- 1) Подсоединить редуктор к баллону с газом;
- 2) Подать питание в генератор, прогреть прибор в течение 30 мин.
- Подключить выход редуктора к входу «N₂» для исследования канала MFC-1, остальные входы заглушить.

Примечание: для исследования каналов MFC-2, MFC-3, MFC-4 необходимо использовать вход генератора «СОМР» («Компонент»).

- 4) К выходу генератора подключить рабочий эталон;
- 5) Редуктором установить давление на входе генератора (0.1 ± 0.005) МПа;

6) Установить значения расхода через исследуемые каналы согласно таблицам приложения Г. Измерения с помощью рабочего эталона проводить в соответствии с ЭД на рабочий эталон. Результаты измерений записать в таблицу 1.

Таблица Канал N	1	; Диапа	азон расх	одас	и ³ /мин	
Заданные значения расхода газа			Относительная погрешность $\frac{Q_{\Gamma}-Q_{C}}{Q_{\Gamma}}\cdot 100, \%$		Выво-	
генератора, Q _r , см ³ /мин	при увеличении	при уменьшении	Сред-	Полученное значение	Допускае- мое значение	ды

Результат испытания считают положительным, если максимальное значение относительной погрешности в каждом из последовательных измерений не превышает пределов допускаемых значений относительной погрешности по выбранному каналу расхода газа, приведённом в таблице 2

Таблица 2

Канал	Диапазон задания расхода (приведенный к температуре 25 °C и давлению 101,4 кПа), см ³ /мин	Пределы допускаемой относительной погрешности задания расхода, %
MFC-1	от 400 до 4000	
MFC-2	от 8,00 до 56,00	
MFC-3	от 55,0 до 500,0	± 1,0
MFC-4	от 500 до 4000	

6.4.2 Определение относительной погрешности заданного значения объемной доли в смеси на выходе генератора

Определение относительной погрешности заданного значения объемной (молярной) доли целевого компонента проводится методом компарирования ГС, полученных при помощи эталонного генератора, входящего в состав эталонных комплексов и генератора газовых смесей GDC-703. При этом расхождение концентраций в ГС не должно превышать 15 %.

Компаратором служат газоанализаторы, входящие в состав эталонных флуоресцентного, хемилюминесцентного и электрохимического комплексов аппаратуры для передачи размера единиц молярной доли и массовой концентрации компонентов в газовых средах, входящих в состав Государственного первичного эталона единиц молярной доли и массовой концентрации компонентов в газовых средах ГЭТ 154-2011. Определение относительной погрешности проводится в соответствии с методикой, приведенной в Хд 1.456.446 МИ, Хд 1.456.445 МИ.

Определение погрешности проводится для химически активных по оксиду азота (NO), так как оксид азота обладает наиболее ярко выраженными химически активными свойствами. Для химически неактивных (углеводородов и инертных) газов (CO, CO₂, O₂, CH₄, C₃H₈) определение погрешности проводится по оксиду углерода (CO).

В качестве исходных газовых смесей для генераторов газовых смесей GDC-703 генератора в зависимости от диапазонов газоанализаторов эталонных установок необходимо использовать по выбору бинарные газовые смеси – ГСО - ПГС 0-го, 1-го, 2-го разряда (по ТУ 6-16-2956-01) (перечень приведен в приложении Б) входящие в комплект генераторов.

В качестве газа-разбавителя для генераторов GDC-703 и генератора эталонных установок необходимо использовать азот высокой чистоты (особой чистоты по ГОСТ 9293-74 или ТУ 2114-004-05798345-2009, ТУ 6-21-39-96), воздух (по ТУ 6-21-5-82).

В качестве аттестованных газовых смесей для эталонного генератора в зависимости от диапазонов газоанализаторов эталонных установок необходимо использовать по выбору газовые смеси — эталоны сравнения в баллонах под давлением по ГОСТ 8.578-2014. Перечень газовых смесей — эталонов сравнения указан в приложении Б.

Последовательно задают в соответствии с руководством по эксплуатации генератора не менее 2-х ГС с объемной долей целевого компонента, соответствующей (30 – 90) % диапазона измерений газоанализаторов-компараторов, входящих в состав эталонных комплексов.

Полученную на генераторе аттестуемую газовую смесь подают на вход газоанализаторакомпаратора.

Определение объемной (молярной) доли целевого компонента в газовой смеси на выходе генераторов проводят методом компарирования с использованием комплекса для измерения молярной доли и массовой концентрации NO, NO₂, NH₃, SO₂, H₂S и др. в газовых смесях на основе химически активных газов Xд 1.456.446 и комплекса для измерения молярной доли CO, CO₂, CH₄ и др. в бинарных и многокомпонентных газовых смесях Xд. 1.456.445, входящих в состав Государственного первичного эталона единиц молярной доли и массовой концентрации компонентов в газовых средах ГЭТ 154-2011. Число измерений для каждой концентрации – в соответствии с РЭ на каждый эталонный комплекс.

В качестве компаратора применяется газоанализатор на соответствующий компонент с вариацией показаний не более $0.5\Delta_0$.

Проводят расчет относительной погрешности компарирования (So) в соответствии с РЭ на каждый эталонный комплекс.

Если So превышает значение, указанное в РЭ, то необходимо провести дополнительно 5 новых измерений и снова провести его расчет.

Рассчитывают значение объемной (молярной) доли $^{C_{\partial}}$, % определяемого компонента в каждой ΓC на выходе эталонного комплекса в соответствии с $P \ni$.

Рассчитывают относительную погрешность поверяемого генератора (δ_0 , %) для каждого задаваемого значения объемной (молярной) доли целевого компонента по формуле:

$$\delta_0 = \frac{C_3 - C_0}{C_0} \cdot 100 \tag{1}$$

- $^{C}{}_{3}\;$ заданное (расчетное) значение объемной (молярной) доли компонента на выходе поверяемого генератора, %.
- $^{C}_{\delta}$ действительное значение объемной (молярной) доли целевого компонента в ГС на выходе испытываемого генератора, определенное при помощи установок эталонного комплекса, %.

Относительная погрешность генератора не должна превысить значений, приведенных в таблице 1 приложения В для каждого целевого компонента, используемого при компарировании.

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТА ПОВЕРКИ

- 7.1. При проведении поверки генератора составляется протокол, в котором указывается соответствие генератора предъявляемым к нему требованиям. Форма протокола приведена в приложении А.
 - 7.2. Генератор, удовлетворяющий требованиям настоящей методики, признается годным.
- 7.3. Положительные результаты поверки оформляются свидетельством о поверке установленной формы.
- 7.4. При отрицательных результатах поверки, генератор к применению не допускается, на него выдается извещение о непригодности с указанием причины.

Протокол поверки

Генератора газовых смесей GDC-703

	Зав. номер генератора	
	Дата выпуска	
	Организация, представившая генератор на поверку	
	Условия поверки: температура окружающего воздуха	K
	атмосферное давление	_кПа
	относительная влажность	_%
	Средства поверки	
	Поверка произведена в соответствии с документом «Гене	раторы газовых смесей GDC-
703	3. Методика поверки. МП-242-2057-2016»	
	Результаты поверки	
	1. Результаты внешнего осмотра	
	2. Результаты опробования:	
	Проверка общего функционирования	
	Герметичность	
	3. Результаты подтверждения соответствия программного	
обе	спечения	
	4. Результаты определения метрологических характерист	
	4.1 Результаты определения относительной погрешности	измерения расхода по каналам

Заданные значения расхода	Показания	рабочего эталог см ³ /мин	на, Qc,	Относит погрешность 4		Выво-
генератора, Q _г , см ³ /мин	при увеличе- нии	при уменьше- нии	Сред- нее	Полученное значение	Допускае- мое значение	

4.2 Результаты определения относительной погрешности заданного значения объемной (молярной) доли компонента в смеси на выходе генераторов GDC-703

	Заданное	Действительное	Отн. погрешн	ость заданного	
	значение	значение	значения	объемной	
	объемной	объемной	(молярной) до	оли компонента	
Целевые	(молярной)	(молярной) доли	в смеси :	на выходе	
компонен-	доли	целевого	генера	тора, %	Выводы
ты	компонента	компонента на			
	на выходе	выходе	Полученное	Допускаемое	
	генератора	генератора, C_{∂} ,	значение	значение	
	C_3 ,%	%			
	,				

4.Заключение						
(соответствует ил	и не соот	ветствует тре	бования	м, приведенн	ным в данной	й методике)
Поверитель						
(подпись)						
Дата поверки "	.,	20	г.			

1. Перечень газовых смесей – эталонов сравнения по ГОСТ 8.578-2014, применяемых совместно с эталонными комплексами, при поверке генераторов газовых смесей GDC-703

№ п/1	ип этапона	Определяемый и фоновый компоненты	Молярная доля компонента, %		Относительная расширенная неопределенность при коэффициенте охвата k=2 (%)*
	1. ΓCO 10774- 2016	СО+N2(воздух)	0,1	1,0	0,25
	ΓCO 10774- 2016	СО+N2(воздух)	1,0	10,0	0,2
:	3. ΓCO 10774- 2016	NO+N ₂ (воздух)	0,1	1,0	0,25
4	4. ΓCO 10774- 2016	NO+N ₂ (воздух)	0,1	10,0	0,25

Примечание 1: Возможность использования ЭС определяется сроком годности ЭС, который указывается в паспорте на ЭС.

Примечание 2. ЭС регистрируется во ФГУП «ВНИИМ им. Д.И. Менделеева» при его изготовлении и аттестации с помощью ГЭТ 154-2011

Примечание 3: Допускается возможность использовать другие ГС с тем же компонентным составом, но с метрологическими характеристиками не хуже указанных в перечне ГС.

2. Перечень газовых смесей в баллонах под давлением - рабочих эталонов по ТУ 6-16-2956-92, используемых в качестве исходных газовых смесей при поверке генераторов газовых смесей GDC-703

Номер ГСО	Компонент ный состав	Размерность	Номинальное значение объемной (молярной) доли	Пределы допускаемой относительной погрешности, %	Разряд
10545-2014	NO+N ₂ (воздух)	%	0,1 - 1	0,6	0
10546-2014	NO+N ₂ (воздух)	%	0,1 - 1	1,5	1
10547-2014	NO+N ₂ (воздух)	%	0,1 - 1	3	2
9744-2011	СО+воздух	млн ⁻¹	100 - 190	2	1
9745-2011	СО+воздух	%	0,100 - 0,190	2	1
10530-2014	СО+воздух	%	$1 \cdot 10^{-3} - 0,1$	1,5	0
10530-2014	СО+воздух	%	0,1 - 1	0,6	0
10530-2014	СО+воздух	%	1 - 10	0,4	0
10531-2014	СО+воздух	%	$1 \cdot 10^{-3} - 0,1$	2,5	1
10531-2014	СО+воздух	%	0,1 - 1	1,5	1
10531-2014	СО+воздух	%	1 - 10	1	1
10532-2014	СО+воздух	%	$1 \cdot 10^{-3} - 0,1$	5	2
10532-2014	СО+воздух	%	0,1 - 1	3	2
10532-2014	СО+воздух	%	1 - 10	2,5	2

Примечание: Допускается возможность использовать другие ГС с тем же компонентным составом, но с метрологическими характеристиками не хуже указанных в перечне ГС.

ПРИЛОЖЕНИЕ В (Справочное)

Компонентный состав ГС, диапазон воспроизведения объемной (молярной) доли целевых компонентов, пределы допускаемой относительной погрешности аттестации исходных ГС и пределы допускаемой относительной погрешности заданного значения объемной доли целевого компонента в смеси на выходе генераторов GDC-703 приведены в таблице 1.

Таблица 1

	Диапазон	Пределы допускаемой	Пределы допускаемой
	воспроизведения	относительной	относительной погрешности
Компонент	объемной доли	погрешности	воспроизведения объемной
	компонента в	аттестации исходной	доли компонента в газовой
	газовой смеси, %	ГС, %	смеси, %
		менее ± 1,0	± 2,0
NO	0.005 1.0	± (св 1,0 до 2,0 вкл)	± 3,0
NO	св. 0,005-1,0 вкл.	± (св 2,0 до 3,0 вкл)	± 4,0
		± (св 3,0 до 4,0 вкл)	± 5,0
	св. 0,001-10 вкл.	менее ± 1,0	$\pm \sqrt{2,0^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$
СО		± (св 1,0 до 2,0 вкл)	$\pm \sqrt{2,5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$
-		± (св 2,0 до 3,0 вкл)	$\pm \sqrt{3.5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$
		± (св 3,0 до 4,0 вкл)	$\pm \sqrt{4,5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$

Примечания:

Указанные метрологические характеристики генератора нормированы при использовании:

- в качестве исходных газовых смесей: ГСО-ПГС 0-го,1-го или 2-го разряда в баллонах под давлением по ТУ 6-16-2956-01 и/или ТУ 2114-014-20810646-2014 с содержанием определяемого компонента не более 10 %;
- в качестве газа-разбавителя: воздух марки А по ТУ 6-21-5-82, азот (особой чистоты 1 сорт по ГОСТ 9293-74, высокой чистоты по ТУ 2114-004-05798345-2009, марки А по ТУ 6-21-39-79 и ТУ 6-21-39-96).
- $\Delta(X_B)_P$ абс. погрешность определения содержания целевого компонента (компонента В) в газе разбавителе, %;
- X_B требуемое значение объемной (молярной) доли компонента (компонента В) в смеси. %

Примечание 1:

 $\Delta(X_B)_P$ - абс. погрешность определения содержания целевого компонента (компонента В) в газе разбавителе, %;

 $X_{\it B}$ - требуемое значение объемной (молярной) доли компонента (компонента В) в смеси, %;

Приложение Г Значения расходов через канал MFC1, проверяемые при испытаниях указаны в таблице 1 Таблица 1

Канал	Коэффициент	Точка разделения (Cut	Расход на выходе
	разбавления (Dillution	Point)**	канала, см ³ /мин
	rate), %*		
MFC-1	0	0	4000
MFC-1	10	50	3600
MFC-1	20	100	3200
MFC-1	40	200	2400
MFC-1	60_	300	1600
MFC-1	80	400	800
MFC-1	90	450	400

Значения расходов через каналы MFC-2, MFC-3, MFC-4, проверяемые при испытаниях указаны в таблице 2

Таблица 2

Канал	Коэффициент	Точка разделения (Cut	Расход на выходе
	разбавления (Dillution	Point)**	канала, см ³ /мин
	rate), %*		
MFC-2	0.2	1	8
MFC-2	0.4	2	16
MFC-2	0.6	3	24
MFC-2	0.8	4	32
MFC-2	1	5	40
MFC-2	1.4	7	56
MFC-3	1.6	8	64
MFC-3	2	10	80
MFC-3	4	20	160
MFC-3	6	30	240
MFC-3	8	40	320
MFC-3	10	50	400
MFC-3	12	60	480
MFC-4	13	65	520
MFC-4	20	100	800
MFC-4	40	200	1600
MFC-4	60	300	2400
MFC-4	80	400	3200
MFC-4	100	500	4000

Примечания:

каналу исходного газа (MFC2, MFC3, MFC4), $Q_{\rm Bb/X}$ = 4000 см³/мин, общий расход на выходе генератора.

^{*} Коэффициент разбавления (DR) считается по формуле: $DR = \frac{Q_{MFC}}{Q_{BMX}} \cdot 100$, где Q_{MFC} - расход по

^{**} Точка разделения (Cut Point) – режим работы генератора, необходимый для получения разного коэффициента разбавления. Максимальное значение точки разделения должно быть установлено 500.