

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ «Роспест-Москва»

Е.В. Морин

«07» марта 2017 г.

Государственная система обеспечения единства измерений

ВЫЧИСЛИТЕЛИ МЕТРОЛОГ

Методика поверки

МП-РТ-4256-442-2017

Настоящая методика распространяется на вычислители Метролог, изготовленные Акционерным обществом «Научно-производственная Компания РоТеК», Московская обл., г. Пушкино, и устанавливает методику и последовательность проведения первичной и периодических поверок.

Интервал между поверками - 4 года.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении первичной и периодической поверки должны выполняться операции, указанные в таблице 1.

Таблица 1- Операции поверки

	Номер	Проведение о	перации при
Наименование операции	пункта НД	первичной	периодической
	по поверке	поверке	поверке
Внешний осмотр	7.1	Да	Да
Опробование	7.2	Да	Да
Определение метрологических характеристик	7.3	Да	Да
Проверка диапазона измерений и			
определение абсолютной погрешности при			
измерении сопротивления и преобразовании	7.3.1	Да	Да
в температуру			
Проверка диапазона измерений и определение абсолютной погрешности при измерении разности сопротивления и преобразовании в разность температуры	7.3.2	Да	Да
Проверка диапазона измерений и определение приведенной погрешности при измерении силы тока и преобразовании в величину давления	7.3.3	Да	Да
Определение относительной погрешности при измерении и преобразовании количества импульсов, не менее 2500 импульсов, в объём воды	7.3.4	Да	Да
Определение относительной погрешности при измерении текущего времени	7.3.5	Да	Да
Определение относительной погрешности расчёта массы воды по измеренным сигналам	7.3.6	Да	Нет
Определение относительной погрешности расчёта тепловой энергии по измеренным сигналам	7.3.7	Да	Нет
Определение относительной погрешности при передаче измеренных значений по CAN, RS-485 подключенных к цифровым выходам приборов. (только для вычислителей модификации МЕТРОЛОГ-ТМ)	7.3.8	Да	Нет
Оформление результатов поверки	8	Да	Да

2 СРЕДСТВА ПОВЕРКИ
При проведении поверки применяют средства измерений, указанные в таблице 2.
Таблица 2— Средства измерений

Номер пункта	
Номер пункта	Наименование и тип основного и вспомогательного средства поверки;
методики	обозначение нормативного документа, регламентирующего технические
поверки	требования и метрологические характеристики средства поверки
1	2
7.2	Компаратор-калибратор универсальный КМ300
	Воспроизведение силы постоянного тока в диапазоне (0 – 100) мА
	ПГ ±(% от I+ % от Іп), (предел Іп 100 мА) - (0,035+0,0005)
	Мера электрического сопротивления постоянного тока многозначная
	(ММЭС) Р3026-2 Сопротивление от 0,01 до 111111,11 Ом к.т. 0,005
1	Генератор импульсов Г5-82 Период повторения импульсов от 1 до 9,9x10 ⁷
	мкс.
	Длительность импульсов от 0,1 до 5х10 ⁶ мкс.
	Амплитуда импульсов от 0,006 до 60 В.
	Погрешность установки:
	- периода ± 0,003T,
	 длительности импульсов (0,03т + 0,04) мкс,
1	- амплитуды (0,1U + 0,1) B.
7.3.1	Мера электрического сопротивления постоянного тока многозначная
30 3250 30 30	(ММЭС) Р3026-2 Сопротивление от 0,01 до 111111,11 Ом к.т. 0,005
	(
7.3.2	Мера электрического сопротивления постоянного тока многозначная
7.5.2	(ММЭС) Р3026-2 Сопротивление от 0,01 до 111111,11 Ом к.т. 0,005
	Мера электрического сопротивления постоянного тока многозначная
	(ММЭС) Р3026-2 Сопротивление от 0,01 до 111111,11 Ом к.т. 0,005
722	T/
7.3.3	Компараторы-калибраторы универсальные КМ300
	Воспроизведение силы постоянного тока в диапазоне (0 – 100) мА
1	ПГ ±(% от I+ % от Iп), (предел Iп 100 мА) - (0,035+0,0005)
7.3.4	Генератор импульсов Г5-82 Период повторения импульсов от 1 до 9,9х107
	мкс.
	Длительность импульсов от 0,1 до 5x106 мкс.
1	Амплитуда импульсов от 0,006 до 60 В.
	Погрешность установки:
	- периода $\pm 0,003$ T,
	 длительности импульсов (0,03т + 0,04) мкс,
	- амплитуды (0,1U + 0,1) В.
7.3.5	Частотомер Ч3-63 Диапазон частоты (0,1 – 5000) Гц диапазон напряжения
7.5.5	входного сигнала (0,03 – 10) В, пределы допускаемой относительной
]	
	погрешности $\pm 5.10^{-7}$
	Секундомер электронный СЧЕТ-1М Диапазон измерений (от 0,01 до
	99999,9) c
	$\pm (6.10^{-5} \cdot T + C)$, T — измеренное значение интервала времени в с, С —
	дискретность измерений в данном интервале.

1	2
7.3.6	Генератор импульсов Г5-82 Период повторения импульсов от 1 до 9,9x10 ⁷ мкс.
	Длительность импульсов от 0,1 до 5x10 ⁶ мкс.
	Амплитуда импульсов от 0,006 до 60 В.
	Погрешность установки:
	$-$ периода \pm 0,003T,
	- длительности импульсов $(0.03\tau + 0.04)$ мкс,
	- амплитуды (0,1U + 0,1) В.
	Мера электрического сопротивления постоянного тока многозначная
	(ММЭС) Р3026-2 Сопротивление от 0,01 до 111111,11 Ом к.т. 0,005
	Компаратор-калибратор универсальный КМ300
	Воспроизведение силы постоянного тока в диапазоне (0 – 100) мА
	ПГ ±(% от I+ % от Iп), (предел Iп 100 мА) - (0,035+0,0005)
	(0,000)
7.3.7	Компаратор-калибратор универсальный КМ300
	Воспроизведение силы постоянного тока в диапазоне (0 – 100) мА
	ПГ ±(% от I+ % от Iп), (предел Iп 100 мА) - (0,035+0,0005)
	Мера электрического сопротивления постоянного тока многозначная
	(ММЭС) Р3026-2 Сопротивление от 0,01 до 111111,11 Ом к.т. 0,005
	Генератор импульсов Г5-82 Период повторения импульсов от 1 до 9,9x10 ⁷
	мкс.
	Длительность импульсов от 0,1 до 5x10 ⁶ мкс.
	Амплитуда импульсов от 0,006 до 60 В.
	Погрешность установки:
	- периода \pm 0,003T,
	- длительности импульсов $(0.03\tau + 0.04)$ мкс,
	- амплитуды (0,1U + 0,1) В.
7.3.8	Рабочий эталон 2-го разряда по ГОСТ 8.374-2013 или ГОСТ 8.142-2013.
	Установки поверочные JOS-50 ZT, диапазон объемного расхода от 0,006 –
	до 50 м ³ /ч
	допускаемая относительная погрещность ±0,2 %
	допускаемая относительная погрешность ВУ ±0,05 %
	Мера электрического сопротивления постоянного тока многозначная
	(ММЭС) Р3026-2 Сопротивление от 0,01 до 111111,11 Ом к.т. 0,005
	Компараторы-калибраторы универсальные КМ300
	Воспроизведение силы постоянного тока в диапазоне (0 – 100) мА
	ПГ ±(% от I+ % от Iп), (предел In 100 мА) - (0,035+0,0005)
имечания:	

Примечания:

- 1 Все средства измерений, применяемые при поверке, должны иметь действующие свидетельства о поверке.
- 2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица, ознакомленные с руководством по эксплуатации на вычислители Метролог и прошедшие инструктаж по технике безопасности.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки необходимо соблюдать:

4.1 Требования безопасности, которые предусматривают «Правила по охране труда при эксплуатации электроустановок»;

- 4.2 Указания по технике безопасности, приведенные в эксплуатационной документации на средства измерений, применяемые при поверке;
- 4.3 Указания по технике безопасности, приведенные в руководстве по эксплуатации на вычислители Метролог.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °C 20 ± 5 ;

- атмосферное давление, кПа от 84 до 106,7;

- относительная влажность воздуха, % от 30 до 80;

- температура рабочей среды, °С 20 ± 5 .

Должны отсутствовать внешние электрические и магнитные поля, влияющие на работу электроизмерительной аппаратуры.

6 ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ

- 6.1 Вычислители подготавливают к поверке в соответствии с указаниями руководства по эксплуатации АЦМЕ.421453.101 РЭ, АЦМЕ.421453.102 РЭ
- 6.2 Средства поверки подготавливают к работе в соответствии с эксплуатационной документацией.
 - 6.3 Перед поверкой вычислитель выдерживают в условиях по п. 5 не менее 2 часов.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При проведении внешнего осмотра установить соответствие вычислителя следующим требованиям:

- -вычислитель не должен иметь механических повреждений корпуса, дефектов покрытий, ухудшающих его внешний вид и препятствующих его применению;
- -должны отсутствовать дефекты, препятствующие чтению надписей, маркировки, отсчету показаний по жидкокристаллическому индикатору (в дальнейшем ЖКИ);
- -надписи и обозначения на вычислителе должны быть четкими и соответствовать требованиям технической документации;
 - -комплектность вычислителя должна соответствовать комплектности, указанной в паспорте;
 - -элементы коммутации не должны иметь повреждений.

7.2 Опробование

- 7.2.1 При опробовании проверяют исправность органов управления и индикации вычислителя, а также возможность вывода на ЖК-экран вычислителя всех запрограммированных параметров учета.
- 7.2.2 Проверка идентификационных данных программного обеспечения (далее ПО) вычислителей проводится сравнением идентификационных данных встроенного программного обеспечения с идентификационными данными в таблице 3.
- 7.2.3 Результаты считают положительными, если корректно отображаются параметры учёта на ЖК-экране вычислителя, а идентификационные данные ПО вычислителя (номер версии ПО и контрольная сумма ПО) соответствуют приведённым в таблице 3.

Таблица 3 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	Значение
Идентификационное наименование ПО	Метролог-Т	Метролог-ТМ
Номер версии (идентификационный	7.2	6.54
номер) ПО		
Цифровой идентификатор ПО	0x85AC	BF704428A06FE45359B2037A
		DBAA2C6E

7.3 Определение метрологических характеристик

Поверка вычислителя проводится в режиме «Поверка» (Тест). При проведении поверки все необходимые переключения вычислителя выполнять в соответствии с указаниями в Руководстве по эксплуатации для каждой модификации вычислителя.

7.3.1 Проверка диапазона измерений и определение абсолютной погрешности при измерении сопротивления ИП и преобразовании в температуру.

Для определения метрологических характеристик вычислителя Метролог модификации Метролог-Т и Метролог-ТМ собрать схему согласно руководства по эксплуатации. Средства проверки подключаются к кросс-плате вычислителя.

Установить с помощью клавиатуры вычислителя режим измерения температуры для каждой из номинальных статических характеристик, указанных в таблице 5. С помощью ММЭС поочередно задать на входы вычислителя значения сопротивления соответствующие значению температуры по Γ OCT 6651-2009 из таблицы 4, и зафиксировать по индикатору вычислителя значения температуры t_i .

Таблица 4

Номинальная статическая характеристика І для модификации Метро	
t _i ,, °C	Ri, Om
минус 50	80,31
0	100,00
70	127,08
110	142,29
150	157,33
Номинальная статическая характеристика для модификации Метро	лог-Т и Метролог-ТМ
t _i ., °C	Ri, Om
минус 50	80,00
0	100,00
70	127,50
110	142,95
150	158,22
Номинальная статическая характеристика з	
t _{i,} , °C	Ri, Om
минус 50	400,00
0	500,00
70	637,48
110	714,76
150	791,10

Номинальная статическая характеристика Pt 500 ТСП с R ₀ =500 Ом и α=0,00385 °C ⁻¹ для модификации Метролог-Т		
t _i , °C	Ri, Om	
минус 50	401,53	
0	500,00	
70	635,38	
110	711,46	
150	786,63	

^{*)} і – номер испытуемого канала.

Абсолютную погрешность при измерении сопротивления ИП температуры и преобразовании в температуру для каждого измеренного значения рассчитывают по формуле

$$\Delta(t) = t_{\mu} - t_{i_{\mu}} \tag{1}$$

где $\Delta(t)$ – абсолютная погрешность при измерении сопротивления ИП температуры и преобразовании в температуру, °С

 $t_{\rm H}$ – значение температуры, измеренное вычислителем, ${}^{\rm o}{\rm C}$;

t_i – заданное значение температуры, соответствующее сопротивлению ММЭС, °С.

Результаты считают положительными, если абсолютная погрешность для каждого входа вычислителя МЕТРОЛОГ-Т находиться в интервале ± 0.2 °C, вычислителя МЕТРОЛОГ-ТМ – в интервале $\pm (0.2 + 0.0005 \cdot t)$ °C. При периодической поверке рекомендуется производить поверку по НСХ сконфигурированной владельцем прибора с последующем отображением данной информации в свидетельстве о поверке или в паспорте.

7.3.2 Проверка диапазона измерений и определение абсолютной погрешности при измерении сопротивления комплекта ИП температуры и преобразовании в разность температуры.

Установить с помощью клавиатуры вычислителя режим измерения разности температуры для каждой из номинальных статических характеристик, указанных в таблице 6. С помощью двух ММЭС поочередно задать на входы вычислителя значения сопротивлений соответствующие значению температуры по ГОСТ 6651-2009 из таблицы 5, и зафиксировать по индикатору вычислителя значения разности температур $\Delta t_i = t_i - t_{i+1}$.

Таблица 5

	я характеристика Pt 100 ТСП с R дификации Метролог-Т и Метро	
t _i ,°С (Ri, Ом)	t _(i+1) , °C (R(i+1), O _M)	$\Delta t_i = t_{i-1}t_{i+1}$
60 (123,24)	57 (122,09)	3
90 (134,71)	70 (127,08)	20
130 (149,83)	60 (123,24)	70
150 (157,33)	3 (101,17)	147
Номинальная статическая для мо	я характеристика 100 П ТСП с R дификации Метролог-Т и Метро	₀ =100 Ом и α=0,00391 °C ⁻¹ элог-ТМ
t _i ,°C (Ri, Ом)	t _(i+1) , °C (R(i+1), O _M)	$\Delta t_i = t_i - t_{i+1}$
60 (123,60)	57 (122,43)	3
90 (135,25)	70 (127,50)	20
130 (150,61)	60 (123,60)	70
150 (158,22)	3 (101,19)	147
Номинальная статическая	а характеристика 500 П ТСП с R для модификации Метролог-Т	
t _i ,°C (Ri, O _M)	t _(i+1) , °С (R(i+1), Ом)	$\Delta t_i = t_i - t_{i+1}$
60 (618,02)	57 (612,17)	3
90 (676,24)	70 (637,48)	20
130 (753,05)	60 (616,21)	70
150 (791,10)	3 (505,95)	147
Номинальная статическая	характеристика Рt 500 ТСП с R для модификации Метролог-Т	
t _i ,°C (Ri, Ом)	t _(i+1) ,, °С (R(i+1), Ом)	$\Delta t_i = t_i - t_{i+1}$
60 (616,21)	57 (610,45)	3
90 (673,53)	70 (635,38)	20
130 (749,16)	60 (616,21)	70
150 (786,63)	3 (505,86)	147

Абсолютную погрешность при измерении сопротивления комплекта ИП температуры и преобразовании в разность температуры для каждого измеренного значения рассчитывают по формуле

$$\Delta(t) = \Delta t_{ii} - \Delta t_{ij}, \qquad (2)$$

где $\Delta(\Delta t)$ — абсолютная погрешность при измерении сопротивления комплекта ИП температуры и преобразовании в разность температуры, °C

 Δt_{u} – значение разности температуры, измеренное, °С;

 Δt_i – заданное значение разности температуры, °С.

Провести операции для каждой пары входов.

Результаты считают положительными, если абсолютная погрешность для каждой пары входов вычислителя МЕТРОЛОГ-Т находиться в интервале $\pm 0,04$ °C, вычислителя МЕТРОЛОГ-ТМ – в интервале $\pm (0,04+0,0005 \cdot t)$ °C.

7.3.3 Проверка диапазона измерений и определение приведенной погрешности при измерении силы тока и преобразовании в величину давления

Проверку диапазона измерений и определение приведенной погрешности при измерении силы тока и преобразовании в величину давления, проводят с помощью Компаратора-калибратора универсального КМ300 компаратор – КТ300КТ (далее компаратор) в режиме воспроизведения силы постоянного тока.

Установить с помощью клавиатуры вычислителя режим измерения давления.

С компаратора задать величины тока согласно таблице 6 и по индикатору вычислителя зафиксировать значения давления p_i.

Таблица 6

Значения тока в контрольной точке I, мА	Значения давления р _і , МПа
4,00	0,000
8,00	0,625
12,00	1,250
20,00	2,500

Выполнить указанные выше операции для каждого канала давления (измерения силы тока и преобразования в величину давления).

Значение приведенной погрешности измерения давления определяется по формуле

$$\delta_P = \frac{P_{\mathbf{H}} - P_i}{P_i} \cdot 100\%, \tag{3}$$

где Ри – измеренное значение давления, МПа;

Р_і – заданное значение давления, МПа;

Результаты поверки считают положительными, если при всех значениях заданного тока приведенная погрешность измерения давления не превышает для вычислителя МЕТРОЛОГ-Т $\pm 0,05$ %, вычислителя МЕТРОЛОГ-ТМ $\pm 0,5$ %.

7.3.4 Определение относительной погрешности при измерении и преобразовании количества импульсов, не менее 2500 импульсов, в объём воды.

Установить цену импульса: 1 импульс соответствует 1 м³, После генератором импульсов подать на импульсные входы вычислителя серию из 2500 импульсов с минимальной длительностью импульса 5 мс и амплитудой 3,5 В (проконтролировать частотомером).

Относительную погрешность при измерении и преобразовании количества импульсов определяется по формуле

$$\delta_{VB} = \frac{V_{\rm H} - V_i}{V_i} \cdot 100\% , \qquad (4)$$

где – относительная погрешность при измерении и преобразовании количества импульсов в объём воды, %;

 V_{u} – значение объёма, измеренное вычислителем, м³;

Vi – заданное значение объёма, соответствующее 2500 импульсам,

Провести операции выше указанные для каждого входа.

Результаты считают положительными, если относительная погрешность каждого входа вычислителя Метролог-T находиться в интервале ± 0.04 %, вычислителя Метролог-TM ± 0.1 %.

7.3.5 Определение относительной погрешности при измерении текущего времени.

Относительную погрешность при измерении времени вычислителя МЕТРОЛОГ-Т определяют измерением частоты следования импульсов F_u встроенного тактового генератора вычислителя. Измерить частотомером частоту следования импульсов встроенного тактового генератора вычислителя F_u .

Относительную погрешность вычислителя МЕТРОЛОГ-Т при измерении текущего времени рассчитать по формуле, %

$$\delta_T = \frac{F_{\rm H} - F_i}{F_i} \cdot 100\% \tag{5}$$

где $\delta_{\rm T}$ – относительная погрешность измерения времени, %;

 F_{H} — измеренное частотомером значение частоты следования импульсов встроенного тактового генератора вычислителя, Γ ц;

 $F_{\rm i}$ – эталонное значение частоты следования импульсов, (32768) Γ ц.

Относительную погрешность при измерении времени вычислителя МЕТРОЛОГ-ТМ определяют измерением контрольного интервала.

Соединить вход «Старт/стоп» вычислителя МЕТРОЛОГ-ТМ и вход электронного секундомера (ЭС). В режиме «Поверка» . Подать сигнал «Старт» (напряжение +12В) на контакты согласно руководства по эксплуатации вычислителя МЕТРОЛОГ-ТМ и вход ЭС. через 1000 с подать сигнал «Стоп» (снять напряжение +12В с контактов вычислителя и входа ЭС). Считать показания вычислителя МЕТРОЛОГ-ТМ (Тssu,сек) и показания электронного секундомера.

Определить основную относительную погрешность при измерении времени наработки по формуле

$$\delta_T = \frac{T_{SSE} - T_{SSI}}{T_{SSI}} \cdot 100\% \tag{6}$$

где $\delta_{\rm T}$ – относительная погрешность измерения времени, %;

Tss_E - показания электронного секундомера, с;

Tss_I ~ показания вычислителя МЕТРОЛОГ-ТМ, с.

Результаты считают положительными, если рассчитанное значение относительной погрешности находится в интервале $\pm 0.01\%$.

7.3.6 Определение относительной погрешности расчёта массы воды по измеренным сигналам ИП

Определение относительной погрешности расчёта массы воды по измеренным сигналам ИП.

С помощью ММЭС подать на вычислитель комбинацию значений величин: температуру 80 °C с НСХ 100П (ГОСТ 6651-2009). С помощью КМ300 задать значение давления 0,9 МПа, и значение одиночных импульсов соответствующих объему 1м3

По заданным значениям параметров рассчитать заданное значение массы воды по формуле

$$m_{Bar} = \rho \cdot V,$$
 (7)

где ρ — Значение плотности воды при плюс 80 °C и давлении 0,9 МПа (в соответствии с ГСССД 98-2000), кг/м³

Относительную погрешность расчёта массы воды по измеренным сигналам ИП рассчитывают по формуле

$$\delta m_{BP} = \frac{m_{BP} - m_{Bom}}{m_{Bom}} \cdot 100, \% \tag{8}$$

где δm_{BP} – относительная погрешность расчёта массы воды, %;

 m_{BP} — значение массы воды рассчитанное вычислителем, кг;

 $m_{B_{2m}}$ — заданное значение массы воды, кг.

Провести выше указанные операции для каждого импульсного входа, и относящихся к нему канала температуры и давления.

Результаты считают положительными, если относительная погрешность расчёта массы воды по измеренным сигналам ИП каждого импульсного входа вычислителя не превышает

значений: для вычислителя модификации МЕТРОЛОГ-Т $\pm 0,15$ %; для вычислителя модификации МЕТРОЛОГ-ТМ $\pm 0,2$ %.

7.3.7

С помощью ММЭС подать в вычислитель комбинации значений

величин: - температуру t_1 в подающем трубопроводе 150 °C, температуру t_2 в обратном трубопроводе в диапазоне 3 – 147 °C (3; 50; 80; 100; 147) °C, температура холодной воды 5°C - с помощью КМ300 задать значение давления в подающем $P_1.0.9$ МПа, и обратном P_2 - 0.5 МПа, с помощью генератора импульсов задать объём в подающем V_1 и обратном V_2 трубопроводах 1 м³ и 0.8 м³.

По заданным значениям рассчитывают заданное значение тепловой энергии для закрытой и открытой системы теплоснабжения по формулам:

$$Q_{9m} = m_1 \cdot (h_1 - h_2) \tag{9}$$

$$Q_{sm} = m_1 \cdot (h_1 - h_x) - m_2 \cdot (h_2 - h_x) \tag{10}$$

где m_1, m_2 — значение массы в подающем и обратном трубопроводах, рассчитанные по ГСССД 98-2000 ($m=\rho V$), кг;

 h_1 , h_2 , h_x — значение удельной энтальпии в подающем, обратном трубопроводе и трубопроводе холодной воды, рассчитанные по соответствующим значениям температуры и давления по ГСССД 98-2000, кДж/кг.

Относительную погрешность расчёта тепловой энергии по измеренным сигналам ИП для каждой комбинации значений для закрытой и открытой системы теплоснабжения рассчитывают по формуле

$$\delta Q_P = \frac{Q_P - Q_{\mathfrak{m}}}{Q_{\mathfrak{m}}} \cdot 100,\% \tag{11}$$

где δQ_P – относительная погрешность расчёта тепловой энергии, %;

 Q_P – значение тепловой энергии рассчитанное вычислителем, кДж;

 Q_{3m} – заданное значение тепловой энергии, кДж.

Результаты считают положительными, если относительная погрешность расчёта тепловой энергии по измеренным сигналам ИП находится в интервале $\pm (0.5 + \Delta t_{min}/\Delta t)$ %.

7.3.8 Определение относительной погрещности при передаче измеренных значений по CAN, RS-485 подключенных к цифровым выходам приборов.

Определение допускаемой относительной погрешности при передаче измеренных значений по CAN, RS-485 подключенных к цифровым выходам приборов. .(только для вычислителей модификации МЕТРОЛОГ-ТМ)

Расходомер МЕТРОЛОГ-Р установить на Рабочий эталон 2-го разряда по ГОСТ 8.374-2013 или ГОСТ 8.142-2013. Задать расход на проливном стенде соответствующий Qном расходомера. Подключить согласно РЭ к расходомеру на измерительные каналы температуры ММЭС, подать на расходомер комбинацию значений величин: температуру 90 °C и 65 °C согласно НСХ по ГОСТ Р6651-2009 (соответствующей конфигурации прибора). С КМ300 подать на измерительные каналы давления значения силы тока I соответствующее давлению 0,9 МПа.

Подключить цифровой выход расходомера Метролог-Р CAN, RS-485 к компьютеру с установленной программой Prolivka.exe («Градуировка и поверка») и к вычислителю модификации Метролог-ТМ.

Произвести измерения по заданным параметрам с компьютера через программу Prolivka.exe («Градуировка и поверка»), после чего произвести измерения через вычислитель модификации Метролог-ТМ.

Относительную погрешность преобразования цифрового сигнала, передаваемого по CAN, RS-485 шине вычислителю МЕТРОЛОГ модификации МЕТРОЛОГ-ТМ рассчитать по формулам:

где δ_G — относительная погрешность преобразования цифрового сигнала, передаваемого по CAN, RS-485 шине при измерении расхода, %;

 $G_{\rm w}$ – значение объема, измеренное вычислителем, м³/ч;

 G_{3m} — заданное значение расхода, контролируемое по показаниям программы персонального компьютера «Градуировка и поверка»;

где δ_{ti} – относительная погрешность преобразования цифрового сигнала, передаваемого по CAN, RS-485 шине при измерении температуры і-канала, %;

 ti_{y} - значение температуры і-канала, измеренное вычислителем, м³/ч;

 ti_{3m} — заданное значение температуры і-канала, контролируемое по показаниям программы персонального компьютера «Градуировка и поверка»;

где δ_{Pi} – относительная погрешность преобразования цифрового сигнала, передаваемого по CAN, RS-485 шине при измерении давления і-канала, %;

 Pi_{u} – значение давления і-канала, измеренное вычислителем, м³/ч;

 Pi_{3m} — заданное значение давления і-канала, контролируемое по показаниям программы персонального компьютера «Градуировка и поверка»;

Результаты считают положительными, если рассчитанные значения относительной погрешности находятся в интервале ± 0.1 %.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Результаты поверки заносят в протокол поверки (протокол поверки оформляется в произвольной форме).

При положительных результатах поверки вычислителей Метролог приборы пломбируются, для исполнения Метролог-Т самоклеющейся пломбой с оттиском знака поверки, для исполнения Метролог-ТМ нанесением знака поверки давлением на специальную мастику, расположенную в чашечке винта внутри вычислителя и выдаются свидетельства о поверке или делаются отметки в паспорте. На свидетельство о поверке или в паспорте наносится знак поверки в виде голографической наклейки или оттиска поверительного клейма.

При отрицательных результатах поверки оформляется извещение о непригодности с указанием причины.

Начальник лаборатории № 442

Р.А. Горбунов

Главный специалист по метрологии лаборатории № 442

Д.А. Подобрянский