УТВЕРЖДАЮ Генеральный директор ООО «Автопрогресс – М»

А. С. Никитин

«15» июня 2016 г.

Тахеометры электронные Spectra Precision Focus 35

МЕТОДИКА ПОВЕРКИ МП АПМ 33-16 Настоящая методика поверки распространяется на тахеометры электронные Spectra Precision Focus 35 (далее - тахеометры), производства «Trimble Inc.», США, и устанавливают методику их первичной и периодической поверки.

Интервал между поверками – 1 год.

## 1 Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

#### Таблица 1

| No    | Наименование операции                                                                                               | № пункта доку- | операций при  |               |
|-------|---------------------------------------------------------------------------------------------------------------------|----------------|---------------|---------------|
| п/п   |                                                                                                                     | мента по по-   | первичной по- | периодической |
| 11/11 |                                                                                                                     | верке          | верки         | поверке       |
| 1     | Внешний осмотр                                                                                                      | 7.1            | Да            | Да            |
| 2     | Опробование, проверка работо-<br>способности функциональных<br>режимов, идентификация про-<br>граммного обеспечения | 7.2            | Да            | Да            |
| 3     | Определение метрологических<br>характеристик                                                                        | 7.3            | -             | -             |
| 3.1   | Определение абсолютной и<br>средней квадратической по-<br>грешностей измерений рассто-<br>яний                      | 7.3.1          | Да            | Да            |
| 3.2   | Определение абсолютной и<br>средней квадратической по-<br>грешностей измерений угла                                 | 7.3.2          | Да            | Да            |

#### 2 Средства поверки

При проведении поверки должны применяться эталоны и вспомогательные средства поверки, приведенные в таблице 2.

Таблица 2

| № пункта документа по | Наименование эталонов, вспомогательных средств поверки и их ос- |
|-----------------------|-----------------------------------------------------------------|
| поверке               | новные метрологические и технические характеристики             |
| 7.3.1                 | Фазовый светодальномер (тахеометр электронный) 1-го разряда по  |
|                       | ΓΟCT P 8.750-2011                                               |
| 7.3.2                 | Стенд универсальный коллиматорный ВЕГА УКС (рег. № 44753-16)    |
|                       |                                                                 |

Примечание — Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью, удовлетворяющей требованиям настоящей методики.

#### 3 Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы, имеющие достаточные знания и опыт работы с тахеометрами.

#### 4 Требования безопасности

При проведении поверки, меры безопасности должны соответствовать требованиям по технике безопасности согласно эксплуатационной документации, правилам по технике безопасности, действующие на месте проведения поверки и требованиям МЭК-825 «Радиационная безопасность лазерной продукции, классификация оборудования, требования и руководство для потребителей», а также правилам по технике безопасности при производстве топографогеодезических работ ПТБ-88.

#### 5 Условия поверки

5.1 Поверка тахеометров может быть проведена в полевых или лабораторных условиях.

- температура окружающей среды, °С (20±5)

- относительная влажность воздуха, %, не более

- атмосферное давление, мм рт. ст. (кПа) 630...800 (84,0...106,7)

- изменение температуры окружающей среды во время поверки, °С/ч, не более

Полевые измерения (измерения на открытом воздухе) должны проводиться при отсутствии осадков, порывов ветра и при температуре окружающей среды от минус 20 до плюс 50 °C.

## 6 Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- проверить наличие действующих свидетельств о поверке на средства измерений;
- тахеометр и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией;
- тахеометр и средства поверки должны быть выдержаны при нормальных условиях не менее 1 ч.

# 7 Проведение поверки

## 7.1 Внешний осмотр

При внешнем осмотре должно быть установлено соответствие тахеометра следующим требованиям:

- отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики тахеометра;
- наличие маркировки и комплектность согласно требованиям эксплуатационной документации на тахеометр;

Если перечисленные требования не выполняются, тахеометр признают непригодным к применению, дальнейшие операции поверки не производятся.

# 7.2 Опробование, проверка работоспособности функциональных режимов, идентификация программного обеспечения

- 7.2.1 При опробовании должно быть установлено соответствие тахеометра следующим требованиям:
  - отсутствие качки и смещений неподвижно соединенных деталей и элементов;
  - плавность и равномерность движения подвижных частей;
  - правильность взаимодействия с комплектом принадлежностей;
  - работоспособность всех функциональных режимов и узлов;
- дискретность отсчета измерений углов и расстояний должны соответствовать эксплуатационной документации.
- 7.2.2 Проверка идентификационных данных программного обеспечения (далее ПО) «Focus 35 Firmware» производится при включении тахеометра.

Проверка идентификационных данных ПО «Spectra Precision Survey Pro» производится через интерфейс пользователя путем выбора в стартовом меню «Survey Pro» раздел «Файл», затем «О программе».

В появившемся диалоговом окне будут отображены наименование и версия ПО.

Данные, полученные по результатам идентификации ПО, должны соответствовать таблице 3.

#### Таблица 3

| Идентификационное наименование ПО     | Focus 35 Firmware | Spectra Precision<br>Survey Pro |  |
|---------------------------------------|-------------------|---------------------------------|--|
| Номер версии (идентификационный номер | 1.5.9             | 6.0.1                           |  |

Если перечисленные требования не выполняются, тахеометр признают непригодным к применению, дальнейшие операции поверки не производят.

#### 7.3 Определение метрологических характеристик

# 7.3.1 Определение абсолютной и средней квадратической погрешностей измерений расстояний

Абсолютная погрешность измерений и СКП измерений расстояний определяется путем сличения с эталонным тахеометром 1-го разряда по ГОСТ Р 8.750-2011.

Необходимо провести многократно, не менее 10 раз, измерения не менее 3 значений расстояний, действительные длины которых расположены в заявляемом диапазоне измерений расстояний поверяемого тахеометра и определены с помощью эталонного тахеометра 1-го разряда по ГОСТ Р 8.750-2011.

Абсолютная погрешность измерений (при доверительной вероятности 0,95) расстояний определяется по формуле:

$$\Delta S = \left(\frac{\sum_{i=1}^{n} S_{ij}}{n_{j}} - S_{0j}\right) \pm 2 \cdot \sqrt{\frac{\sum_{i=1}^{n} \left(S_{ij} - \frac{\sum_{i=1}^{n} S_{ij}}{n_{j}}\right)^{2}}{n_{j} - 1}},$$
(1)

где  $\Delta S$  – абсолютная погрешность измерений **j**-го расстояния, мм;

 $S_{\theta j}$  - эталонное (действительное) значение j-го расстояния, полученное по эталонному тахеометру;

 $Si_{j}$  - полученное значение j-го расстояния i-м приемом по поверяемому тахеометру;

 $n_{j}$  — число приемов измерений j-го расстояния.

Средняя квадратическая погрешность измерений каждой линии вычисляется по формуле:

$$\mathbf{m}_{S_{i}} = \sqrt{\frac{\sum_{i=1}^{n_{j}} (S_{0_{j}} - S_{i_{j}})^{2}}{\frac{n_{j}}{n_{j}}}},$$
(2)

где  $m_{S_i}$  – средняя квадратическая погрешность измерения j-го расстояния.

Значение абсолютной погрешности (при доверительной вероятности 0,95) и средней квадратической погрешности измерений расстояний должны соответствовать значениям, приведённым в Приложении к настоящей методике поверки.

Если требование п.7.3.1. не выполняется, тахеометр признают непригодным к применению, дальнейшие операции поверки не производят.

# 7.3.2 Определение абсолютной и средней квадратической погрешностей измерений угла

Абсолютная погрешность и СКП измерений углов определяется на эталонном коллиматором стенде путем многократных измерений (не менее четырех циклов измерений, состоящих из измерений в положении «Круг право» (КП) и «Круг лево» (КЛ) горизонтального угла  $(90\pm30)^{\circ}$  и вертикального угла (60лее  $\pm20^{\circ}$ ).

Абсолютиза погленность изменений (при поверительной вероятности 0.05) горизон

$$\Delta_{v_i} = \left(\frac{\sum_{j=1}^{n} V_{ij}}{n} - V_{0j}\right) \pm 2 \cdot \sqrt{\frac{\sum_{j=1}^{n} (V_{ij} - \frac{\sum_{j=1}^{n} V_{ij}}{n})^2}{n - 1}},$$
(3)

где  $\Delta_{vi}$  – абсолютная погрешность измерений горизонтального (вертикального) угла, ";

 $V_{0j}$  - значение горизонтального (вертикального) угла по эталонному коллиматорному стенду, взятое из свидетельства о поверке на него, ";

 $V_{ij}$  — значение горизонтального (вертикального) угла, по поверяемому тахеометру, "; n — число измерений.

Средняя квадратическая погрешность измерений горизонтального и вертикального углов вычисляется по формуле:

$$\mathbf{m}_{\mathbf{v}_{i}} = \sqrt{\frac{\sum_{i=1}^{n} V_{i}^{2}}{n}},$$
(4)

где  $m_{Vi}$  – средняя квадратическая погрешность измерений горизонтального (вертикального) угла, ";

 $V_i$  - разность между измеренным поверяемым тахеометром значением i-го горизонтального (вертикального) угла и значением i-го горизонтального (вертикального) угла по эталонному коллиматорному стенду, взятому из свидетельства о поверке на него, ";

n — число измерений.

Значения абсолютной погрешности (при доверительной вероятности 0,95) и средней квадратической погрешности измерений углов не должны превышать значений, указанных в Приложении к настоящей методике поверки.

Если требование п.7.3.2. не выполняется, тахеометр признают непригодным к применению, дальнейшие операции поверки не производят.

## 8 Оформление результатов поверки

- 8.1 Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 7 настоящей методики поверки.
- 8.2 При положительных результатах поверки, тахеометр признается годным к применению и на него выдается свидетельство о поверке установленной формы. Знак поверки наносится на свидетельство о поверке в виде наклейки и (или) поверительного клейма.
- 8.3 При отрицательных результатах поверки, тахеометр признается непригодным к применению и на него выдается извещение о непригодности установленной формы с указанием основных причин.

Руководитель отдела ООО «Автопрогресс – М»



В. А. Лапшинов

Приложение (обязательное)
Метрологические и технические характеристики

| Наименование характеристики                                                                                                                | Значение                                                                                |                                  |                            |                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|----------------------------|----------------------------|--|
| Модификация                                                                                                                                | Spectra Precision Focus 35                                                              | Spectra Precision Focus 35<br>2" | Spectra Precision Focus 35 | Spectra Precision Focus 35 |  |
| Границы допускаемой абсолютной погрешности измерений углов (при доверительной вероятности 0,95), "                                         | ±2                                                                                      | ±4                               | ±6                         | ±10                        |  |
| Допускаемая средняя квадратическая погрешность измерений углов, "                                                                          | 1                                                                                       | 2                                | 3                          | 5                          |  |
| Границы допускаемой абсолютной погрешности измерений расстояний (при доверительной вероятности 0,95), мм: - отражательный режим (1 призма) |                                                                                         | +2·(2+2                          | ·10 <sup>-6</sup> ·D)      |                            |  |
| - диффузный режим                                                                                                                          | $\pm 2 \cdot (3 + 2 \cdot 10^{-6} \cdot D)$ где D – измеряемое расстояние, мм           |                                  |                            |                            |  |
| Допускаемая средняя квадратиче-<br>ская погрешность измерений рас-<br>стояний, мм:                                                         |                                                                                         |                                  | -                          |                            |  |
| - отражательный режим (1 призма)<br>- диффузный режим                                                                                      | 2+2·10 <sup>-6</sup> ·D<br>3+2·10 <sup>-6</sup> ·D<br>где D – измеряемое расстояние, мм |                                  |                            |                            |  |