УТВЕРЖДАЮ
Первый заместитель
генерального директора заместитель по научной работе
ФГУП «ВНИИФТРИ»

А.Н. Щипунов

30 2007 г.

инструкция

Осциллографы цифровые запоминающие DSOZ592A, DSAZ592A, DSOZ632A, DSAZ632A Методика поверки

651-17-027 МП

1 Общие сведения

- 1.1 Настоящая методика распространяется на осциллографы цифровые запоминающие DSOZ592A, DSAZ592A, DSOZ632A, DSAZ632A (далее осциллографы) и устанавливает порядок и объем их первичной и периодической поверки.
 - 1.2 Интервал между поверками 1 год.

2 Операции поверки

2.1 При поверке осциллографов выполнить работы в объеме, указанном в таблице 1.

Таблица 1

		Проведение операции при:			
Наименование операции	Номер пункта методики поверки	первичной поверке (после ремонта)	периодической поверке		
1 Внешний осмотр	8.1	да	да		
2 Опробование	8.2	да	да		
3 Идентификация программного обеспечения	8.3	да	да		
4 Определение абсолютной погрешности установки напряжения смещения	8.4	да	да		
5 Определение полосы пропускания	8.5	да	да		
6 Определение абсолютной погрешности установки коэффициента отклонения	8.6	да	да		
7 Определение относительной погрешности по частоте внутреннего опорного генератора	8.7	да	да		

2.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и прибор бракуется.

3 Средства поверки

3.1 При проведении поверки использовать средства измерений и вспомогательное оборудование, представленные в таблице 2.

Таблица 2

I GOTTILLGE Z	
Номер пункта	Наименование рабочих эталонов или вспомогательных средств поверки; номер документа регламентирующего технические требования к рабочим эталонам или
методики	вспомогательным средствам; разряд по государственной поверочной схеме и
поверки	(или) метрологические и основные технические характеристики средства поверки
8.5	Генератор сигналов E8257D (опция 540 или 567 в зависимости от модели осциллографа) (№ 53941-13): диапазон частот от 250 кГц до менее 40 ГГц, пределы допускаемой относительной погрешности установки частоты ±7,5•10 ⁻⁸ ; максимальный уровень выходной мощности не менее 10 дБ/мВт, пределы допускаемой относительной погрешности установки уровня мощности не более ±1,2 дБ
8.5	Блок измерительный ваттметра N1914A с преобразователем измерительным термоэлектрическим N8488A: частота преобразования до 67 ГГц; диапазон измерений уровня мощности от минус 35 до 23 дБ/мВт
8.4, 8.6	Мультиметр 3458А: диапазон измерений напряжения постоянного тока от 0 до 1000 В, пределы допускаемой абсолютной погрешности: $\pm (1,5\cdot10^{-6} D+0,3\cdot10^{-6} E)$ в диапазоне от 0,1 до 1 В, $\pm (0,5\cdot10^{-6} D+0,05\cdot10^{-6} E)$ в диапазоне от 1 до 10 В, где $D-$ показания мультиметра, $E-$ верхний предел диапазона измерений
8.7	Частотомер электронно-счетный 53132A: диапазон частот от 0 до 225 МГц пределы допускаемой относительной погрешности $\pm 5\cdot 10^{-6}$
	Вспомогательные средства поверки
8.5	Делитель мощности 11667B/C/ (с опцией H65): диапазон частот от 0 до 67 ГГц, диапазон уровней мощности входного сигнала от 0 до 27 дБ/мВт
8.4 - 8.6	Переходники с N-типа на BNC, с 3,5 мм на BNC и с 2,4 мм на BNC, кабель соединительный с диапазоном рабочих частот до 67 ГГц
8.4, 8.6	Т-адаптер с BNC разъемами

- 3.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых осциллографов с требуемой точностью.
- 3.3 Применяемые средства поверки должны быть утверждённого типа, исправны и иметь действующие свидетельства о поверке (отметки в формулярах или паспортах).

4 Требования к квалификации поверителей

4.1 К проведению поверки осциллографов допускается инженерно-технический персонал со среднетехническим или высшим радиотехническим образованием, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке, допущенный к работе с электроустановками и имеющие право на поверку.

5 Требования безопасности

- 5.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.
- 5.2 К работе с осциллографами допускаются лица, изучившие требования безопасности по ГОСТ 22261-94, ГОСТ Р 51350-99, инструкцию по правилам и мерам безопасности и прошедшие инструктаж на рабочем месте.
- 5.3 При проведении поверки необходимо принять меры защиты от статического напряжения, использовать антистатические заземленные браслеты и заземлённую оснастку. Запрещается проведение измерений при отсутствии или неисправности антистатических защитных устройств.

6 Условия поверки

6.1 Поверку проводить при следующих условиях:

- температура окружающего воздуха, °С

 20 ± 5 ;

- относительная влажность окружающего воздуха, %

от 5 до 70;

- атмосферное давление, мм рт. ст.

от 626 до 795;

- напряжение питания, В

от 100 до 250;

- частота, Гц

от 50 до 60.

Все средства измерений, использующиеся при поверке осциллографов, должны работать в нормальных условиях эксплуатации.

7 Подготовка к поверке

7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:

- выполнить операции, оговоренные в документации изготовителя на поверяемый осциллограф по его подготовке к работе;

- выполнить операции, оговоренные в РЭ на применяемые средства поверки по их подготовке к измерениям;

- осуществить прогрев приборов для установления их рабочих режимов.

8 Проведение поверки

- 8.1 Внешний осмотр
- 8.1.1 При внешнем осмотре проверить:
- отсутствие механических повреждений и ослабление элементов, четкость фиксации их положения;
- чёткость обозначений, чистоту и исправность разъёмов и гнёзд, наличие и целостность печатей и пломб;
 - наличие маркировки согласно требованиям эксплуатационной документации.
- 8.1.2 Результаты поверки считать положительными, если выполняются все перечисленные требования. В противном случае осциллограф бракуется.

8.2 Опробование

- 8.2.1 Подготовить осциллограф к работе в соответствии с технической документацией фирмы-изготовителя. Проверить отсутствие сообщений о неисправности в процессе загрузки осциллографа.
- 8.2.2 Соединить встроенный калибратор с каналом 1 с помощью калибровочного кабеля и переходников «SMA-прецизионный BNC». Нажать клавишу «Default Setup» на передней панели. После короткой паузы установится по умолчанию конфигурация осциллографа.
- 8.2.3 Нажать клавишу Autoscale на передней панели. После короткой паузы устанавливается коэффициент развертки и масштаб по вертикали. На экране появляется меандр с размахом примерно 5 делений, при этом на экране отображаются около четырех периодов сигнала. Если эта осциллограмма отсутствует, следует проверить параметры и правильность процедуры включения электропитания, правильность присоединения пробника к входному соединителю ВNС и калибровочному выходу пробника.
- 8.2.4 Перемещая «мышь» по коврику, убедиться в том, что указатель «мыши» на экране отслеживает ее перемещение.
- 8.2.5 Прикоснуться стилусом к экрану и, перемещая его, убедиться в том, что указатель отслеживает его перемещение.
- 8.2.6 Результаты поверки считать положительными, если выполняются процедуры, приведенные в пп. 8.2.1-8.2.4.

- 8.3 Идентификация программного обеспечения
- 8.3.1 Проверку соответствия заявленных идентификационных данных программного обеспечения (ПО) осциллографа проводить в следующей последовательности:
 - проверить наименование ПО;
 - проверить идентификационное наименование ПО;
 - проверить номер версии (идентификационный номер) ПО;
- определить цифровой идентификатор ПО (контрольную сумму исполняемого кода). Для расчета цифрового идентификатора применяется программа (утилита) «MD5_FileChecker». Указанная программа находится в свободном доступе сети Internet (сайт www.winmd5.com).
- 8.3.2 Результаты поверки считать положительными, если идентификационные данные ПО соответствуют идентификационным данным, приведенным в таблице 3.

Таблица 3

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Infiniium 5.10 System Software
Номер версии (идентификационный номер) ПО	05.10.0005 и выше

8.4 Определение абсолютной погрешности установки напряжения смещения Абсолютная погрешность установки напряжения смещения определяется по формуле (1):

 $\Delta_{cM} = \pm (\Delta_{6a3} + \Delta_0) ; \qquad (1)$

где $\Delta_{\text{баз}} = K_{\text{баз}} \cdot U_{\text{смещ}}$ - базовая составляющая погрешности установки напряжения смещения;

 $\Delta_0 = 0.025 \cdot 8 \cdot [\text{дел}] \cdot \text{K}_{\text{откл}}$ - составляющая погрешности установки напряжения смещения из-за дрейфа «нуля» при напряжении входного сигнала до 5 мВ;

 $\Delta_0 = 0,02 \cdot 8 \cdot \text{[дел]} \cdot \text{K}_{\text{откл}} + 1 \text{ мB}$ - составляющая погрешности установки напряжения смещения из-за дрейфа «нуля» при напряжении входного сигнала свыше 5 мВ;

U_{смеш} – значение напряжения смещения;

Коткл – значение коэффициента отклонения;

 $K_{\text{баз}}$ – коэффициент, предельные значения которого равны ± 2 %.

- 8.4.1 Определение составляющей погрешности установки напряжения смещения из-за дрейфа «нуля»
- 8.4.1.1 Убедиться, что напряжение на входе каналов осциллографа не превышает значений \pm 5 В.
 - 8.4.1.2 Прогреть осциллограф в течении 30 минут.
 - 8.4.1.3 Отсоединить все кабели от входов осциллографа.
- 8.4.1.4 Нажать клавишу DEFAULT SETUP для настройки осциллографа: нажать программную клавишу SETUP MENU и выбрать значение ACQUISITION; когда отобразится меню ACQUISITION SETUP, сделать установки в соответствии с рисунком 1.
 - 8.4.1.5 Настроить осциллограф для измерения напряжения следующим образом:
- установить коэффициент отклонения канала 1 равным 10 мВ/дел;
- нажать программную клавищу «Vavg» в левом нижнем углу экрана измерений (рисунок 2).
- 8.4.1.6 Когда отобразиться программное окно ENTER MEASUREMENT INFO, выбрать значения:

Source = Channel 1;

Measurement area = Entire Display;

и нажать программную клавишу ОК (рисунок 3).

Рисунок 1

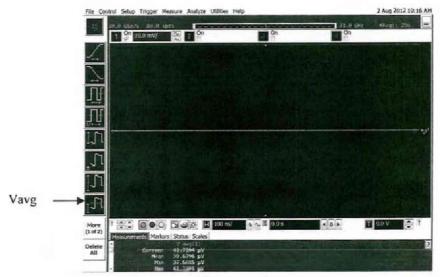


Рисунок 2

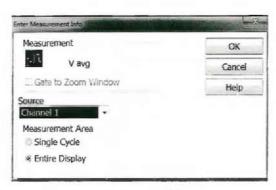


Рисунок 3

- 8.4.1.7 Нажать клавищу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.
- 8.4.1.8 Записать полученное значение среднего напряжения U_{cp} (определяется как «Меап» на экране осциллографа) в таблицу 4.

Таблица 4

Значение	Допустимые	Измеренные значения U _{ср} , мВ						
коэффициента отклонения	значения U_{cp} (Δ_0), мВ	канал 1	канал 2	канал 3	канал 4	канал 1R	канал 3R	
1	2	3	4	5	6	7	8	
10 мВ/дел	± 1,8							
20 мВ/дел	± 2,6							
50 мВ/дел	± 5							
100 мВ/дел	± 9							
200 мВ/дел	± 17							
500 мВ/дел	± 41							
1 В/дел	± 81							

Примечание - Если поверх всех значений в нижней части экрана осциллографа отображается знак вопроса, необходимо нажать клавишу CLEAR DISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

- 8.4.1.9 Изменить значение коэффициента отклонения канала 1 на 20 мВ/дел, нажать клавишу CLEAR DISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не стает равно 256, затем записать полученное значение среднего напряжения Ucp (определяется как «Mean» на экране осциллографа) в таблицу 4.
- 8.4.1.10 Повторить п. 8.4.1.9 для всех значений коэффициента отклонения канала 1 из таблицы 4.
 - 8.4.1.11 Нажать клавишу DEFAULT SETUP, отключить канал 1 и включить канал 2.
 - 8.4.1.12 Настроить осциллограф для измерения значения U_{cp} на канале 2:
- нажать программную клавишу SETUP MENU и выбрать значение ACQUISITION;
- когда отобразится меню ACQUISITION SETUP, установить значение #Avgs равным 256;
- изменить значение коэффициента отклонения канала 2 на 10 мВ/дел;
- нажать программную клавишу «Vavg» в левом нижнем углу экрана измерений (рисунок 2);
- когда отобразиться программное окно ENTER MEASUREMENT INFO, выбрать значения: Source = Channel 2

Measurement area = Entire Display

и нажать программную клавишу ОК (рисунок 3).

- 8.4.1.13 Нажать клавишу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не стает равно 256.
- 8.4.1.14 Записать полученное значение среднего напряжения U_{cp} (определяется как «Меап» на экране осциллографа) в таблицу 4.
- 8.4.1.15 Повторить пункт 8.4.1.12 для всех значений коэффициента отклонения канала 2 из таблицы 4.
 - 8.4.1.16 Повторить операции п.п. 8.4.1.11 8.4.1.15 для каналов 3 и 4.
- 8.4.1.17 Результаты поверки считать положительными, если значения U_{cp} находятся в пределах, приведенных в графе 2 таблицы 4. В противном случае осциллограф бракуется и направляется в ремонт.
- 8.4.2 Определение базовой составляющей погрешности установки напряжения смещения
 - 8.4.2.1 Собрать измерительную схему в соответствии с рисунком 4.

Рисунок 4

8.4.2.2 Нажать клавишу DEFAULT SETUP для настройки осциллографа - нажать программную клавишу SETUP MENU и выбрать значение ACQUISITION; когда отобразится меню ACQUISITION SETUP, сделать установки в соответствии с рисунком 1.

8.4.2.3 Установить коэффициент отклонения 1 канала 10 мВ/дел. В меню ACQUISITION выбрать ENABLED AVERAGING и ввести количество усреднений равное 256.

Когда отобразиться программное окно ENTER MEASUREMENT INFO, выбрать значения:

Source = Channel 1:

Measurement area = Entire Display;

и нажать программную клавишу ОК (рисунок 5).

8.4.2.4 Нажать клавишу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

- ручкой регулировки постоянного смещения установить его равным 400 мВ;

- в меню CALIBRATION в выпадающем списке выбрать DC - постоянное напряжение на выходе калибратора, затем установить напряжение 400 мВ в строке LEVEL;

8.4.2.5 Включить на осциллографе функцию автоматического измерения среднего значения напряжения Vavg, и в окне измерения выбрать MEASURMENT AREA - ENTIRE DISPLAY.

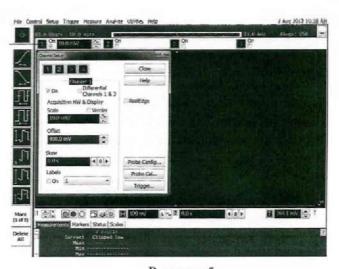


Рисунок 5

8.4.2.6 Нажать кнопку CLEAR DISPLAY. После достижения показаний счетчика усреднений в верхнем левом углу дисплея значения 256, записать показания мультиметра U_{M^+} и показания $U_{OCH^+}(Vavg)$ осциллографа в таблицу 5.

- 8.4.2.7 Ручкой регулировки постоянного смещения установить его равным минус 400 мВ. В меню CALIBRATION в выпадающем списке выбрать DC постоянное напряжение на выходе калибратора, затем установить напряжение минус 400 мВ в строке LEVEL.
- 8.4.2.8 Нажать кнопку CLEAR DISPLAY. После достижения показаний счетчика усреднений в верхнем левом углу дисплея значения 256, записать показания мультиметра $U_{\text{м}}$. и показания осциллографа $U_{\text{осц}}$. в таблицу 5.
- 8.4.2.9 Ручкой регулировки постоянного смещения установить его равным 0. В меню CALIBRATION в выпадающем списке выбрать DC постоянное напряжение на выходе калибратора, затем установить напряжение минус 0 в строке LEVEL.
- 8.4.2.10 Нажать кнопку CLEAR DISPLAY. После достижения показаний счетчика усреднений в верхнем левом углу дисплея значения 256, записать показания мультиметра U_0 и показания осциллографа $U_{\rm ocii0}$ в таблицу 5.

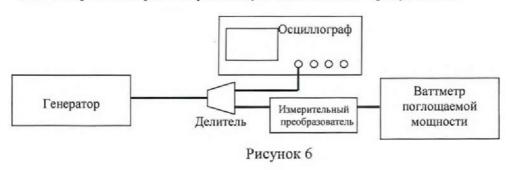
Таблица 5

таолица Установленн ый коэффициент отклонения	Напряжение на выходе встроенного калибратора /установлен ное постоянное смещение,	Пока зания мульт иметр а U _{м+}	Пока зания мульт иметр а U _м -	Показ ания мульт иметр а U _{м0}	Показа ния осцилл ографа U _{осц+}	Показа ния осцилл ографа U _{осц}	Показа ния осцилл ографа U _{осц0}	Значение коэффици ента К _{баз} , %
1 В/ дел	B ± 2,4							
500 мВ/ дел	± 2,4							
200 мВ/ дел	± 2,2							
100 мВ/ дел	± 1,2		2-31					
50 мВ/ дел	± 0,7							
20 мВ/ дел	± 0,4							
10 мВ/ дел	± 0,4							

8.4.2.11 Повторить пп. 8.4.2.2 – 8.4.2.10, изменяя напряжение на выходе встроенного калибратора и коэффициент отклонения канала 1 в соответствии с таблицей 5.

8.4.2.12 Рассчитать значение коэффициента K_{6a3} , используя формулы (2) и (3):

$$K_{\delta a3} = [(U_{ocu+} - U_{ocu0})/(U_{M+} - U_{M0}) - 1] \cdot 100 \%$$
, (2)


$$K_{6a3} = [(U_{ocu} - U_{ocu})/(U_{M} - U_{M}) - 1] \cdot 100\%$$
 (3)

8.4.2.13 Повторить п.п 8.4.2.2 - 8.4.2.12 для каналов 2, 3 и 4.

8.4.2.14 Результаты поверки считать положительными, если значения коэффициента K_{6a3} находятся в пределах \pm 2 %. В противном случае осциллограф бракуется и направляется в ремонт.

8.5 Определение полосы пропускания

8.5.1 Собрать измерительную схему в соответствии с рисунком 6.

8.5.2 Установить коэффициент отклонения канала 1 осциллографа равным 10 мВ/дел, а коэффициент развертки равным 16 нс/дел.

8.5.3 Нажать программную клавишу SETUP MENU и выбрать значение ACQUISITION. Когда отобразится меню ACQUISITION SETUP, установить следующие значения параметров осциллографа:

Memory Depth = Automatic;

Sampling rate = Maximum (160 GSa/s);

Sin(x)/x Interpolation =Auto;

Averaging = Disabled.

8.5.4 Установить значение измеряемого осциллографом напряжения как V_{rms} (в соответствии с рисунком 7).

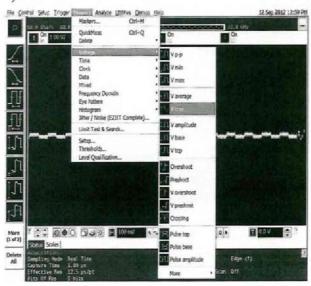


Рисунок 7

8.5.5 Установить следующие значения параметров осциллографа в программном окне «Enter Measurement Info»:

Source = Channel 1:

Measurement Area = Entire Display;

RMS Type = AC.

8.5.6 Установить на генераторе выходной сигнал частотой 50 МГц и амплитудой, равной 4 делениям на экране осциллографа.

8.5.7 Измерить уровень выходной мощности сигнала генератора Р_{изм} с помощью ваттметра и пересчитать его в среднеквадратическое значение (СКЗ) напряжения по формуле (4):

$$U_{\text{Bx50M}\Gamma \text{II}} = (P_{\text{изм}} \cdot 50)^{1/2} \qquad . \tag{4}$$

Записать полученное значение в соответствующую колонку таблицы 6.

Значение коэффициента	Измеряемые параметры							
отклонения осциллографа	$U_{\text{вх50M}\Gamma\text{ц}}$	U _{вых50МГц}	АЧХ50МГц	U _{BX.Makcf}	U _{вых.макс}	АЧХмакся		
		Канал 1						
10 мВ/дел								
20 мВ/дел								
50 мВ/дел								
100 мВ/дел								
200 мВ/дел								
500 мВ/дел								
1 В/дел								

	Канал 2	
10 мВ/дел		
20 мВ/дел		
50 мВ/дел		
100 мВ/дел		
200 мВ/дел		
500 мВ/дел		
1 В/дел		
	Канал 3	
10 мВ/дел		
20 мВ/дел		
50 мВ/дел		
100 мВ/дел		
200 мВ/дел		
500 мВ/дел		
1 В/дел		
	Канал 4	
10 мВ/дел		
20 мВ/дел		
50 мВ/дел		
100 мВ/дел		
200 мВ/дел		
500 мВ/дел		
1 В/дел		
	Канал 1R	
10 мВ/дел		
20 мВ/дел		
50 мВ/дел		
100 мВ/дел		
	Канал 3R	
10 мВ/дел		
20 мВ/дел		
50 мВ/дел		
100 мВ/дел		

- 8.5.8 Измерить СКЗ напряжения $U_{\text{вых}50\text{M}\Gamma\text{u}}$ с помощью осциллографа и записать полученное значение в соответствующую колонку таблицы 6.
- 8.5.9 Рассчитать значение амплитудно-частотной характеристики (АЧХ) осциллографа на частоте 50 МГц по формуле (5):

$$AYX_{50M\Gamma\mu} = U_{Bbix50M\Gamma\mu}/U_{Bx50M\Gamma\mu} \tag{5}$$

Записать полученное значение в соответствующую колонку таблицы 6.

- 8.5.10 Установить значение частоты выходного сигнала генератора и значения параметров осциллографа в соответствии с таблицей 7.
- 8.5.11 Измерить уровень выходной мощности сигнала генератора $P_{\text{изм}}$ с помощью ваттметра и пересчитать его в СКЗ напряжения по формуле (6):

$$U_{\text{BXMAKCf}} = (P_{\text{M3M}} \cdot 50)^{1/2}$$
 . (6)

Записать полученное значение в соответствующую колонку таблицы 6.

8.5.12 Измерить СКЗ напряжения U_{вых максf} с помощью осциллографа и записать полученное значение в соответствующую колонку таблицы 5.

8.5.13 Рассчитать значение АЧХ осциллографа на максимальной частоте пропускания по формуле (7):

$$A^{\prime}X_{Makef} = 20 \lg \left(\frac{U_{\text{выхмакеf}}}{A^{\prime}X_{50MT\eta}} \right). \tag{7}$$

- 8.5.14 Повторить п.п. 8.5.2-8.5.13 для всех значений коэффициента отклонения из таблицы 6 и для всех каналов осциллографа.
- 8.5.15 Результаты поверки считать положительными, если значения $AЧX_{\text{максf}}$ находятся в пределах \pm 3 дБ. В противном случае осциллограф бракуется и направляется в ремонт.
 - 8.6 Определение абсолютной погрешности установки коэффициента отклонения
 - 8.6.1 Собрать измерительную схему в соответствии с рисунком 4.
- 8.6.2 Убедиться, что напряжение на входе каналов осциллографа не превышает значений \pm 5 В.
 - 8.6.3 Прогреть осциллограф в течении 30 минут.
 - 8.6.4 Отсоединить все кабели от входов осциллографа.
- 8.6.5 Нажать клавишу Default Setup для настройки осциллографа нажать программную клавишу Setup menu и выбрать значение Acquisition; когда отобразится меню Acquisition Setup, сделать установки в соответствии с рисунком 1.
- 8.6.6 Установить на встроенном калибраторе осциллографа (CAL OUT) напряжение плюс 30 мВ, для чего (рисунок 8):
 - выбрать настройку «Utilities = Calibration Output»;
 - выбрать выходной сигнал DC (в левом верхнем углу рисунка 8);
 - установить уровень 30 мВ;
 - нажать кнопку CLOSE.

Рисунок 8

- 8.6.7 Настроить осциллограф для измерений среднего значения напряжения следующим образом:
 - установить коэффициент отклонения канала 1 равным 10 мВ/дел;
- нажать программную клавишу «Vavg» в левом нижнем углу экрана измерений (рисунок 2).

Когда отобразиться программное окно ENTER MEASUREMENT INFO, выбрать значения:

Source = Channel 1;

Measurement area = Entire Display;

и нажать программную клавишу ОК (рисунок 3).

- 8.6.8 Нажать клавишу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.
- 8.6.9 Записать полученные значения среднего напряжения, измеренные мультиметром (U_{M+}) и осциллографом (U_{ocu+}) (определяется как «Mean» на экране осциллографа) в таблицу 8.

Примечание - Если поверх всех значений в нижней части экрана осциллографа отображается знак вопроса, необходимо нажать клавишу CLEAR DISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

8.6.10 Установить на встроенном калибраторе осциллографа (CAL OUT) напряжение

минус 30 мВ аналогично п. 8.6.6.

- 8.6.11 Нажать клавишу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.
- 8.6.12 Записать полученные значения среднего напряжения, измеренные мультиметром ($U_{\text{м-}}$) и осциллографом ($U_{\text{осц-}}$) (определяется как «Mean» на экране осциллографа) в таблицу 8.
- 8.6.13 Вычислить относительную погрешность установки коэффициента отклонения δ_{Ko} (в процентах) по формулам (8) и (9):
 - для коэффициентов отклонения менее 1 В/дел:

$$\delta_{Ko} = [(U_{ocu+} - U_{ocu-})/(U_{M+} - U_{M-}) - 1] \cdot 75;$$
 (8)

- для коэффициентов отклонения 1 В/дел и более:

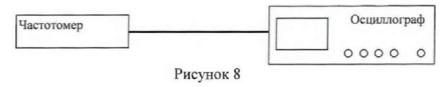

$$\delta_{Ko} = \left[(U_{ocut} - U_{ocu})/(U_{M+} - U_{M-}) - 1 \right] \cdot 60. \tag{9}$$

Таблица 8

Значение	Значение	Измере	нные знач	ения напр	яжения	Вычисленное	Пределы
коэффициен	напряжения	U_{M^+}	U _M -	U _{ocu} -	U _{ocu+}	значение	допускаемой
та	на выходе			-		погрешности	погрешности
отклонения	осциллограф					коэффициента	
осциллограф	a Cal Out					отклонения	коэффициент
a	Setting					δ_{Ko}	отклонения,%
			Ka	нал 1			
10 мВ/дел	± 30 мВ						
20 мВ/дел	± 60 мВ						
50 мВ/дел	± 150 мВ						
100 мВ/дел	± 300 мВ						± 2
200 мВ/дел	± 600 мВ						
500 мВ/дел	± 1,5 B						
1 В/дел	± 2,4 B						
			Ка	нал 2			
10 мВ/дел	± 30 мВ						
20 мВ/дел	± 60 мВ						
50 мВ/дел	± 150 мВ						50.5
100 мВ/дел	± 300 мВ						± 2
200 мВ/дел	± 600 мВ						
500 мВ/дел	± 1,5 B						
1 В/дел	± 2,4 B						
			Ка	нал 3			
10 мВ/дел	± 30 мВ						
20 мВ/дел	± 60 мВ						
50 мВ/дел	±150 мВ						
100 мВ/дел	± 300 мВ						± 2
200 мВ/дел	± 600 мВ						
500 мВ/дел	± 1,5 B						
1 В/дел	± 2,4 B						
			Ка	нал 4			
10 мВ/дел	± 30 мВ						
20 мВ/дел	± 60 мВ						
50 мВ/дел	±150 мВ						ta.
100 мВ/дел	± 300 мВ						± 2
200 мВ/дел	± 600 мВ						
500 мВ/дел	± 1,5 B						
1 В/дел	± 2,4 B						

		Ka	нал 1R	
10 мВ/дел	± 30 мВ			
20 мВ/дел	± 60 мВ			
50 мВ/дел	±150 мВ			
100 мВ/дел	± 300 мВ			± 2
200 мВ/дел	± 600 мВ			
500 мВ/дел	± 1,5 B			
1 В/дел	± 2,4 B			
		Kai	нал 3R	
10 мВ/дел	± 30 мВ			
20 мВ/дел	± 60 мВ			
50 мВ/дел	± 150 мВ			
100 мВ/дел	\pm 300 mB			± 2
200 мВ/дел	± 600 мВ			
500 мВ/дел	± 1,5 B			
1 В/дел	± 2,4 B			

- 8.6.14 Повторить измерения по п.п. 8.6.7-8.6.11 для всех значений коэффициента отклонения из таблицы 8. При каждом измерении устанавливать положительное и отрицательное значение напряжения на выходе CAL OUT из таблицы 8.
 - 8.6.15 Повторить измерения по п.п. 8.6.7 8.6.12 для всех каналов осциллографа.
- 8.6.16 Результаты поверки считать положительными, если значения погрешности установки коэффициентов отклонения находятся в пределах \pm 2 %. В противном случае осциллограф бракуется и направляется в ремонт.
- 8.7 Определение относительной погрешности по частоте внутреннего опорного генератора
- 8.7.1 Собрать измерительную схему в соответствии с рисунком 9. При этом выход опорного сигнала (10 МГц REF) на задней панели осциллографа подключить к входу А частотомера.

- 8.7.2 На частотомере установить: режим измерения частоты по входу А; входное сопротивление частотомера 50 Ом, переключатель X1/X10 в положение X1; вход открытый.
- 8.7.3 На осциллографе нажать клавишу Utility и программируемые клавиши Options, Rear Panel, Ref signal Output, 10MHz output.
- 8.7.4 Измерить частотомером частоту опорного сигнала осциллографа и определить относительную погрешность осциллографа по частоте внутреннего опорного генератора по формуле (10):

$$\delta_{\rm or} = (10^7 - F_{\rm s})/10^7 \,, \tag{10}$$

где F_ч - показания частотомера, Гц.

Результаты поверки считать положительными, если значение относительной погрешности осциллографа по частоте внутреннего опорного генератора находится в пределах \pm $(0,1\cdot10^{-6}+0,1\cdot T_3\cdot10^{-6})$, где T_3 – количество лет эксплуатации осциллографа; $\delta_{\text{опк}}$ – относительная погрешность опорного генератора по результатам последней поверки. В противном случае осциллограф бракуется и направляется в ремонт.

9 Оформление результатов поверки

- 9.1 При положительных результатах поверки на осциллограф выдается свидетельство установленной формы.
 - 9.2 На оборотной стороне свидетельства о поверке записываются результаты поверки.
- 9.3 В случае отрицательных результатов поверки поверяемый осциллограф к дальнейшему применению не допускается. На него выдается извещение о непригодности к дальнейшей эксплуатации с указанием причин забракования.

Начальник НИО-1 ФГУП «ВНИИФТРИ»

О.В. Каминский