УТВЕРЖДАЮ

Директор ОП ГНМЦ АО "Нефтеавтоматика"

М.С. Немиров

%» / 0 / 2017 г.

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений

Барьеры искрозащиты MIB-200 Ex

Методика поверки

НА.ГНМЦ.0148-17 МП

РАЗРАБОТАНА

Обособленным подразделением Головной научный

метрологический центр АО «Нефтеавтоматика» в

г. Казань (ОП ГНМЦ АО «Нефтеавтоматика»)

Аттестат аккредитации R

RA.RU.311366

выдан

09.10.2015 г.

исполнители:

Тропынин В.А.,

Житейцев Е.Р.

Настоящая инструкция не может быть полностью или частично воспроизведена, тиражирована и (или) распространена без разрешения АО «Нефтеавтоматика».

Настоящая методика поверки распространяется на барьеры искрозащиты MIB-200 Ex (далее – барьеры) и устанавливает методику их первичной и периодической поверки на следующие исполнения:

- Барьер искрозащиты MIB-212 Ex, имеющий 2 аналоговых входных канала 4..20 (0..20) мА с поддержкой протокола HART;
- Барьер искрозащиты MIB-222 Ex, имеющий 2 аналоговых выходных канала 4..20 (0..20) мА с поддержкой протокола HART;
- Барьер искрозащиты MIB-232 Ex, имеющий 2 аналоговых входных канала 4..20 (0..20) мА;
- Барьер искрозащиты MIB-242 Ex, имеющий 2 аналоговых выходных канала 4..20 (0..20) мА;
- Барьер искрозащиты MIB-252 Ex, имеющий 2 входных канала для сигналов от термопар и термопреобразователей сопротивления.

Межповерочный интервал – 2 года.

1 Операции поверки

При проведении поверки выполняют следующие операции:

- 1.1 Внешний осмотр (п.п. 6.1);
- 1.2 Опробование (п.п. 6.2);
- 1.3 Подтверждение соответствия программного обеспечения (п.п. 6.3);
- 1.4 Определение метрологических характеристик (п.п. 6.4).

2 Средства поверки

- 2.1 Калибратор давления DPI 620 (регистрационный номер в Федеральном информационном фонде 16347-09).
 - 2.2.Барометр-анероид метеорологический БАММ-1 (Госреестр № 5738-76).
 - 2.3 Гигрометр психрометрический ВИТ-1 (Госреестр № 9364-04).

2.4 Допускается применять для испытания оборудование и приборы, не указанные в настоящем перечне, но обеспечивающие проверку изделий на соответствие требованиям технических условий.

3 Требования безопасности

При проведении поверки соблюдают требования, установленные:

- в области охраны труда и промышленной безопасности: Трудовой Кодекс РФ, «Правила безопасности в нефтяной и газовой промышленности», утверждены приказом Ростехнадзора от 12.03.2013г. № 101;
- в области пожарной безопасности: «Правила противопожарного режима в Российской Федерации», утверждены постановлением Правительства РФ от 25.04.2012 №390:
- в области соблюдения безопасной эксплуатации электроустановок: «Правила технической эксплуатации электроустановок потребителей», «Правила устройства электроустановок», утвержденные приказом Минтруда России от 24.07.2013 г. № 328H;
- в области охраны окружающей среды: Федеральным законом «Об охране окружающей среды» от 10.01.2002 г. № 7-Ф3.

4 Условия поверки

4.1 При проведении поверки соблюдают следующие условия:

- температура окружающего воздуха, °С

от +15 до +25;

- относительная влажность воздуха, %,

от 50 до 80;

- атмосферное давление, кПа

от 96 до 104.

5 Подготовка к поверке

- 5.1 Перед началом поверки следует изучить:
- руководство по эксплуатации барьеров;
- руководства по эксплуатации средств поверки и других технических средств, используемых при поверке;
 - настоящую методику поверки.
- 5.2 Перед проведением поверки, средства поверки и вспомогательное оборудование должны быть подготовлены к работе в соответствии с указаниями эксплуатационной документации.

6 Проведение поверки

- 6.1 Внешний осмотр.
- 6.1.1 Внешний вид барьера проверяется визуальным осмотром на отсутствие вмятин, трещин, различных механических повреждений корпуса и присоединительных клемм.
- 6.1.2 Убедиться, что надписи и обозначения на барьере не имеют нарушений.
- 6.1.3 Результаты внешнего осмотра считаются положительными, если при поверке подтверждается соответствие барьера указанным требованиям.

6.2 Опробование

6.2.1 При опробовании барьера подают сигнал силы постоянного тока со значением, равным 70% верхнего предела диапазона, на измерительный канал. Убедиться в том, что на калибраторе при этом изменяется измеренное калибратором значение тока.

- 6.3 Подтверждение соответствия программного обеспечения.
- 6.3.1 Идентификация встроенного ПО Барьера искрозащиты МІВ-252 Ех осуществляется путем проверки в левой нижней части основного экрана диагностического ПО «Конфигуратор МІВ-200». Строка «Номер версии (идентификационный номер) ПО» содержит номер версии, а строка «Цифровой идентификатор ПО» контрольную сумму встроенного ПО барьера.
- 6.3.2 Если номер версии и контрольная сумма, указанные в описании типа барьеров и полученные в ходе выполнения п.6.3.1, идентичны, то делают вывод о подтверждении соответствия встроенного ПО программному обеспечению, зафиксированному во время проведения испытаний в целях утверждения типа, в противном случае результаты поверки признают отрицательными.
 - 6.4 Определение метрологических характеристик.
- 6.4.1 Проверку аналоговых входов (выходов) проводят для Барьера искрозащиты MIB-212, Барьера искрозащиты MIB-222, Барьера искрозащиты MIB-232, Барьера искрозащиты MIB-242.
- 6.4.1.1 Подключить ко входу модуля калибратор многофункциональный DPI-620, в режиме воспроизведения (измерения) силы постоянного тока.
- 6.4.1.2 Задают при помощи калибратора токовый сигнал в диапазоне от 4 до 20 мА (от 0 до 20 мА) с шагом 4 мА.
 - 6.4.1.3 Наблюдают измеренное значение при помощи калибратора.
- 6.4.1.4 Вычисляют основную приведенную погрешность измерения δ_{np} ,%, по формуле (1), приведенную к величине диапазона 16 мА (20 мА):

$$\delta_{\rm np} = \frac{|I_{\rm M3M} - I_{\rm 3T}|}{(I_{\rm B} - I_{\rm H})} \cdot 100\% \tag{1}$$

где

 $I_{\mu_{3M}}$ -измеренное значение тока;

I_{эт}-значение тока, воспроизведенное калибратором;

I_в-верхний предел диапазона измерения тока;

 I_{μ} -нижний предел диапазона измерения тока.

- 6.4.1.5 Повторяют операции по п. 6.4.1.2 6.4.1.4 для остальных значений силы тока.
- 6.4.1.6 Повторяют операции по п. 6.4.1.1 6.4.1.5 для всех оставшихся измерительных каналов модуля.
- 6.4.1.7 Результаты поверки считаются положительными, если пределы основной приведенной погрешности каждого измерительного канала в каждой проверяемой точке диапазона измерений силы постоянного тока не превышают предельно допустимых значений, приведенных в приложении А.
- 6.4.2 Проверка входных каналов Барьера искрозащиты МІВ-252. Проверка проводится с помощью персонального компьютера с установленным ПО «Конфигуратор МІВ-200», которое позволяет вручную задавать тип датчика, режим подключения и диапазон температуры термопар/ термопреобразователей сопротивления.
- 6.4.2.1 Сконфигурировать изделие для измерения термопар/ термопреобразователей сопротивления по трех— либо четырехпроводной схеме.
- 6.4.2.2 Подключить калибратор с возможностью генерации сигналов термопар/ термопреобразователей сопротивления.
- 6.4.2.3 Калибратором сгенерировать сигнал термопар/ термопреобразователей сопротивления, последовательно устанавливая значения температуры в полном диапазоне выбранного типа термопар/ термопреобразователей сопротивления.

6.4.2.4 Измерить выходной ток изделия, определить измеренное значение температуры.

6.4.2.5 Вычислить погрешность измерения по формулам (2), (3).

$$\delta_{\pi p} = (T_{\text{\tiny M3M}} - T_{\text{\tiny 9T}}) \tag{2}$$

$$T_{\text{H3M}} = \frac{(I_{\text{H3M}} - 4)}{16} \cdot (T_{\text{B}} - T_{\text{H}}) + T_{\text{H}}$$
 (3)

где

Тизм – измеренное значение температуры;

I_{изм} – измеренное значение силы постоянного тока;

Т_{эт} – значение температуры, воспроизведенное калибратором;

Т_в – верхний предел диапазона измерения температуры;

Т_н – нижний предел диапазона измерения температуры.

- 6.4.2.6 Повторяют операции по п. 6.4.2.3 6.4.2.5 для всех оставшихся типов термопар/ термопреобразователей сопротивления барьера.
- 6.4.2.7 Результаты поверки считаются положительными, если пределы основной приведенной погрешности каждого измерительного канала в каждой проверяемой точке диапазона измерений силы постоянного тока не превышают предельно допустимых значений, приведенных в приложении А.
- 6.4.2.8 Сконфигурировать изделие для проверки возможности аналоговых входов по приему сигналов от устройств с выходным сигналом напряжения постоянного тока в диапазоне от минус 10 до плюс 100 мВ по двухпроводной схеме.
- 6.4.2.9 Подключить калибратор с режиме воспроизведение напряжения постоянного тока.
- 6.4.2.10 На калибраторе последовательно установить значения напряжения постоянного тока, соответствующие 0, 25, 50, 75, 100 % от полного диапазона измерения.
- 6.4.2.11 Измерить выходной ток изделия, определить измеренное значение напряжения.
 - 6.4.2.12 Вычислить погрешность измерения по формулам (4), (5).

$$\delta_{\rm np} = (U_{\rm \tiny M3M} - U_{\rm \tiny 9T}) \tag{4}$$

$$U_{H3M} = \frac{(I_{H3M} - 4)}{16} \cdot (U_B - U_H) + U_H$$
 (5)

где

U_{изм} – измеренное значение температуры;

I_{изм} – измеренное значение силы постоянного тока;

 U_{3T} – значение температуры, воспроизведенное калибратором;

U_в – верхний предел диапазона измерения температуры;

U_н – нижний предел диапазона измерения температуры.

- 6.4.2.13 Результаты поверки считаются положительными, если пределы основной приведенной погрешности каждого измерительного канала в каждой проверяемой точке диапазона измерений силы постоянного тока не превышают предельно допустимых значений, приведенных в приложении А.
- 6.4.2.14 Сконфигурировать изделие для проверки функции измерения сопротивления в диапазоне от 0 до 3000 Ом по трех- и четырехпроводной схеме.
 - 6.4.2.15 Подключить калибратор с режиме воспроизведение сопротивления.

- 6.4.2.16 На калибраторе последовательно установить значения сопротивления, соответствующие 0, 25, 50, 75, 100 % от полного диапазона измерения.
- 6.4.2.17 Измерить выходной ток изделия, определить измеренное значение сопротивления.
 - 6.4.2.18 Вычислить погрешность измерения по формулам (6), (7).

$$\delta_{\rm np} = (R_{\rm H3M} - R_{\rm 9T}) \tag{6}$$

$$R_{_{\text{ИЗM}}} = \frac{(I_{_{\text{ИЗM}}} - 4)}{16} \cdot (R_{_{\text{B}}} - R_{_{\text{H}}}) + R_{_{\text{H}}}$$
 (7)

где

R_{изм} – измеренное значение температуры;

I_{изм} – измеренное значение силы постоянного тока;

 $R_{\rm эт}$ — значение температуры, воспроизведенное калибратором;

R_в – верхний предел диапазона измерения температуры;

R_н – нижний предел диапазона измерения температуры.

6.4.2.19 Результаты поверки считаются положительными, если пределы основной приведенной погрешности каждого измерительного канала в каждой проверяемой точке диапазона измерений силы постоянного тока не превышают предельно допустимых значений, приведенных в приложении А.

7 Оформление результатов поверки

- 7.1 При положительных результатах поверки оформляют свидетельство о поверке барьера в соответствии с требованиями Порядка проведения поверки средств измерений, утвержденного приказом Минпромторга №1815 от 02.07.2015г.
- 7.2 При отрицательных результатах поверки барьер к эксплуатации не допускают, свидетельство о поверке аннулируют и выдают извещение о непригодности в соответствии с Порядком проведения поверки средств измерений, утвержденного приказом Минпромторга №1815 от 02.07.2015 г.

Приложение А

Таблица 1 - Основные метрологические характеристики измерительных модулей MIB-200 Ex

Тип	и МІВ-200 EX Наименование характеристики Значение					
барьера	Входной аналоговый канал измерения тока, мА			от 4 до 20 (от 0 до 20)		
MIB-212 Ex						
	Выходной аналоговый канал воспроизведения тока, мА			от 4 до 20 (от 0 до 20)		
	Пределы допускаемой основной приведенной погрешности преобразования			±0,1 %		
MIB-222 Ex	Входной аналоговый канал измерения тока, мА			от 4 до 20 (от 0 до 20)		
	Выходной аналоговый канал воспроизведения тока, мА			от 4 до 20 (от 0 до 20)		
	Пределы допускаемой основной приведенной погрешности преобразования			±0,1 %		
MIB-232 Ex	Входной аналоговый канал измерения тока, мА			от 4 до 20 (от 0 до 20)		
	Выходной а	аналоговый кана	от 4 до 20 (от 0 до 20)			
	Пределы допускаемой основной приведенной погрешности преобразования			±0,1 %		
MIB-242 Ex	Входной аналоговый канал измерения тока, мА			от 4 до 20 (от 0 до 20)		
	Выходной аналоговый канал воспроизведения тока, мА			от 4 до 20 (от 0 до 20)		
	Пределы допускаемой основной приведенной погрешности преобразования			±0,1 %		
MIB-252 Ex	Диапазон выходного сигнала, мА			от 4 до 20 (от 0 до 20)		
		Тип	ип Диапазон		Погрешность измерений	
	Входной канал	термодатчика	измерений/воспроизведения	основная	дополнительная	
		В	+600+1800	± 2_	0,6	
		E	-200+ 1000	±1_	0,3	
		J	-200+ 1200	±1	0,3	
		K	-200+ 1300	± 1	0,3	
		L (IEC 584-1)	-200+ 900	±1	0,3	
	измерений	N	-200+ 1300	± 1	0,3	
	гемпературы, °С	T	-200+ 400	±1	0,3	
		R	0+ 1700	± 2	0,6	
		S	0+ 1700	± 2	0,6	
		Pt100	-200+ 850	± 0,6	0,04	
		Pt50	-200+ 850	±1	0,06	
		Pt1000	-200+ 850	± 0,6	0,04	
		Cu100M	-200+ 200	±0,6	0,04	
		Cu100	-200+ 260	±0,6	0,04	
	Входной канал измерения напряжения, мВ		-10+ 100	±25*10 ⁻³	8*10 ⁻³	
	Входной канал измерения сопротивления, Ом 03000			±3	0,1	