

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ «Ростест-Москва»

Е.В. Морин

«15» мая 2017 г.

Государственная система обеспечения единства измерений

СТАНЦИИ МЕТЕОРОЛОГИЧЕСКИЕ М-49М

Методика поверки

MII-PT-3478-443-2017

Настоящая методика распространяется на станции метеорологические М-49М (далее станции метеорологические), изготовленные акционерным обществом «Сафоновский завод гидрометеорологических приборов» (АО «Сафоновский завод «Гидрометприбор»), г. Сафоново Смоленской обл., и устанавливает методику и последовательность проведения первичной и периодических поверок.

Интервал между поверками 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении первичной и периодической поверки должны выполняться операции, указанные в таблице 1.

Таблица 1- Операции поверки

	Номер	Проведение операции при	
Наименование операции	пункта НД	первичной	периодической
	по поверке	поверке	поверке
1 Внешний осмотр	7.1	Да	Да
2 Опробование	7.2	Да	Да
3 Определение метрологических	7.3	Да	По
характеристик		да	Да
3.1 Определение абсолютной погрешности по	7.3.1	Па	По
каналу скорости воздушного потока (ветра)		Да	Да
3.2 Определение абсолютной погрешности по	7.3.2		
каналу направления воздушного потока		Да	Да
(ветра)			
3.3 Определение абсолютной погрешности по	7.3.3	Да	Да
каналу давления		да да	
3.4 Определение абсолютной погрешности по	7.3.4	Да	Да
каналу относительной влажности		да	да
3.6 Определение абсолютной погрещности по	7.3.5	Да	Да
каналу температуры		да	да
4 Оформление результатов поверки	8	Да	Да

2 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют средства измерений, указанные в таблице 2.

Таблица 2- Средства измерений

Таблица 2- Средства измерений		
Номер пункта	Наименование и тип основного и вспомогательного средства поверки;	
методики поверки	обозначение нормативного документа, регламентирующего технические	
	требования и метрологические характеристики средства поверки	
7.3.1, 7.3.2	Установка аэродинамическая с диапазоном задаваемых скоростей	
	воздушного потока от 0,5 до 60 м/с, пределы допускаемой абсолютной	
	погрешности ±(0,0006+0,01V)	
	Эталонный лимб, Л86.050.006, с диапазоном задаваемых плоских углов	
	от 0 до 360°, имеющий пределы абсолютной погрешности ±3°	
7.3.3	Эталонный манометр абсолютного давления МПА-15, диапазон	
	измерений абсолютного давления от 0 до 400 кПа (от 0 до 3000 мм рт.	
ļ	ст.), погрешность не более ± 13 Па ($\pm 0,1$ мм рт. ст.)	
	Барометр образцовый переносной БОП-1М-3, диапазон измерений от 5	
	до 2800 гПа, П Γ ±0,10 гПа (в диапазоне от 5 до 1100 гПа), П Γ ±0,01 %ИВ	
	(в диапазоне св. 1100 гПа)	
7.3.4	Климатическая камера «Фойтрон 3001-01» с диапазоном	
	воспроизведения относительной влажности от 10 до 98 %.	
	Камера климатическая WK 340/70 Область температур от минус 70 до	
	плюс 180 °C, погрешность ± 1 °C, влажность от 30 до 98 %, погрешность	
	± 1 %.	
	Измеритель комбинированный Testo 645, диапазон измерений	
	относительной влажности 5-95%, Δ=±1%,	
	Гигрометр НМР233, с диапазоном измерений относительной влажности	
	от 0 до 100 %, пределы допускаемой абсолютной погрешности ±1 %.	
7.3.5	Водяной термостат для диапазона температур от +5 до+50°C,	
	погрешность поддержания температуры ±0,05 °C.	
	Криостат для диапазона температур от -50 до 0 °С, погрешность	
	поддержания температуры ±0,1 °C.	
	Термометр сопротивления платиновый ПТСВ-1-2 №381, диапазон от -50	
	до 250 °C, пределы допускаемой абсолютной погрешности ±1 °C.	
	Термометр сопротивления платиновый ТСП5071 с частично-цифровым	
	преобразователем Ф-206, диапазон температуры от -100 до +200 °C,	
	пределы допускаемой абсолютной погрешности ±1 °C.	
П		

Примечания:

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица, ознакомленные с руководством по эксплуатации на манометры цифровые и прошедшие инструктаж по технике безопасности.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки необходимо соблюдать:

4.1 Требования безопасности, которые предусматривают «Правила по охране труда при эксплуатации электроустановок»;

¹ Все средства измерений, применяемые при поверке, должны иметь действующие свидетельства о поверке.

² Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

- 4.2 Указания по технике безопасности, приведенные в эксплуатационной документации на средства измерений, применяемые при поверке;
- 4.3 Указания по технике безопасности, приведенные в руководстве по эксплуатации на метеорологические станции.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °С

- атмосферное давление, кПа

от 84 до 107;

- относительная влажность воздуха, %

от 30 до 80.

Должны отсутствовать внешние электрические и магнитные поля, влияющие на работу электроизмерительной аппаратуры.

6 ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ

Для проведения поверки представляют следующую документацию:

- руководство по эксплуатации;
- свидетельство о предыдущей поверке.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При внешнем осмотре проверяется:

- наличие на шильдике прибора типа, заводского номера и года выпуска;
- отсутствие внешних повреждений компонентов, входящих в состав прибора, которые могут повлиять на его метрологические характеристики.

Станции метеорологические, не отвечающие перечисленным выше требованиям, дальнейшей поверке не подлежат.

7.2 Опробование.

При проведении опробования производится подготовка станции метеорологической в соответствии с НД.

7.2.1 Установить датчик скорости ветра в рабочий участок аэродинамической трубы. Плавно изменяя скорость воздушного потока от минимального значения до максимального, убедиться о соответствии изменений показаний станции метеорологической.

Плавно изменяя направление флюгарки датчика направления ветра от минимального до максимального, при скорости воздушного потока не более 5 м/с, убедиться в соответствии изменений показаний станции метеорологической.

- 7.2.2 Работоспособность датчика влажности проверяется его увлажнением до 95 %, при этом показания влажности должны изменяться в сторону увеличения.
- 7.2.3 Работоспособность датчика температуры проверяется путем нагрева чувствительного элемента в пределах диапазона измерений, при этом показания температуры должны изменяться в сторону увеличения.
- 7.2.4 Работоспособность датчика давления проверятся путем увеличения давления в измерительной камере в пределах диапазона измерений, при этом показания атмосферного давления должны изменяться в сторону увеличения.

Станции метеорологические, не отвечающие перечисленным выше требованиям, дальнейшей поверке не подлежат.

7.3 Определение метрологических характеристик

7.3.1 Определение абсолютной погрешности по каналу скорости воздушного потока (ветра).

Датчик скорости ветра устанавливается в аэродинамическую трубу. В установке последовательно устанавливают пять значений скорости воздушного потока в диапазоне от 1,5 до 45 м/с (для датчика ветра М-127) и в диапазоне от 0,6 до 45 м/с (для датчика ветра малогабаритного ДВМ).

Устанавливать значения скорости воздушного потока следует равномерно по всему диапазону.

После выхода аэродинамической трубы на заданный режим и установке постоянных показаний станции метеорологической записывают три подряд измеренных станцией значения скорости воздушного потока и соответствующие им показания аэродинамической трубы, после чего определяется погрешность в заданной точке по формуле.

Погрешность в заданной точке рассчитывается по формуле 1:

$$\Pi_{i} = A_{i} - A_{\pi} \tag{1}$$

где:

 Π_i - погрешность в заданной точке

Аі – і-тое показание метеорологической станции;

 A_{π} — действительное значение скорости воздушного потока, задаваемое в аэродинамической трубе;

Результаты считать удовлетворительными, если полученные значения погрешностей не превышают пределов допускаемых значений, указанных в описании типа.

7.3.2 Определение абсолютной погрешности по каналу направления ветра.

Датчик устанавливается в аэродинамическую трубу так, чтобы угол между направлением воздушного потока и ориентиром датчика составлял последовательно 0; 90; 180; 270°. Затем при каждом из этих положений флюгарку датчика ветра отклоняют от оси воздушного потока угол от 15° до 20°, скорость воздушного потока в установке устанавливают 1,5 м/с и производят измерение направлений. После этого определяется погрешность в заданной точке по формуле.

Погрешность в заданной точке рассчитывается по формуле 2:

$$\Pi_{i} = A_{i} - A_{n} \tag{2}$$

где:

Пі - погрешность в заданной точке

 A_i – i-тое показание прибора;

А_л – действительное значение угла, определяемое по эталонному лимбу;

Результаты считать удовлетворительными, если полученные значения погрешностей не превышают пределов допускаемых значений, указанных в описании типа.

7.3.3 Определение абсолютной погрешности по каналу давления.

Определение абсолютной погрешности по каналу давления проводится непосредственным сличением с эталонным манометром абсолютного давления (барометром).

Погрешность определяют при пяти значениях давления, включая нижний и верхний пределы измерений.

Основная абсолютная погрешность определяется по формуле 3:

$$\Delta P_i = P_{\mu_{3M}} - P_{\pi} \tag{3}$$

где Ризм. – измеренное значение давления;

Рл – действительное значение давления эталонного прибора.

Результаты считать удовлетворительными, если полученные значения погрешностей не превышают пределов допускаемых значений, указанных в описании типа.

7.3.4 Определение абсолютной погрешности по каналу относительной влажности.

Проверку абсолютной погрешности приборов при измерении относительной влажности производят с помощью гигрометра HMP233 методом непосредственного сличения с помощью климатической камеры в следующей последовательности:

Помещают приборы и зонд эталонного СИ в климатическую камеру. В камере последовательно устанавливают пять значений относительной влажности в диапазоне от 10 до 98 % при температуре от 15 до 25 °C. Значения относительной влажности равномерно распределены по диапазону.

После выхода камеры на заданный режим и установки постоянных показаний метеорологической станции записывают три подряд измеренных метеорологической станцией значения относительной влажности и показания гигрометра, после чего определяется погрешность в заданной точке по формуле:

Погрешность в заданной точке рассчитывается по формуле 4:

$$\Pi_{i} = A_{i} - A_{\pi} \tag{4}$$

где:

Пі - погрешность в заданной точке

A_i – i-тое показание прибора;

 A_{π} – действительное значение относительной влажности, определяемое по гигрометру;

Результаты считать удовлетворительными, если полученные значения погрешностей не превышают пределов допускаемых значений, указанных в описании типа..

7.3.5 Определение абсолютной погрешности по каналу температуры.

Определение абсолютной погрешности по каналу температуры производится методом сличения с платиновым термометром сопротивления в водяном термостате для диапазона температур свыше 0 до +50 °C или криостате для диапазона температур от -50 до 0 °C при следующих значениях температуры: -50 °C, -20 °C, -5 °C, +20 °C, +50 °C.

Блок датчиков температуры и влажности без защиты устанавливается в термостат на одну глубину с платиновым термометром и после выдержки до установления стабильных показаний (но не менее 15 минут) при заданной температуре снимают показания метеорологической станции и эталонного термометра. Производят не менее трех измерений температуры.

Абсолютная погрешность в заданной точке определяется по формуле:

Погрешность в заданной точке рассчитывается по формуле 5:

$$\Pi_{i} = A_{i} - A_{A} \tag{5}$$

где:

 Π_i - погрешность в заданной точке

A_i – i-тое показание прибора;

 A_{π} — действительное значение температуры, определяемое по платиновому термометру;

Результаты считать удовлетворительными, если полученные значения погрешностей не превышают пределов допускаемых значений, указанных в описании типа..

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Результаты поверки заносят в протокол поверки.

При положительных результатах поверки метеорологической станции M-49 M выдают свидетельство о поверке. На свидетельство о поверке наносится знак поверки в виде голографической наклейки или оттиска поверительного клейма.

При отрицательных результатах поверки оформляется извещение о непригодности с указанием причины.

Начальник лаборатории № 443

Начальник лаборатории № 448

Главный специалист по метрологии лаборатории № 443 Главный специалист по метрологии лаборатории № 448

Д.А.Денисов

А.В. Квачев

А.В. Болотин

И.А. Довгели