Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева» ФГУП «ВНИИМ им.Д.И.Менделеева»

УТВЕРЖДАЮ

Директор

ФГУП «ВНИИМ им. Д.И. Менделеева»

Мπ

К.В.Гоголинский 25.04.2017 г.

1205 AND LA LO LA

Государственная система обеспечения единства измерений

Спектрометры эмиссионные с индуктивно-связанной плазмой

Avio 200

Методика поверки

MΠ 242-2110-2017

Заместитель руководителя отдела Государственных эталонов в области физико-химических измерений ФГУП «ВНИИМ им. Д.И. Менделеева»

А.В.Колобова

Старший научный сотрудник

М.А. Мешалкин

С.Петербург 2017 г. Настоящая методика поверки распространяется на спектрометры эмиссионные с индуктивно-связанной плазмой Avio 200 и устанавливает методы и средства их первичной поверки после ввода в эксплуатацию и после ремонта и периодической поверки в процессе эксплуатации. Интервал между поверками - 1 год.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1. При проведении поверки должны быть выполнены следующие операции:

Таблица 1 - Операции поверки

N п/п	Наименование операций	Номер пункта методи- ки	Обязательность проведения	
			в эксплуатации	после ремонта
1.	Внешний осмотр.	6.1	да	да
2.	Опробование.	6.2	да	да
3.	Проверка соответствия ПО	6.3	да	да
4.	Определение метрологических характеристик.	6.4	да	да

Примечание:

При отрицательных результатах поверки по какому-либо пункту настоящей методики дальнейшая поверка спектрометра прекращается и он признается прошедшим поверку с отрицательным результатом.

2. СРЕДСТВА ПОВЕРКИ

- 1. Стандартные образцы состава водных растворов ионов цинка (ГСО 7770-2000), марганца (ГСО 7762-2000) и никеля (ГСО 7873-2000).
- 2. Вода для лабораторного анализа 1-ой степени очистки по ГОСТ Р 52501-2005.
- 3. Термогигрометр электронный утвержденного типа, зарегистрированный в Федеральном информационном фонде по ОЕИ (диапазон измерений отн. влажности от 10 до 100 %; абсл. погрешность не более 3,0 %; диапазон измерений температуры от +10 до +40 °C; абсл. погрешность не более 0,5 °C).
- 4. Барометр-анероид М-110 или аналогичный.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик с требуемой точностью.

Все средства должны иметь действующие свидетельства о поверке, а ΓCO – действующие паспорта.

3. УСЛОВИЯ ПОВЕРКИ

3.1. При проведении поверки должны быть соблюдены следующие условия:

диапазон температуры окружающей среды (20 ± 5) °C; диапазон атмосферного давления от 84 до 106,7 кПа; диапазон относительной влажности воздуха не более 80 %; напряжение питания (220^{+22} -33)B; частота питания переменного тока (50 ± 1) Гц.

3.2. Напряжение линии питания должно быть устойчивым и свободным от скачков.

3.3. Механические воздействия, наличие пыли, агрессивных примесей, внешние электрические и магнитные поля (кроме земного) и отклонения от рабочего положения не допускаются.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ и ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

Требования безопасности должны соответствовать рекомендациям, изложенным в Руководстве по эксплуатации спектрометров.

К проведению поверки допускаются лица, изучившие руководство по эксплуатации и методику поверки и имеющие удостоверение поверителя.

Для получения данных, необходимых для поверки, опускается участие в поверке оператора, обслуживающего спектрометр или сервис-инженера (под контролем поверителя).

5. ПОДГОТОВКА К ПОВЕРКЕ

При подготовке к поверке необходимо выполнить следующие операции:

- включить питание прибора от сети переменного тока;
- осуществить прогрев прибора (не менее двух часов).

6. ПРОВЕДЕНИЕ ПОВЕРКИ

6.1. Внешний осмотр

- 6.1.1. При внешнем осмотре должно быть установлено:
 - соответствие маркировки спектрометра технической документации.
 - отсутствие внешних повреждений и загрязнений, влияющих на работоспособность спектрометра;
 - четкость всех надписей;
 - исправность органов управления.

Спектрометр считается выдержавшим внешний осмотр, если он соответствуют перечисленным выше требованиям.

6.2. Опробование.

Опробование (самотестирование прибора) производится автоматически после включения питания спектрометра и запуска программного обеспечения. В случае успешного прохождения опробования (тестирования) на экране монитора появляется стартовое окно программы управления прибором.

- 6.3. Проверка соответствия программного обеспечения
- 6.3.1 Определение номера версии (идентификационного номера) программного обеспечения.

Определение осуществляется следующим образом:

- в главном окне программы в строке команд щелкнуть мышью на команде Справка (Help). В открывшемся окне щелкнуть мышью по строке о ПО в результате чего откроется окно, в котором приведены название ПО и номер версии. Копия экрана с окном приведена на рисунке 1.

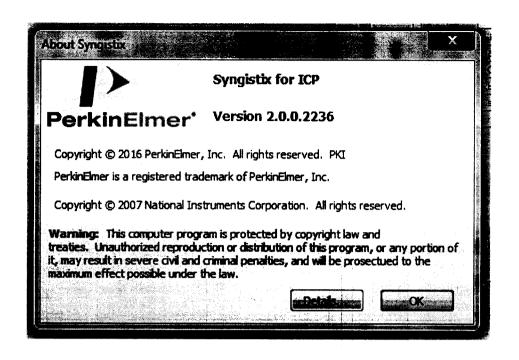


Рис.1 Окно с названием и номером версии ПО

Спектрометр считается выдержавшим поверку по п.6.3, если номер версии ПО не ниже 2.0.

- 6.4. Определение метрологических характеристик
- 6.4.1. Для проведения поверки должен быть установлен базовый комплект системы ввода пробы (камера распыления, распылитель, горелка) и заданы стандартные параметры работы спектрометров.
 - 6.4.2. Приготовление контрольных растворов.
- 6.4.2.1. Согласно указаниям приложения 1, из стандартных образцов, указанных в разделе 2, приготовить контрольный раствор №2 на основе воды для лабораторного анализа, содержащий контрольные элементы со следующими массовыми концентрациями:

 $M\pi - 1000 \text{ мкг/дм}^3$;

 $Ni - 1000 \text{ мкг/дм}^3$;

 $Zn - 1000 \, \text{мкг/дм}^3$

- 6.4.2.2.Контрольным раствором №1 является вода для лабораторного анализа 1-ой степени очистки.
- 6.4.2.3. Измерения проводятся на длинах волн, указанных в таблице 2.

Таблица 2 – Длины волн контрольных элементов

Элемент	Дина волны, нм	
Мп	257,610	
Ni	221,648	
Zn	213,857	

- 6.4.3. Определение относительного СКО выходного сигнала.
- 6.4.3.1. Используя контрольный раствор №2 измерить 10 раз (10 реплик) интенсивность спектральных линий каждого указанного элемента (на длинах волн, указанных в п. 6.4.2.3).
 - 6.4.3.2. Вычислить среднее значение интенсивности каждой линии (\bar{I}_i).
- 6.4.3.3. По полученным данным для каждого элемента, применяя программное обеспечение спектрометра или электронные таблицы EXCEL, вычислить СКО выходного сигнала (S).

$$S = \sqrt{\frac{\sum_{i=1}^{n} \left(I_{i} - \overline{I_{i}}\right)^{2}}{n - 1}} \tag{1}$$

6.4.3.4. Вычислить относительное СКО выходного сигнала (S_r) по формуле:

$$S_r = \frac{S}{I_i} \times 100\% \tag{2}$$

- 6.4.3.5. Спектрометр считается выдержавшим поверку по п.6.4.3, если ни одно из полученных значений относительного СКО не превышает 1,0 % для аксиального наблюдения и для радиального наблюдения.
 - 6.4.4. Определение пределов обнаружения.
- 6.4.4.1. Построить градуировочные характеристики с помощью контрольных растворов №1 и №2, указанных в пункте 6.4.2, используя длины волн, указанные в таблице 2.
- 6.4.4.2. Используя градуировочную характеристику, определить 10 раз (10 реплик) концентрации контрольных элементов (Mn, Ni, Zn), используя в качестве пробы воду для лабораторного анализа (контрольный раствор №1).

По полученным результатам вычислить СКО для каждого элемента отдельно. Концентрация, соответствующая пределу обнаружения данного элемента, определяется путем умножения полученной величины СКО на три (3σ) .

6.4.4.3. Прибор считается прошедшим поверку по п. 6.4.4, если величины, полученные в п.6.4.4.2 не превышают значений, указанных в таблице 3.

Таблица 3- Пределы обнаружения элементов (по критерию 3σ), мкг/дм³

Элемент	Аксиальная (осевая) схемой наблюдения плазмы	Радиальная схема наблюдения плазмы
Mn ($\lambda = 257,610$ нм)	1,0	4,0
Ni ($\lambda = 221,648 \text{ HM}$)	1,0	4,0
$Zn (\lambda = 213,857 \text{ HM})$	1,0	4,0

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1. Данные, полученные при поверке, оформляются в произвольной форме.
- 7.2. Спектрометр, удовлетворяющий требованиям настоящей методики поверки, признается годными и на него оформляется свидетельство о поверке по установленной форме.

На оборотной стороне свидетельства приводится следующая информация:

- -результаты опробования и внешнего осмотра;
- -результат проверки соответствия ПО;
- результаты определения метрологических характеристик;
- 7.3. Спектрометры, не удовлетворяющие требованиям настоящей методики, к дальнейшей эксплуатации не допускается и на них выдается извещение о непригодности.
- 7.4. Знак поверки наносится на лицевую панель спектрометра и (или) на свидетельство о поверке.

Приготовление контрольного раствора №2 с массовой концентрацией ионов металлов 1000 мкг/дм³

- 1. При помощи градуированной пипетки номинальной вместимостью 1 см³ переносят 0,1 см³ каждого стандартного образца с номинальным значением массовой концентрации 1000 мг/дм³ (действительное значение указано в паспорте) в мерную колбу с притертой пробкой вместимостью 100 см³, разбавляют до метки водой для лабораторного анализа 1-ой степени очистки и перемешивают.
- 2. Действительное значение массовой концентрации металла в растворе (C_l , мг/дм³) вычисляют по формуле:

$$C_1 = C_o \cdot \frac{V_o}{V_K},$$

- где C_o действительное значение массовой концентрации стандартного образца раствора металла, мг/дм³;
 - V_o объем исходного раствора, использованный для приготовления данного раствора (0,1 см³);
 - V_{κ} объем приготовленного раствора (100 см³).

Примечание 1.

Допускается готовить контрольный раствор №2 с поэтапным разбавлением стандартного образца раствора ионов элементов водой для лабораторного анализа первой степени очистки.