

Закрытое Акционерное Общество «АКТИ-Мастер» АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ и ИНФОРМАТИКА

> 127254, Москва, Огородный проезд, д. 5, стр. 5 тел./факс (495)926-71-85 E-mail: <u>post@actimaster.ru</u> <u>http://www.actimaster.ru</u>

> > **УТВЕРЖДАЮ**

Генеральный директор ЗАО «АКТИ-Мастер» IE UL В.В. Федулов КТИ-Мастер 05 »/июля 2017 г. TI-Master MOCKB DUCK BR

Государственная система обеспечения единства измерений

Преобразователи напряжения измерительные аналого-цифровые модульные NI PXIe-4464

Методика поверки NI4464MII-2017

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

Д.Р. Васильев

г. Москва 2017 Настоящая методика поверки распространяется на преобразователи напряжения измерительные аналого-цифровые модульные NI PXIe-4464 (далее – модули), изготавливаемые компаниями "National Instruments Corporation" (США), "National Instruments Corporation" (Венгрия), "National Instruments Malaysia Sdn. Bhd." (Малайзия), и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Номер	Проведени	е операции
Наименование операции	пункта	при поверке	
	методики	первичной	периодической
Внешний осмотр и подготовка к поверке	6	да	да
Опробование и функциональное тестирование	7.2	дa	да
Определение смещения нуля постоянного	73	па	ла
напряжения и уровня собственных шумов	7.5	ди	ди
Определение погрешности измерения			
среднеквадратических значений	7.4	да	да
синусоидального напряжения частотой 1 kHz			
Определение неравномерности амплитудно-	7.5	по	πа
частотной характеристики	1.5	Дa	да
Определение погрешности измерения частоты	7.6	да	да

1.2 Если у поверяемого модуля используется один иди несколько из 4-х измерительных каналов и не все диапазоны, то по запросу пользователя поверка может быть проведена только для определенных номеров каналов и диапазонов, при этом должна быть сделана соответствующая запись в свидетельстве о поверке.

2 СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуется применять средства поверки, указанные в таблице 2.

	aomina 2 Cpc		рки	
	Наименование	Номер	Требуемые	Рекомендуемый тип
N⁰	средства	пункта	технические	средства поверки, рег.
	поверки	методики	характеристики	номер реестра
1	2	3	4	5
			Средства измерений	
1	Калибратор	7.4, 7.5	относительная погрешность	Калибратор
	переменного		воспроизведения переменного	многофункциональный
	напряжения		напряжения (rms) 0.2; 0.63; 2; 6.3; 20;	Fluke 5700A;
	-		27 V на указанных частотах не более:	рег. № 52495-13
			- от 40 Hz до 20 kHz: ±0.02 %	<u>^</u>
			- 45 kHz: ±0.1 %	
			- 92 kHz: ±0.3 %	
2	Генератор НЧ	7.6	относительная погрешность	Калибратор
	2000 - 20000A		воспроизведения частоты 10 kHz	универсальный
			не более $\pm 1.10^{-6}$ (сигнал напряжения	Fluke 9100 с опцией 100;
			6 V rms)	рег. № 25900-03

Таблица 2 – Средства поверки

стр. 2 из 11

Продолжение таблицы 2

1	2	3	4	5				
	Вспомогательные средства и принадлежности							
1	Шасси	Разделы	не менее 4-х слотов РХІе	National Instruments				
	PXI Express	6, 7		PXIe-1075				
2	Модуль	Разделы	$HDD \ge 40 GB$	National Instruments				
	контроллера	6, 7	$O3Y \ge 512 \text{ MB}$	PXIe-8105				
3	Монитор	Разделы		_				
		6, 7	-	-				
4	Клавиатура	Разделы	_	_				
	компьютерная	6, 7	-	-				
5	Манипулятор	Разделы	_	_				
	«мышь»	6, 7		_				
6	Коротко-	7.3	BNC(m,m)	_				
	замыкатель							
7	Кабель ВЧ	7.5 - 7.6	BNC(m,m) для варианта BNC	-				
		7.3 – 7.6	mXLR(f)-BNC(m) для варианта mXLR	NI 140150-0R46				
8	Адаптер	7.3 – 7.6	BNC(f)-banana(m)	-				
9	Адаптер	7.3	BNC(f, f) для варианта mXLR	-				
			Программное обеспечение					
1	Операционная	Разделы	управление работой модуля	Windows XP				
	система	6, 7		(Windows 7)				
2	Драйвер	Разделы	управление работой модуля	National Instruments				
	N ALLOY BULLOY	6, 7		NI-DAQmx версии 14.5				
				и выше				
2	Программа	разделы	управление режимами и параметрами	National Instruments				
	управляющая	7.2, 7.3	работы модуля	"LabVIEW Signal				
				Express"				

2.2 Средства измерений должны быть исправны, поверены и иметь документы о поверке.

2.3 Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых генераторов с требуемой точностью.

Вместо калибратора Fluke 5700А можно использовать калибратор типа Fluke 9100 с мультиметром Agilent (Keysight) 3458А рег. № 25900-03, подстраивая устанавливаемые значения переменного напряжения по показаниям мультиметра, установленного в режим синхронной выборки (SETACV3).

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области электрических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

4.2 Во избежание несчастного случая и для предупреждения повреждения модуля необходимо обеспечить выполнение следующих требований:

- подсоединение шасси с модулем и средствами поверки к сети должно производиться с помощью сетевого кабеля из комплекта шасси;

- заземление шасси и средств поверки должно производиться посредством заземляющих контактов сетевых кабелей;

- присоединения модуля и оборудования следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах);

- запрещается работать с модулем в условиях температуры и влажности, выходящих за пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;

- запрещается работать с модулем в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ±5) °С;

- относительная влажность воздуха от 30 до 70 %;

- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра проверяются:

- чистота и исправность разъемов модуля;

- отсутствие механических повреждений корпуса модуля или платы;

- правильность маркировки и комплектность модуля.

6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого модуля, его следует направить в сервисный центр для проведения ремонта.

6.2 Подготовка к поверке

6.2.1 Перед началом работы следует изучить руководство по эксплуатации модуля, а также руководства по эксплуатации применяемых средств поверки.

6.2.2 Выполнить установку модуля:

1) установить в 3 левых слота шасси РХІе модуль контроллера;

2) присоединить к контроллеру монитор, клавиатуру и мышь;

3) подсоединить шасси и монитор к сети 220 V/50 Hz;

4) установить модуль в слот шасси РХІе;

5) в свободные слоты шасси установить фальш-панели; выбрать на шасси режим высокой скорости вентилятора;

6) включить шасси и контроллер, дождаться загрузки Windows.

Если на контроллере не установлен драйвер NI-DAQmx версии 14.5 и выше, то следует инсталлировать драйвер из комплекта модуля в соответствии с указаниями руководства по эксплуатации модуля.

6.2.3 Подготовить к работе средства поверки.

6.2.4 Выдержать модуль и средства поверки во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева модуля 30 min.

7.1 Общие указания по проведению поверки

7.1.1 Операции поверки 7.3 – 7.6 необходимо выполнять в последовательности, указанной в таблице 1. Для минимизации количества пересоединений следует выполнить эти операции сначала для одного из каналов модуля, а затем для остальных каналов.

7.1.2 В процессе выполнения операций результаты заносятся в протокол поверки.

Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах настоящего раздела документа.

При получении отрицательных результатов по какой-либо операции необходимо повторить операцию. При повторном отрицательном результате генератор следует направить в сервисный центр для проведения регулировки или ремонта.

7.2 Опробование и функциональное тестирование

7.2.1 Запустить программу "Measurement & Automation Explorer", затем в меню "Devices & Interfaces" выбрать ярлык с наименованием шасси, и убедиться в том, что в списке устройств отображается наименование модуля номер слота шасси. Кликнуть на имени модуля, при этом в окне должен отобразиться серийный номер модуля.

Записать результат проверки в таблицу 7.2.

7.2.2 В меню "Software" выбрать папку "Software", открыть вложенную папку "NI-DAQmx". В окне справа должен отобразиться номер версии (Version) драйвера.

Записать результат проверки в таблицу 7.2

7.2.3 В меню "Devices & Interfaces" кликнуть на наименовании модуля в списке устройств, и запустить процедуру тестирования "Self-Test". После завершения процедуры тестирования должно появиться сообщение "The self test completed successfully".

Записать результат проверки в таблицу 7.2.

7.2.4 Запустить процедуру автоподстройки "Self-Calibrate". По завершении процедуры (несколько минут) должно появиться сообщение "The device was calibrated successfully". Записать результат проверки в таблицу 7.2.

7.2.5 Закрыть программу "Measurement & Automation Explorer".

Запустить программу "LabVIEW Signal Express" (New Project).

Нажать клавишу "Add Step" и выбрать "Acquire Signals" – "DAQmx Acquire" – "Analog Input" – " Voltage".

Во внутреннем окне "Add Channels to Task" выбрать номер канала, и подтвердить выбор нажатием "OK".

В окне "Channel Settings" кликнуть правой кнопкой мыши на строке с номером канала. Выбрать опцию "Change Physical Channel", в появившемся списке выбрать следующий

номер канала, подтвердить выбор нажатием "ОК". Проверить аналогично остальные каналы.

Нажать клавишу "Add Step" и выбрать "Analysis" – "Time-Domain Measurements" – "Amplitude and Levels".

В ходе проверки программы "LabVIEW Signal Express" не должно быть сообщений об ошибках.

Записать результат проверки в таблицу 7.2.

Таблица 7.2 – Опробование и функциональное тестирование

Содержание проверки	Результат проверки	Критерии проверки
отображение серийного номера и номера слота шасси		правильно отображаются серийный номер и номер слота шасси
идентификация ПО		"NI-DAQmx" версии 14.5 или выше
процедура "Self-Test"		сообщение "The self-test completed successfully"
процедура "Self-Calibrate"		сообщение "The device was calibrated successfully"
проверка программы "LabVIEW Signal Express"		нет сообщений об ошибках

7.3 Определение смещения нуля постоянного напряжения и уровня собственных шумов

7.3.1 Установить короткозамыкатель BNC(m) на вход канала модуля. Для модуля с входными разъемами типа mXLR следует использовать дополнительно соединительный кабель mXLR(f)-BNC(m) и адаптер BNC(f, f).

Расположение контактов модуля показано на рисунке 1.

7.3.3 Войти в меню "DAQmx Acquire".

В окне "Channel Settings" кликнуть правой кнопкой мыши на строке с номером канала. Выбрать опцию "Change Physical Channel", в появившемся списке выбрать нужный номер канала, подтвердить выбор нажатием "OK".

Сделать установки:

Device - Coupling: DC

Settings - Terminal configuration: Pseudodifferential

Signal Input Range: ввести первое значение диапазона измерений, указанное в столбце 1 таблицы 7.3 (Max Value – положительное значение, Min Value – отрицательное значение) Timing Settings

Acquisition Mode: Continuous Samples Rate (Hz): 204800 (204,8k) Samples to Read: 100000 (100k)

7.3.4 Войти в меню "Amplitude and Levels".

7.3.5 Запустить процесс сбора данных нажатием клавиши "Run".

Записать отсчет "DC Value" в соответствующую ячейку столбца 2 таблицы 7.3.1. Он должен находиться в пределах, указанных в столбце 3 таблицы 7.3.1.

Записать отсчет "RMS Value" в соответствующую ячейку столбца 2 таблицы 7.3.2. Он должен находиться в пределах, указанных в столбце 3 таблицы 7.3.2.

7.3.6 В меню "DAQmx Acquire" задавать последовательно остальные диапазоны, указанные в столбце 1 таблиц 7.3.1 и 7.3.2.

Переходить в меню "Amplitude and Levels".

Записывать отсчеты "DC Value" в столбец 2 таблицы 7.3.1. Они должны находиться в пределах, указанных в столбце 3 таблицы 7.3.1.

Записывать отсчеты "RMS Value" в столбец 2 таблицы 7.3.2. Они должны находиться в пределах, указанных в столбце 3 таблицы 7.3.2.

7.3.7 Остановить процесс сбора данных нажатием клавиши "Stop".

Таблица 7.3.1 – Смещение нуля постоянного напряжения

Диапазон,		Измеренное с	Пределы допускаемых		
U peak, V	AI0	AI1	AI2	AI3	значений, mV
1		4	2		3
±0.316					±0.1
±1					±0.15
±3.16					±0.3
±10					±0.9
±31.6					±3.0
±42.4					±9.0

Таблица 7.3.2 – Уровень собственных шумов

Диапазон,	Изме	еренный урове	Пределы допускаемых		
U peak,V	AI0	AI1	AI2	AI3	значений, mV rms
1			2		3
±0.316					2.8
±1					4.3
±3.16					10.8
±10					32.9
±31.6					243
±42.4					445

стр. 7 из 11

7.4 Определение погрешности измерения среднеквадратических значений синусоидального напряжения частотой 1 kHz

7.4.1 Установить калибратор в режим воспроизведения синусоидального напряжения, выход в положение "OFF", частоту 1 kHz.

7.4.2 Используя адаптер BNC(f)-banana(m) и соединительный кабель BNC(m,m) для варианта BNC или mXLR(f)-BNC(m) для варианта mXLR, соединить вход канала модуля с выходом калибратора. Центральный проводник кабеля должен быть соединен с гнездом "HI" калибратора, экран кабеля – с гнездом "LO" калибратора.

7.4.3 Войти в меню "DAQmx Acquire".

В окне "Step Setup" ввести первое значение диапазона измерений, указанное в столбце 1 таблицы 7.4 (Max Value – положительное значение, Min Value – отрицательное значение).

7.4.4 Установить на калибраторе первое значение уровня напряжения rms, указанное в соответствующей строке столбца 2 таблицы 7.4, и перевести калибратор в положение "ON".

7.4.5 Войти в меню "Amplitude and Levels".

7.4.6 Запустить генерацию сигнала нажатием клавиши "Run".

Записать отображаемый в окне "RMS Value" результат в соответствующую ячейку столбца 3 таблицы 7.4, округлив его до последнего разряда, указанного в столбце 4 таблицы 7.4.

Отчет на модуле должен находиться в пределах, указанных в столбце 4 таблицы 7.4.

Диапазон,	Llin rms	Измере	нное значен	ие напряжен	ния, rms	Пределы допускаемых	
U peak, V	Uni, inis	AI0	AI1	AI2	AI3	значений, rms	
1	2		3			4	
±0.316	200 mV					199.31200.69 mV	
±1	0.7 V					697.58702.42 mV	
±3.16	2.0 V					1.993102.00692 V	
±10	7.0 V					6.97587.0242 V	
±31.6	20 V					19.931020.0692 V	
±42.4	27 V					26.906827.0934 V	

Таблица 7.4 – Погрешность измерения напряжения rms на частоте 1 kHz

7.4.7 Задавать в меню "DAQmx Acquire" последовательно остальные диапазоны, указанные в столбце 1 таблицы 7.4.

Устанавливать на калибраторе соответствующие значения напряжения, как указано в столбце 2 таблицы 7.4.

После установки нового диапазона переходить в меню "Amplitude and Levels", и записывать отсчеты "RMS Value" в соответствующую ячейку столбца 3 таблицы 7.4, округляя их до последнего разряда значений, указанных в столбце 4 таблицы 7.4.

Отчеты на модуле должны находиться в пределах, указанных в столбце 4 таблицы 7.4.

ПРИМЕЧАНИЕ: указанные в столбце 4 таблицы 7.4 пределы допускаемых значений рассчитаны исходя из допускаемых пределов относительной погрешности измерения среднеквадратических значений синусоидального напряжения частотой 1 kHz по описанию типа средства измерений, которые составляют ±0.03 dB.

7.4.8 Остановить процесс сбора данных нажатием клавиши "Stop".

7.4.9 Перевести выход калибратора в положение "OFF".

7.5 Определение неравномерности амплитудно-частотной характеристики

7.5.1 Установить калибратор в режим воспроизведения синусоидального напряжения, выход в положение "OFF", частоту 1 kHz.

7.5.2 Войти в меню "DAQmx Acquire".

В окне "Step Setup" ввести первое значение диапазона измерений, указанное в столбце 1 таблицы 7.5 (Max Value – положительное значение, Min Value – отрицательное значение).

7.5.3 Установить на калибраторе первое значение уровня напряжения, указанное в столбце 1 таблицы 7.5, и перевести калибратор в положение "ON".

7.5.4 Войти в меню "Amplitude and Levels".

7.5.5 Запустить генерацию сигнала нажатием клавиши "Run".

Записать отображаемый в окне "RMS Value" результат в соответствующую ячейку столбца 4 таблицы 7.5 для частоты 1 kHz, округлив его до последнего разряда, указанного в столбце 5 таблицы 7.5. Данный отсчет обозначен в таблице 7.5 как U1, он должен находиться в пределах, указанных в столбце 5 таблицы 7.5, и будет использоваться как опорное значение.

7.5.6 Не изменяя уровень напряжения на калибраторе, устанавливать на нем последовательно остальные значения частоты, указанные в столбце 3 таблицы 7.5. Записывать отсчеты "RMS Value" в столбец 4 таблицы 7.5.

Диапазон.	Uin.	Частота.	Измеренно	се значени	е напряжен	ия Uf, rms	Пределы допускаемых
U peak, V	V rms	kHz	AI0	AI1	AI2	AI3	значений, U rms
1	2	3		2	4		5
		1					U1 = (199.31200.69) mV
10.216	0.2	20					(0.999311.00069)·U1
± 0.310	0.2	45					(0.996551.00346)·U1
		92.2					(0.988551.01158)·U1
		1					U1 = (697.58702.42) mV
±1	07	20					(0.999311.00069)·U1
-1	0.7	45					(0.996551.00346)·U1
		92.2					(0.988551.01158)·U1
		1					U1 = (1.99312.0069) V
+3 16	2.0	20					(0.999311.00069)∙U1
-5.10	2.0	45					(0.996551.00346)·U1
		92.2					(0.988551.01158)·U1
		1					U1 = (6.97587.0242) V
+10	63	20					(0.999311.00069)·U1
	0.5	45					(0.996551.00346)·U1
		92.2					(0.988551.01158)∙U1
		1					U1 = (19.93120.069) V
+31.6	20 V	20					(0.977241.02329)·U1
±31.0	20 V	45					(0.933251.07352)·U1
		92.2					(0.891251.12202)·U1
±42.4		1					U1 = (26.90727.093) V
	27	20					(0.977241.02329)·U1
	21	45					(0.933251.07352)·U1
		92.2					(0.891251.12202)·U1

Таблица 7.5 – Неравномерность АЧХ

7.5.7 Выполнить действия по пунктам 7.5.1 – 7.5.6 для остальных диапазонов модуля и соответствующих им уровней напряжения на калибраторе.

7.5.8 Остановить процесс сбора данных нажатием клавиши "Stop". Перевести выход калибратора в положение "OFF".

7.5.9 Рассчитать для каждого диапазона модуля и частот 20; 45; 92.2 kHz пределы допускаемых значений неравномерности АЧХ как отношение Uf/ U1, где Uf – измеренное значение напряжения на частоте 1 kHz, U1 – измеренное значение напряжения на соответствующей частоте. Полученные значения отношения должны находиться в пределах, указанных в скобках в столбце 5 таблицы 7.5.

ПРИМЕЧАНИЕ: указанные в столбце 5 таблицы 7.5 пределы допускаемых значений рассчитаны исходя из допускаемых пределов неравномерности АЧХ относительно 1 kHz по описанию типа средства измерений, приведенных в таблице ниже.

Hugenson V	Неравномерность АЧХ, dB, не более				
диапазон, v	$f \le 20 \text{ kHz}$	$20 \text{ kHz} \le \text{f} \le 45 \text{ kHz}$	$45 \text{ kHz} \le \text{f} \le 92.2 \text{ kHz}$		
±0.316; ±1; ±3.16; ±10	± 0.006	± 0.03	±0.1		
±31.6; ±42.4	± 0.2	±0.6	±1.0		

7.6 Определение погрешности измерения частоты

7.6.1 Используя адаптер BNC(f)-banana(m) и кабель BNC(m,m) для варианта BNC или mXLR(f)-BNC(m) для варианта mXLR, соединить вход канала модуля с выходом генератора. Центральный проводник кабеля соединить с гнездом "HI" генератора, экран кабеля соединить с гнездом "LO" генератора.

ПРИМЕЧАНИЕ: операция может быть выполнена на любом из каналов модуля.

7.6.2 Войти в меню "DAQmx Acquire", установить диапазон измерений ±10 V.

7.6.3 Установить генератор НЧ в режим воспроизведения синусоидального напряжения, частоту 1 kHz, уровень напряжения 6 V rms.

7.6.4 Перевести калибратор в положение "ON".

7.6.5 Нажать на панели программы модуля клавишу "Add Step" и выбрать "Analysis" – "Frequency-Domain Measurements" – "Tone Extraction".

7.6.6 Нажать клавишу "Run".

Записать отсчет значения частоты "Detected frequency" в столбец 2 таблицы 7.6.

7.6.7 Остановить процесс сбора данных нажатием клавиши "Stop". Перевести выход генератора в положение "OFF".

Таблица 7.6 – Погрешность измерения частоты

Установленное	Измеренное	Пределы допускаемых
значение частоты, kHz	значение частоты, kHz	значений, kHz
1	2	3
10		9.9997310.00027

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:

- полное наименование аккредитованной на право поверки организации;

- номер и дата протокола поверки
- наименование и обозначение поверенного средства измерения
- заводской (серийный) номер;

- обозначение документа, по которому выполнена поверка;

- наименования, обозначения и заводские (серийные) номера использованных при поверке средств измерений, сведения об их последней поверке;

- температура и влажность в помещении;

- фамилия лица, проводившего поверку;

- результаты определения метрологических характеристик по форме таблиц раздела 7 настоящего документа.

Допускается не оформлять протокол поверки отдельным документом, а результаты поверки (метрологические характеристики) указать на оборотной стороне свидетельства о поверке.

8.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

Ведущий инженер по метрол ЗАО «АКТИ-Мастер»	погии	ma	Е.В. Маркин 7