Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева» ФГУП «ВНИИМ им.Д.И.Менделеева»

Государственная система обеспечения единства измерений

Наборы поверочные стационарные для средств измерений температуры СПН-2

Методика поверки

MII 2551-0177-2017

Руководитель проблемной лаборатории метрологического обеспечения метеорологических систем измерений В.П. Ковальков

Инженер 2 категории проблемной лаборатории метрологического обеспечения метеорологических систем измерений А.Ю. Левин

Заместитель руководителя лаборатории эталонов и научных исследований в области термометрии В. Тумсов

В. М. Фуксов

Настоящая методика поверки распространяется на наборы стационарные поверочные для средств измерений температуры СПН-2 (далее – СПН-2) предназначенные для задания и измерения температуры и устанавливает методы и средства их первичной и периодической поверки.

Интервал между поверками 1 год.

1. Операции поверки

Таблица 1

	Номер пункта	Проведение операции при		
Наименование операции	документа о	Первичной	Периодиче-	
	поверке	поверке	ской	
			поверке	
Внешний осмотр	6.1	+	+	
Опробование	6.2	+	+	
Определение метрологических характеристик:			*	
- в части измерения температуры воздуха;	6.3.1	_	_	
- в части задания температуры воздуха и неста-	6.3.3	-	, ,	
бильности поддержания заданной температуры	0.5.5			
Подтверждение соответствия программного обес-	7			
печения	'	7		

^{1.1.} При отрицательных результатах одной из операций поверка прекращается.

2. Средства поверки и вспомогательное оборудование Таблица 2

Наименование средства поверки и вспо-	Метрологические характеристики			
могательного оборудования	Диапазон измерений	Погрешность, класс		
Термометр сопротивления эталонный ЭТС	от +0,01 до +660,323 °C	0,002 °C		
Термометр сопротивления платиновый ПТС-10М	от -196 до +0,01 °C	0,005 °C		
Термостат жидкостный 7000 мод. 7012	от -10 до +110 °C	± 0,005 °C		
Термостат жидкостный 814	от -80 до 0 °C	± 0,02 °C		
Термостат переливной прецизионный ТПП-1	от -40 до +100	± 0,01 °C		
Секундомер механический СОСпр	от 0 до 60 мин	$\pm (1,7\cdot0,2/T+4,3\cdot10^{-4})$ с, для второго класса точности		
Ампула тройной точки воды	воспроизводимая тем- пература 0,01 °C	± 0,02 mK		
Ампулы реперных точек:				
галлия (Ga)	29,764	$\pm 0.5 \text{ MK}$		
ртути (In)	-38,8344	± 0,2 MK		
ПК типа ноутбук с ПО «Hyper Terminal»	***	_		

- 2.1. Средства поверки должны иметь действующие свидетельства о поверке, эталоны действующие свидетельства об аттестации.
- 2.2. Допускается применение аналогичных средств поверки обеспечивающих определение метрологических характеристик поверяемых СПН-2 с требуемой точностью.
- 3. Требования к квалификации поверителей и требования безопасности.
 - 3.1. К проведению поверки допускаются лица, аттестованные в качестве поверителей, изучившие настоящую методику и эксплуатационную документацию (далее ЭД), прилагаемую к СПН-2.

- 3.2. При проведении поверки должны соблюдаться:
- -требования безопасности по ГОСТ 12.3.019;
- -требования безопасности, изложенные в эксплуатационной документации;
- -«Правила технической эксплуатации электроустановок потребителей»;
- -«Правила ТБ при эксплуатации электроустановок потребителей».

4. Условия поверки

При поверке должны быть соблюдены следующие условия:

- температура воздуха,°С

от 20 до 30;

- относительная влажность воздуха,%

от 30 до 80;

5. Подготовка к поверке

- 5.1. Проверить комплектность СПН-2.
- 5.2. Проверить электропитание СПН-2.
- 5.3. Подготовить к работе и включить СПН-2 согласно ЭД. Перед началом поверки СПН-2 должен работать не менее 60 мин.

6. Проведение поверки

6.1. Внешний осмотр

- 6.1.1.СПН-2 не должен иметь механических повреждений или иных дефектов, влияющих на качество его работы.
- 6.1.2. На деталях не должно быть пятен, царапин и дефектов, влияющих на качество работы СПН-2.
- 6.1.3. Соединения в разъемах питания СПН-2 должны быть надежными.
- 6.1.4. Маркировка комплекса СПН-2 должна быть целой, четкой, хорошо читаемой.

6.2. Опробование

Опробование СПН-2 должно осуществляться в следующем порядке:

- 6.2.1. Подготовьте к работе и включите СПН-2 в соответствии с ЭД. Контрольная индикация СПН-2 должна показать, что он работоспособен.
- 6.2.2. Опробование должно показать, что все рабочие параметры СПН-2 находятся в заданных пределах.

6.3. Определение метрологических характеристик:

Поверка СПН-2 в части измерения температуры выполняется в следующем порядке:

- 6.3.1. Проверьте наличие действующего свидетельства о поверке на термометры сопротивления платиновые вибропрочные ПТСВ-2К-1 и преобразователь сигналов ТС и ТП прецизионный Теркон из состава СПН-2, срок действия свидетельств о поверке должен быть не менее ³/₄ от интервала между поверками. При отсутствии действующего свидетельства о поверке выполните следующие операции:
- 6.3.2. Поверка термометра сопротивления платинового вибропрочного ПТСВ-2К-1 (Регистрационный номер 49400-12) из состава СПН-2 и выполняется в соответствии с документом «Термометры сопротивления платиновые вибропрочные ПТСВ». КРМЦ.408717020МП, приведенной в приложении Б (обязательное).
- 6.3.3. Поверка преобразователя сигналов ТС и ТП прецизионного Теркон (Регистрационный номер 23245-08) из состава СПН-2 и выполняется в соответствии с документом «СШЖИ 2.206.000 МП. «Преобразователь сигналов ТС и ТП прецизионный «Теркон», приведенном в приложении В (обязательное).
- 6.3.4. Поверка преобразователя сигналов ТС и ТП прецизионного Теркон (Регистрационный номер 23245-08) из состава СПН-2 и выполняется в соответствии с документом «СШЖИ 2.206.000 МП. «Преобразователь сигналов ТС и ТП прецизионный «Теркон», приведенном в приложении В (обязательное).

6.3.5. Результаты считаются положительными, если погрешность измерений температуры составляет:

$$t \le \pm 0.015 \,^{\circ}\text{C}$$

- 6.3.6. Поверка СПН-2 в части задания температуры, нестабильности поддержания заданной температуры и неоднородности температурного поля выполняется в следующем порядке:
- 6.3.7. Проверьте наличие действующего свидетельства о поверке на термостат жидкостный серии «ТЕРМОТЕСТ» модификации «ТЕРМОТЕСТ-100» из состава СПН-2, срок действия свидетельств о поверке должен быть не менее ¾ от интервала между поверками. При отсутствии действующего свидетельства о поверке выполните следующие операции:
- 6.3.8. Поверка термостата жидкостного серии «ТЕРМОТЕСТ» модификации «ТЕРМОТЕСТ-100» (Регистрационный номер 39300-08) из состава СПН-2 и выполняется в соответствии с документом ТКЛШ 0.515.003 МП «Термостаты жидкостные серии «ТЕРМОТЕСТ». Методика поверки», приведенной в приложении Г (обязательное).
- 6.3.9. Результаты считают положительными, если нестабильность поддержания заданной температуры в жидкостной среде, $\Delta T_{\rm sc}$ не превышает:

$$\Delta T_{\text{**c}} \leq \pm 0.01$$
°C

6.3.10. Результаты считают положительными, если неоднородность температурного поля в жидкостной среде, $\Delta T_{\text{нжс}}$ не превышает:

$$\Delta T_{\text{HXC}} \leq \pm 0.01^{\circ}\text{C}$$

- 6.3.11. Включите термокамеру TestEquity 140 Temperature Chamber (далее термокамеру) из состава СПН-2.
- 6.3.12. Разместите в рабочей камере термокамеры платиновый термопреобразователь температуры ПТС-10М.
- 6.3.13. Установите значения задания температуры в воздушной среде трех точках, равномерно распределённых в диапазоне задания температуры в пределах от минус 60 °C до 0 °C.
- 6.3.14. После выхода на заданную температуру термокамерой, $T_{\text{заді}}$, на каждом заданном значении произведите измерения температуры термопреобразователем температуры ПТС-10M, $T_{\text{эті}}$.
- 6.3.15. Повторите измерения на каждом заданном значении не менее 2 раз с интервалом в 1 минуту. Контроль времени производите при помощи секундомера.
- 6.3.16. Повторите пункты 6.3.11 6.3.13 размещая термопреобразователь температуры ПТС-10М в соответствии со схемой размещения приведенной в приложении Д, определяя неоднородность температурного поля в рабочей камере термокамеры.
- 6.3.17. После выхода на заданную температуру термокамерой, Т_{изаді}, на каждом заданном значении произведите измерения температуры термопреобразователем температуры ПТС-10M, Т_{иэті}.
- 6.3.18. Поместите в рабочую камеру термокамеры платиновый термопреобразователь температуры ЭТС-25.
- 6.3.19. Установите значения задания температуры в воздушной среде в трех точках, равномерно распределённых в диапазоне задания температуры в пределах от 0 °C до плюс 80 °C.
- 6.3.20. После выхода на заданную температуру термокамерой, Т_{заді}, последовательно на каждом заданном значении произведите измерения температуры термопреобразователем температуры ЭТС-25, Т_{эті}.
- 6.3.21. Повторите измерения на каждом заданном значении не менее 2 раз с интервалом в 1 минуту. Контроль времени производите при помощи секундомера.
- 6.3.22. Повторяют пункты 6.3.17 6.4.19 размещая термопреобразователь температуры ЭТС-25 в соответствии со схемой размещения приведенной в приложении Д, определяя неоднородность температурного поля в рабочей камере термокамеры.

- 6.3.23. После выхода на заданную температуру термокамерой, $T_{\text{нзалі}}$, на каждом заданном значении производят измерения температуры термопреобразователем температуры ЭТС-25, $T_{\text{нзті}}$.
- 6.3.24. Вычисляют среднее значение заданной температуры $\bar{T}_{\text{зад}}$, по формуле:

$$\bar{T}_{\text{зад}} = \frac{T_{\text{эті1}} + T_{\text{эті2}} + T_{\text{эті3}}}{3}$$

6.3.25. Вычислите нестабильности поддержания заданной температуры в воздушной среде для каждого заданного значения, ΔT_i по формуле:

$$\Delta Ti = \overline{T}_{3a\partial} - T_{3mi}$$

6.3.26. Вычислите неоднородность температурного поля в воздушной среде для каждого заданного значения, $\Delta T_{\rm H}$ по формуле:

$$\Delta T_{\rm H} = T_{\rm 3azi} - T_{\rm H3Ti}$$

6.3.27. Результаты считают положительными, если нестабильность поддержания заданной температуры в воздушной среде не превышает:

$$\Delta T_i \leq \pm 0.2$$
 °C.

6.3.28. Результаты считают положительными, если неоднородность температурного поля в воздушной среде в каждой точке не превышает:

$$\Delta T_{\rm H} \leq \pm 0.5 \, {\rm ^{\circ}C}$$

- 7. Подтверждение соответствия программного обеспечения
 - 7.1.Идентификация встроенного ПО «TESTEQUITY 140» осуществляется путем проверки опломбирования СПН-2 и проверкой номера версии ПО.
 - 7.2. Проверьте пломбировку на корпусе СПН-2 на целостность в соответствии с пунктом 1.6.8 ЭД.
 - 7.3. Проверьте номер версии ПО, номер версии отображается на дисплее модуля задания температуры при нажатии кнопки «?».
 - 7.4. Результаты идентификации программного обеспечения считают положительными, если пломбировка не повреждена, а номер версии соответствует указанному в таблице 3.

Таблица 3

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	TESTEQUITY140.hex
Номер версии (идентификационный номер) ПО	не ниже 03:01:0010

- 8. Оформление результатов поверки
 - Результаты поверки оформляются протоколом, рекомендуемая форма которого приведена в Приложении А.
 - 8.2. При положительных результатах поверки оформляют свидетельство о поверке установленного образца. Знак поверки наносится на свидетельство о поверке.
 - 8.3. При отрицательных результатах поверки оформляют извещение о непригодности установленной формы.

Форма протокола поверки

СПН-2 заводской номер_ Дата проведения поверки Представлен (наименова	4 « »		20_	года	
	Pe	зультаты пове	ерки		
1.Внешний осмотр 1.1 Выводы					
2.Опробование 2.1 Выводы					
3.Определение метролог	ических характерис	стик:			
3.1 Определение погреши	ности измерений те	емпературы.			
Таблица 1 – Определение	е градировочной ха	рактеристики	термомет	р	
Значение температуры реперной точки	Показания тер- мометра, Ом	R (0,01), Ом		ительное вление W	Коэффициент функции откло- нения
Среднее 3	начение W ()				
Charriag	начение W ()				
Среднее з	начение w ()				
$R_{0,01} =$ Интерполяционная функция в интервале (-196 ÷ 0,01) °C рассчитана из уравнения: W(T) = W _{ref} (T) + Δ W(T), где Δ W(T) = M [W(T)-1]. Функция отклонения от МТШ-90 в интервале (0,01 ÷ 156,5985) °C: W(T ₉₀) - W _r (T ₉₀) = a[W(T ₉₀)-1]					
Таблица 2 – Определение	е абсолютной погре	ешности термо	метра		
Температура реперной точки °C					опускаемой абсолютной огрешности, °С
					±0,015
					±0,015
					±0,015

3.1.1 Выводы_____

3.2 Определение задания температуры воздуха и нестабильности поддержания заданной температуры. Таблица 3 - Определение нестабильности поддержания заданной температуры в Заданное (измеренное) значе-Среднее значение задан-Нестабильность поддержания Значение заданной ной температуры, °С температуры, °С ние температуры, °С температуры, °С 1 Таблица 4 – Определение неоднородности заданной температуры Заданное (измеренное) значение температуры в Неоднородность температурного по-Значение заданной разных точках рабочей зоны, °С ля, °С температуры, °С 2 4 3 6 2 3 3.2.1 Выводы 4 Результаты идентификации программного обеспечения

На основании полученных результатов СПН-2 признается:

ФИО.

Подпись

Поверитель

Дата поверки

7

Приложение Б (обязательное)

Инструкция

Термометры сопротивления платиновые вибропрочные ПТСВ

Методика поверки

КРЦМ.408717.020МП

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на термометры сопротивления платиновые вибропрочные ПТСВ, предназначенные для измерений температуры в диапазоне от минус 260 до 660 °C, перечисленные в таблице 1.1 (далее термометры), и устанавливает методику их первичной и периодической поверок.
- 1.2 Интервал между поверками 1 год для термометров 1-го и 2-го разрядов и термометров 3-го разряда с диапазоном измерений от плюс 200 до 660 °С и два года для термометров 3-го разряда с диапазоном измерений отминус 260 до 200 °С.
- Термометры состоят из первичного термопреобразователя чувствительного элемента (ЧЭПТ) и защитного корпуса.
 - 1.4 По настоящей методике поверки допускается поверять ЧЭПТ отдельно.
- 1.5 Модификации термометра, разряд (класс), днапазоны измерений и значения относительного сопротивления при температурах плавления галлия (W_{Ga}), тройной точки ртути (W_{Me}), при температуре 100 °C (W_{100}) приведены в таблице 1.1.

Таблица 1.1 - Основные технические характеристики

Модификация и вид исполнения	Разряд	Обозначение	Диапазон измерений температуры, °С	Wтп _{са,} не менее	Wтт _{ие} . не более	W:00, не менее
ПТСВ-1-2	2	VD104 400717 020	Минус 50450	1,11795	0.844235	1,3924
ПТСВ-1-3	3	KPILM.408717.020	Минус 50450	1,11795	0,844235	1,3924
ПТСВ-2-1	1		Минус 200100	1,11795	0.844235	1.3924
ПТСВ-2-2	2	КРЦМ.408717.030	Манус 200200	1,11795	0.844235	1,3924
ПСТВ-2-3	3		Минус 260660	1.11795	0.844235	1.3924
ПТСВ-2К-1	1		Минус 6060	1,11795	0,844235	1.3924
ПТСВ-2К-2	2	КРЦМ.408717.035	Минус 260200	1,11795	0,844235	1,3924
ITCB-2K-3	3		Минус 260660	1.11795	0,844235	1.3924
IITCB-3-3	3	КРЦМ.408717.036	Минус 50500	1.11795	0.844235	1,3924
ПТСВ-4-2	2	КРЦМ.408717.037	Минус 50232	1.11795	0.844235	1,3924
FITCB-4-3	3	кгци.406/17.03/	Wikinyc 30232	1.11795	0,844235	1,3924
ПТСВ-5-3	3	KPLIM.408717.038	Минус 50250	1.11750	0,844990	1,3908

- Примечания: 1 Wтп_{Ga} относительное сопретивление термометра в точке плавления галлия.
 - 2 Wтт_{нg} относительное сопротивление термометра в тройной точке ртути.
 - 3 W_{100} относительное сопротивление термометра при температуре $100\,^{\circ}\mathrm{C}$.
 - 4 По требованию потребителя указанные модификации термометров могут быть изготовлены с рабочими диапазонами измеряемых температур, находящимися внутри приведенных выше днапазонов.
 - 5 По требованию потребителя чувствительные элементы ЧЭПТ термометров могут поставляться отдельно. В этом случае, значение относительного сопротивления ЧЭПТ, в зависимости от модификации должно соответствовать значению W100, указанному в таблице I.
 - 6 По согласованию с заказчиком допускается изготовление термометров 3-го разряда с ЧЭПТ, имеющими W100=1,3850 ± 0,0005.
- 1.6.3 Доверительная погрешность термометров при доверительной вероятности 0,95 в диапазоне измерений не должна быть более значений, приведенных в таблице 1.2.

Таблица	1.2 - Основные	метрологические	vanaktenuetuku
таолица	1.2 - Ochobnoic	MCIDO IOTHACCKIIC	Napakiepheimkii

				And .supre						
		Доверительная погрешность термометров								
Диапазон			при до	веритель	ной веро	ятности С	<u>,95, °С, н</u>	с болсе		
измерений			Mo.	дификаці	и див и в	сполнени	ія термом	етра		
темпера-					ПТСВ	ПТСВ				
туры,	птсв	птсв	ПТСВ	ПТСВ	-2-2,	-2-3,	ПТСВ	ПТСВ	ПТСВ	ПТСВ
°C	-1-2	-1-3	-2-1	-2K-1	ПТСВ	ПТСВ	-3-3	-4-2	-4-3	-5-3
					-2K-2	-2K-3				
Минус 2600	-	-	0,005	-	0,03	0,05	-	-	-	-
Минус 600		-	0.003	0,003	0,02	0,03	-		-	-
Минус 500	0,02	0,03	0.003	0,003	0,02	0,03	0,03	0,02	0,03	0,03
030	0,01	0,02	0.002	0,002	0,01	0.02	0.02	0,01	0,02	0,02
3060	0,02	0,03	0,002	0.002	0,02	0.03	0,03	0,02	0,03	0,03
30100	0,02	0.03	0,005	-	0,02	0,03	0.03	0.02	0.03	0,03
30156	0,02	0.03	-	-	0,02	0,03	0,03	0,02	0,03	0,03
156232	0,02	0.04	-	-	0,02	0.04	0,04	0,02	0,04	0.04
232420	0,02	0,04	-	-	-	0.04	0,04	•		•
420450	0,02	0.05	-		-	0,05	0,05	-	-	-
450500	-	-	-	-		0.07	0,07	-	-	-
500660	-	-	-	-	-	0.09	-	-	-	-

1.7 Термометры с добавлением в шифре модификации индекса «Р» (например: ПТСВ-2К-3Р) имеют индивидуальную градупровку и W100 ≥ 1,3850.

Пределы допускаемой абсолютной погрешности измерений температуры, указанных термометров \pm (0,1 + 0,0017 μ), где μ - абсолютное значение температуры, °C, без учета знака.

- 1.8 Номинальное сопротивление термометра и чувствительного элемента ЧЭПТ при температуре тройной точки воды (RTTB) соответствует одному из значений из ряда: 10; 25; 50; 100 Ом.
- 1.9 Пределы относительной погрешности измерений допускаемого отклонения номинального сопротивления, указанного в п. 1.8, RTTB \pm 2,0 %.
 - 1.10 Сила измерительного тока термометров $(1 \pm 0,1)$ мА.
 - 1.11 Поверка термометров ПТСВ 1-го разряда проводится согласно ГОСТ Р 8.571-98.

Для модификации термометров ПТСВ-2К 1-го разряда поверка проводится путем градунровки в тройной точке воды, тройной точке ртути, точке плавления галлия.

1.12 Поверка термометров ПТСВ 2-го и 3-го разряда заключается в проверке сопротивления изолящии и измерении электрического сопротивления термометра при температурах рабочего диапазона с целью определения градуировочной характеристики, нестабильности и доверительной погрешности термометра. Определение градуировочной характеристики, нестабильности и доверительной погрешности термометра проводится методом сличения показаний поверяемого термометра с эталонным термометром 1-го разряда в устройствах, реализующих температуры рабочего диапазона поверяемого термометра, и определения сопротивления термометра в тройной точке воды и при температуре плавления галлия (или тройной точки ртути).

2 ОПЕРАЦІНІ ПОВЕРКІІ

2.1 При проведении поверки выполняют операции, указанные в таблице 2.1.

Таблица 2.1 - Операции поверки

Hamananana aranamu	Номер пункта	Обязательность проведения операций при		
Наименование операции	методики поверки	первичной поверке	пернодической поверке	
1 Внешний ссмотр и опробование	8.1	Да	Да	
2 Проверка электрического сопротивления изоляции	8.2	Да	Да	
3 Определение метрологических характеристик термометров	8.3	Да	Да	
3.1 Определение нестабильности	8.3.1	Да	Да	
3.2 Определение относительного сопротивления в точке плавления галлия или тройной точке ртутн	8.3.2	Да	Да	
3.3 Определение градуировочной характеристики	8.3.3	Да	Да	
3.4 Определение доверительной погрешности	8.3.4	Да	Да	

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки должны применяться средства измерений и оборудование, приведенные в таблице 3.1.

Таблица 3.1 - Средства измерений и оборудование

Рекомендуемые СИ и попытательное оборудование	Основные технические характеристики			
1Термометр сопротивлення платиновый эталонный (образцовый) ПТС-10М (Рег. № 11804-99)	Диапазон (0660) °С Пределы абсолютной погрешности воспроизведения температуры: ± (0,0010,008) °С			
2Термометр сопротивления платиновый низкотемпературный эталонный ТСПН-5В (Рег. № 11567-88)	Диапазон (минус 26030) °C Пределы абсолютной погрешности воспроизведения температуры: ± 0,002°C			
3 Калибратор температуры эталонный ЭЛЕМЕР-КТ-650 (Рег. № 45032-10)	Диапазон (50650) °C Нестабильность температуры не более 0,005 К за 20 мин. Градиент 0,0025 К /см			
4 Термостат переливной прецизионный ТПП-1 (Рег. № 33744-07)	Диапазон (минус 75300) °C Нестабильность температуры не более ±0,005 °C. Граднент 0,02°С/м			
5 Аппаратура и вспомогательное оборудование государственного первичного эталона единицы температуры — кельвина в диапазоне 0,3 - 273,16 К (ГЭТ 35-2010)	Диапазон (минус 26030) °C Пределы абсолютной погрешности воспроизведения температуры: ±0,002°C			
Примечание - Допускается применение других средств измерений и испытательного				

Примечание - Допускается применение других средств измерений и испытательного оборудования, обеспечивающих необходимые основные параметры и характеристики.

- 3.2 При поверке допускается применять другие средства поверки, не уступающие по техническим и метрологическим характеристикам средствам, указанным в п. 3.1.
- 3.3 Все средства и оборудование, используемые при новерке, должны иметь действующие свидетельства о поверке и быть аттестованы.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЯ

4.1 К проведению поверки допускаются лица, имеющие квалификацию инженера, ознакомленные с эксплуатационными документами на термометры ПТСВ.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 К работе с термометрами допускаются лица, имеющие необходимую квалификацию, обученные правилам техники безопасности при работе с термометрами, изучившие эксплуатационные документы на термометр.
- 5.2 При подготовке и проведении поверки необходимо соблюдать требования ГОСТ 12.3.019-80, "Правил технической эксплуатации электроустановок потребителей" и "Правил техники безопасности при эксплуатации электроустановок потребителей", утвержденных Гостехнадзором.

Требования безопасности при проверке сопротивления изолящии - в соответствии с ГОСТ 12997-84 и ГОСТ 12.3.019-80.

- 5.3 При проведении поверки необходимо также соблюдать меры безопасности, изложенные в НТД на поверяемый прибор и средства поверки.
- 5.4 При работе с термомстром, с использованием ожиженных газов, необходимо пользоваться средствами индивидуальной защиты (очки и перчатки) и соблюдать осторожность, так как попадание жидких газов на незащищенные участки кожного покрова и слизистые оболочки приводит к тяжелым обморожениям.
- 5.5 При работе с термометром запрещается прикасаться к нагретым и охлажденным его частям, имеющим температуру выше 50 °C и ниже минус 30 °C во избежание получения ожогов и обморожений, а также запрещается помещать нагретые термометры на легковоспламеняющуюся поверхность во избежание возгораний.
- 5.6 При проведении поверки средства поверки должны быть надежно заземлены. Сопротивление заземления не должно превышать 0,1 Ом.
- 5.7 Все работы по обслуживанию и ремонту термометра проводить только при достижении всеми его частями температуры (25±15) °С.

6 УСЛОВИЯ ПОВЕРКИ

6.1 При проведении поверки должны быть соблюдены (если не оговаривается отдельно) следующие условия:

температура окружающего воздуха, °С 20 \pm 2,5; относительная влажность окружающего воздуха, % от 30 до 80; атмосферное давление, кПа; (101,3 \pm 10) номинальное напряжение питания, В 220 \pm 5;

отсутствие внешних электрических и магнитных полей;

отсутствие вибрации.

6.2 Операции, производимые со средствами поверки и с поверяемыми термометрами должны соответствовать указаниям, приведенным в эксплуатационной документации.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Средства поверки и вспомогательное оборудование, применяемые при поверке. должны быть подготовлены к работе в соответствии с эксплуатационной документацией.
 - 7.2 Проверить соответствие условий поверки требованиям раздела 6.
 - 7.3 Протереть погружаемые части термометра ректифицированным техническим спиртом (ГОСТ 18300).

8 ПРОВЕДЕНИЕ ПОВЕРКИ

- 8.1 Внешний осмотр и опробование
- 8.1.1 Комплектность, упаковка, маркировка и габаритные размеры термометра должны соответствовать требованиям нормативной документации на термометры.

Корпус термометра не должен иметь механических повреждений и дефектов.

- 8.1.2 В комплект эксплуатационной документации должны входить паспорт термомстра ПТСВ с отметкой ОТК и свидетельство о предыдущей поверке (при пернодической поверке).
- 8.1.3 Опробование заключается в проверке целостности электрических цепей термометра. Опробование электрической схемы проводят с помощью прибора комбинированного Ц 4312.

Нарушения электрической цепи термометра не допускаются.

- 8.1.4 Термометры, не удовлетворяющие требованиям, изложениям выше, дальнейшим операциям поверки не подвергают.
 - 8.2 Проверка электрического сопротивления изоляции термометра
- 8.2.1 Проверку проводят при температуре (20±5) °C и относительной влажности воздуха (60±15) % с помощью мегомметра с напряжением от 10 до 100 В.

Электрическое сопротивление изоляции между выводами и корпусом термометра должно быть не менее 100 МОм. В противном случае термометр бракуется.

- 8.3 Определение метрологических характеристик термометров
- 8.3.1 Определение нестабильности

При первичной поверке нестабильность термометров определяют в следующем порядке.

8.3.1.1 Проводят измерение сопротивления термометра в тройной точке воды (Rттв). Ампула тройной точки воды должна быть предварительно подготовлена к работе согласно технической документации на данный прибор.

Термометр предварительно погружают в сосуд Дьюара с водо-ледяной смесью при температуре 0 °С и выдерживают там не менее 15 мин. Затем термометр извлекают из термостата, погружают в канал ампулы тройной точки воды и через 15 мин начинают измерения. За результат измерения сопротивления термометра (R_{ттв1}) принимают среднее арифметическое из результатов пяти отсчетов.

Полученное значение сопротивление термометра $R_{\text{ттв1}}$ не должно отличаться от номинального более чем на 2,0 %.

Примечание – Термометры модификации ПТСВ-2 перед измерениями в тройной точке воды и жидкостных термостатах помещают во влагозащитные гильзы.

8.3.1.2 После проверки $R_{\pi s 1}$ термометры помещают в печь или калибратор температуры при температуре верхнего предела рабочего дианазона измерения согласно таблице 1.1. Допускаемое отклонение температуры печи от верхнего предела рабочего дианазона термометра ± 5 °C. После выдержки при этой температуре в течение 5 ч, термометры помещают на 0,5 ч в среду с нормальной температурой (см. п. 6.1) и затем повторно измеряют сопротивление в тройной точке воды ($R_{\pi s 2}$)

Для термометров модификации ПТСВ-2 проводят также проверку после воздействия температуры минус 200 °C. Для этого термометры помещают в ванну с жидким азотом под

атмосферным давлением (или в устройство реализации температуры тройной точки аргона) и после выдержки в течение 5 ч. при указанном температурном состоянии, термометры выдерживают при нормальной температуре в течение не менее 0,5 ч и затем измеряют R_{тгв}3.

8.3.1.3 Значения разности сопротивлений термометра $\Delta R_{\text{ттв2}} = R_{\text{ттв1}} - R_{\text{ттв2}}$ (для модификации ПТСВ-2 и разности сопротивлений $\Delta R_{\text{ттв3}} = R_{\text{ттв1}} - R_{\text{ттв3}}$) не должны быть более 0,002, 004°C и 0,007°C, в температурном эквиваленте, для термометров 1-го, 2-го и 3-го разрядов соответственно.

П р и м е ч а н и е – Значения $\Delta R_{\tau\tau s}$ в температурном эквиваленте определяются по выражению $\Delta R_{\tau\tau s}$ / (dR/dT)_{$\tau\tau s$}, где (dR/dT)_{$\tau\tau s$} при температуре тройной точки воды составляет: 0,04, 0,1, 0,4 Ом/ °C для термометров ПТСВ номиналами 10, 25, 100 Ом соответственно.

- 8.3.1.4 При периодической поверке нестабильность термометров определяют в следующем порядке.
 - Измеряют сопротивление термометра в тройной точке воды (R_{ттв1}) в соответствии с п. 8.3.1.1.
 - Вычисляют разность между значением сопротивления термометра R_{твп}, приведенным в свидетельстве о предыдущей поверке, и Rттв1 в температурном эквиваленте, согласно п. 8.3.1.3.

Значения разности сопротивлений термометра $\Delta R_{\text{ттв}} = R_{\text{ттвп}} - R_{\text{ттвп}}$ не должны быть более 0,002 °C, 0,003 °C и 0,005 °C, в температурном эквиваленте, для термометров 1-го, 2-го и 3-го разрядов соответственно.

Если разность превышает указанные значения, то определяют нестабильность по п.п. 8.3.1.2, 8.3.1.3.

- 8.3.1.5 Термометры, не удовлетворяющие требованиям нестабильности, бракуют или их разряд переводят в более низкий.
 - 8.3.2 Определение относительного сопротивления
- 8.3.2.1 Относительное сопротивление термометра в гочке плавления галлия W_{Ga} или тройной точке ртути W_{Hg} определяют при первичной новерке перед градупровкой термометра в соответствий с ГОСТ Р 8.571-98 п.п.9.7.2-9.7.5.
- 8.3.2.2 После определения значения сопротивления термометра в реперной точке галлия R_{Ga} (ртути R_{Hg}), определяют значение сопротивления термометра в тройной точке воды в соответствии с п. 8.3.1.1.

Рассчитывают относительное сопротивление термометра в точке плавления галлия W_{G_2} (тройной точке ртути W_{H_2}) по формулам:

$$W_{Ga} = R_{Ga} / R_{TTB},$$
 (8.1) или $W_{Hg} = R_{Hg} / R_{TTB}.$ (8.2)

Значение относительного сопротивления термометра W_{G_2} , W_{Hg} должно быть не менее значений, приведенных в таблице 1.1.

П р и м е ч а п п е - Сопротивление термометров модификации ПТСВ-2 в точке плавления галлия (или тройной точке ртути) и в тройной точке воды измеряют, помещая термометры во влагозащитные гильзы.

- 8.3.2.3 Допускается, если точка плавления галлия и тройная точка ртути входят в набор точек градуировки, определение относительных сопротивлений осуществлять во время проведения цикла градуировки.
- 8.3.2.4 Допускается заменить определение относительного сопротивления термометра в точке плавления галлия и тройной точке ртути на определение относительного сопротивления термометра при температуре 100 °C W₁₀₀.

Значение W_{100} определяют расчетным методом после проведения шикла градуировки. Расчет значения W_{100} должен проводится по методике, изложенной в ГОСТ Р 8.571-98 Приложение Б.2.

Полученное значение относительного сопротивления W_{100} должно быть не менее значений, приведенных в таблице 1.1.

8.3.3 Определение градуировочной характеристики

Градуировочная характеристика термометра представляет собой функцию $\Delta W(W)$ или W(T), где ΔW (T) – функция отклонения относительного сопротивления термометра W (T) от стандартной функции МТШ-90 Wг(T).

Градупровку термометров ПТСВ 1-го разряда для соответствующего рабочего днаназона температур проводят согласно ГОСТ Р 8.571-98 (см. п. 1.12). Для модификации ПТСВ-2К 1-го разряда поверка проводится путем градупровки в тройной точке воды, тройной точке ртути, точке плавления галлия.

Градуировку термометров ПТСВ 2-го и 3-го разряда проводят методом сличения градуируемого термометра с эталонным термометром в устройствах реализующих температуры рабочего диапазона градуируемого термометра и градуировкой в тройной точке воды.

П р и м е ч а н и е - Допускается проводить градуировку термометров ПТСВ 3-го разряда в соответствующем рабочем диапазоне температур согласно ГОСТ Р 8.571-98.

8.3.3.1 Градуировка термометров ПТСВ ниже 0°С

В зависимости от рабочего диапазона термометра предусмотрены температуры и последовательность градуировки, указанные в таблице 8.1.

Градунровка термометров ПТСВ 1-го разряда проводится согласно ГОСТ Р 8.571-98.

Для модификации ПТСВ-2К 1-го разряда поверка проводится путем градуировки в тройной точке воды, тройной точке ртути, точке плавления галлия.

Градупровку термометров ПТСВ 2-го и 3-го разрядов в днапазонах температур ниже 0 °С проводят методом сличения градупруемого термометра с рабочим эталоном в устройствах реализующих температуры рабочего днапазона градупруемого термометра и методом калибровки непосредственно в тройной точке воды (ттв).

Таблица 8.1

Днапазон измерений температуры ПТСВ	Поверяемые точки
минус 60 (50) °С0 °С	ттв, минус 60 (50)°C (или ттр), ттв
минус 200 °С0 °С	ттв, минус 200 °С (или тта), ттв

П р и м е ч а н н е – В таблице 8.1 использованы обозначения: ттв – тройная точка воды, ттр – тройная точка ртути, тта – тройная точка аргона.

Градуировку термометров ПТСВ 2-го и 3-го разрядов в диапазонах температур ниже 0 °С проводят методом сличения градуируемого термометра с рабочим эталоном в устройствах реализующих температуры рабочего диапазона градуируемого термометра и методом калибровки испосредственно в тройной точке воды (ттв).

а) Диапазон минус 60 °С...0 °С

Измеряют сопротивление термометра в ттв (R_{ттв}1) согласно методике п. 8.3.1.1.

Для градупровки термометров модификаций ПТСВ-1, ПТСВ-2, ПТСВ-3, ПТСВ-4, ПТСВ-5 2-го и 3-го разрядов их вместе с эталонным термометром помещают в блок сравнения жидкостного термостата при температуре, соответствующей границе рабочего диапазона (минус 60±1 °C). Измерение сопротивления эталонного и поверяемого термометра проводят при установлении допускаемого температурного режима, когда изменение температуры по показаниям эталонного термометра за 5 мин не превышают 0,01 °C.

Проводят не менее 5-ти парных последовательных измерений сопротивлений для эталонного и поверяемого термометров.

За результат измерения сопротивлений принимают среднее арифметическое из пяти измерений.

Затем повторно измеряют сопротивление термометра в ттв (R_{ттв2}).

Используя среднее арифметическое значение сопротивления термометра в тройной точке воды $(R_{rrs1} + R_{rrs2}) / 2$, рассчитывают среднее арифметическое значение относительное сопротивление градуируемого термометра (W) при данной температуре.

Рассчитывают среднее арифметическое значение относительного сопротивления эталонного термометра при этой же температуре и по его наспорту определяют соответствующее значение Wr(T) стандартной функции МТПЦ-90.

Используя полученные значения Wr и W, рассчитывают $\Delta W = W - Wr$.

Затем по методике ГОСТ Р 8.571-98 (Приложение Б, п. Б.2) рассчитывают градуировочную характеристику термометра $\Delta W(W)$ или W(T).

П р и м е ч а н и е – Допускается заменить измерения сопротивления градупруемого термометра в жидкостном термостате при температуре минус 60 (50) °С измерениями в устройстве реализации тройной точке ртути - реперной точки МТШ-90.

б) Диапазон минус 260 °С...0 °С

При градуировке термометров модификаций ПТСВ-2 используется методика ГОСТ Р 8.571-98 (пп. 9.8.4, 9.8.5, 9.8.6, 9.8.7, 9.8.10) для термометров типа ТСПН и ПТС.

По результатам измерений сопротивлений градуируемого и эталонного термометро: при температуре азотной ванны (минус 196,1±0,5) °C и результатам измерения сопротивления градуируемого термометра в тройной точке воды рассчитывают для это: температуры средние арифметические значения W, Wr, Δ W градуируемого термометра согласно методике ГОСТ Р 8.571-98 п.п.10.2.15, 10.2.16, 10.2.17.

Далее по методике ГОСТ Р 8.571-98 (Приложение Б, п. Б.2) рассчитываю градуировочную характеристику термометра $\Delta W(W)$ или W(T).

Градуировка и расчет температурной зависимости термометров от минус 260 ° проводится в соответствии с Положением о МТШ-90 для области от минус 260 до 0 °C.

8.3.3.2 Градуировка термометров ПТСВ выше 0°С

Градунровка термометров ПТСВ 1-го разряда проводится согласно ГОСТ Р 8.571-98.

Для модификаций ПТСВ-2-1 и ПТСВ-2К 1-го разряда поверка проводится путе градупровки в тройной точке воды, точке плавления галлия.

Градуировку термометров ПТСВ 2-го и 3-го разряда в днапазонах температур выи 0 °С проводят методом сличения градуируемого термометра с рабочим эталоном устройствах реализующих температуры рабочего днапазона градуируемого термометра методом калибровки непосредственно в тройной точке воды (ттв).

В зависимости от рабочего диапазона термометра предусмотрены температуры последовательность градунровки, указанные в таблице 8.2.

Таблица 8.2

Диапазон измерений температуры ПТСВ	Поверяемые точки, °С
0 °C100 (60) °C	ттв, 60 (или тпг), ттв
0 °C156 °C	ттв, 156, ттв
0 °C200 °C	ттв, 156, 200 (или 232), ттв
0 °C232 °C	ттв, 156, 232, ттв
0 °C250°C	ттв, 156, 232, ттв

Диапазон измерений температуры ПТСВ	Поверяемые точки, [*] С
0 °C420 °С ттв, 232, 420, ттв	
0 °C500 °C ттв, 232, 420, 500, ттв	
0 °C660 °C	ттв, 232, 420, 660,ттв

Сопротивление градуируемого термометра в ттв измеряют также как для диапазона температур ниже 0 °С ($R_{\tau\tau s1}$ и $R_{\tau\tau s2}$). При измерениях в других точках температуры градуировки не должны отличаться от указанных в таблице 8.2 более чем на ± 2 °С.

Для градуировки термометров ПТСВ их вместе с эталонным термометром помещают в блок сравнения жидкостного термостата или печи и при температурах, соответствующих приведенным в таблице 8.2, проводят измерения сопротивлений эталонного и поверяемого термометров. Измерение сопротивления эталонного и поверяемого термометров проводят при установлении допускаемого температурного режима, когда изменение температуры по показаниям эталонного термометра за 5 мин не превышают 0,01 °C. Проводят не менее 5-ти отсчетов для эталонного и поверяемого термометров.

За результат измерения сопротивлений принимают среднее арифметическое из пяти отсчетов.

По результатам измерений рассчитывают значение относительного сопротивления градуируемого термометра (W) при данной температуре.

Рассчитывают также значение относительное сопротивление эталонного термометра при этой же температуре и по его паспорту определяют соответствующее значение Wr(T) стандартной функции МТПІ-90.

Используя полученные значения Wr и W, рассчитывают $\Delta W = W$ - Wr для градунруемого термометра.

Затем по методике ГОСТ Р 8.571-98 (Приложение A, п. Б.2), используя полученные значения ΔW , Wr и W, рассчитывают градуировочную характеристику термометра $\Delta W(W)$ или W(T).

8.3.3.3 Для диапазона температур включающего в себя температуры ниже и выше 0 °C по результатам градуировки вычисляются коэффициенты функции отклонения от стандартной:

$$\Delta W = a (W-1) + B (W-1)^2 + c (W-1)^3, \tag{8.3}$$

где коэффициент «а» вычисляется из результатов градуировки ниже 0 °C, а коэффициенты «в» и «с» из результатов градуировки выше 0 °C (для модификации термометра ПТСВ-2 коэффициент «с» равен 0.

Допускается градуировку термометров ПТСВ 2-го и 3-го разрядов проводить в устройствах для реализации реперных точек, соответствующих температурам указанным в таблицах 8.1 и 8.2 согласно ГОСТ Р 8.571-98.

 Π р и м е ч а н и е – При градуировке термометра на область температур ниже и выше 0 °C, допускается вторую серию измерений по определению сопротивления термометра в ттв ($R_{\tau\tau s2}$) проводить по окончании измерений сопротивления градуируемого термометра при всех остальных температурах.

8.3.4 Определение доверительной погрешности

8.3.4.1 Доверительную погрешность поверяемого термометра 1-го разряда при доверительной вероятности 0,95 определяют по методике ГОСТ Р 8.571-98 (п.п. 10.1.1 – 10.1.6).

Расчетные значения доверительной погрешности не должны быть более значений, указанных в таблице 1.2. 8.3.4.2 Для определения доверительной погрешности термометра 2-го и 3-го разрядов проводят измерения методом сличения показаний поверяемого термометра и эталонного термометра (не ниже 1-ого разряда) в устройствах, реализующих температуры рабочего диапазона, по методике, изложенной в п.п. 8.3.3.1 и 8.3.3.2.

Измерения для термомстров ПТСВ проводят при температурах, указанных в таблице 8.3, в соответствии с рабочим диапазоном термометра.

Таблица 8.3

Taomina 6.5			
Диапазон измерений температуры ПТСВ	Темпера- тура, °С	Допускаемые значения разности температур $\Delta T = T_{\Pi} - T_{\Im} $, не более, °C	
		3-ий разряд	2-ой разряд
Минус 60 (0 °C)60 °C	40	0,02	0,01
Минус 50 (0 °C)156 °C	80	0,025	0,02
Минус 200 (0 °C)200 °C	100 (или минус 100)	0,025 при 100 °C;	0,015 при 100 °C;
		0,03 при минус 100 °C	0,02 при минус 100 °C
Минус 50 (0 °C)232 °C	175	0,03	0,015
Минус 50 (0 °C)250°С	175	0,03	0,015
Минус 50 (0 °C)420 °C	300	0,03	0,015
Минус 50 (0 °C)500 °C	320 (300)	0,03	-
Минус 0 °С660 °С	320 (450)	0,04	-

При измерениях термометры ПТСВ вместе с эталонным термометром помещают в блок сравнения жидкостного термостата (криостата) или калибратора и при температурах, соответствующих приведенным в таблице 8.3, проводят измерения сопротивлений эталонного и поверяемого термометров. Значения температур, в которых проводятся измерения сопротивления, не должны отличаться от указанных в таблице 8.3 более, чем на ±2 °C.

Измерение сопротивления эталонного и поверяемого термометров проводят при установлении допускаемого температурного режима, когда изменение температуры по показаниям эталонного термометра за 5 мин не превышают 0,005 °C. Проводят не менее 5-ти отсчетов для эталонного и поверяемого термометров.

За результат измерения сопротивлений принимают среднее арифметическое из пяти отсчетов.

По результатам измерений рассчитывают значение относительного сопротивления поверяемого термометра (Wn) при данной температуре.

Затем находят, используя полученную ранее градуировочную характеристику поверяемого термометра (см. п.п.8.3.3.3, 8.3.3.2, 8.3.3.1), значение температуры (Тп), соответствующее Wn.

Рассчитывают также значение относительное сопротивление эталонного термометра (Wэ) при этой же температуре. По паспорту (градуировочной характеристике) для эталонного термометра определяют соответствующее значение температуры (Тэ).

Разность значений температуры по показаниям двух термометров $\Delta T = |T_{\Pi} - T_{\Im}|$ не должна превышать значений, приведенных в таблице 8.3.

 Π р и м е ч а н и е — Измерения по п.8.3.4.2 допускается совмещать с операциями по градуировке термометров ПТСВ выше 0 °C по п.8.3.3.2.

8.3.4.3 Если термометр не удовлетворяет требованиям таблицы 8.3 (для термометров 1-го разряда таблиц 8 и 9 ГОСТ Р 8.571-98) для соответствующих рабочих диапазонов температур), то его переводят в более низкий разряд или бракуют.

Если термометр 3-го разряда не удовлетворяет требованиям таблицы 8.3, по допускаемым значениям разности температур, то его переводят в разряд РСИ в соответствии с ГОСТ 8.558-93 или бракуют.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 При положительных результатах поверки данные поверки ПТСВ заносят в таблицу 7 с.16 РЭ.
- 9.2 Положительные результаты поверки термометров оформляют свидетельством о поверке установленной формы по ПР 50.2.006-94 или отметкой в паспорте.

В свидетельство должны быть включены следующие данные:

- наименование средства измерения и обозначение его типа;
- заводской номер;
- изготовитель и год изготовления;
- диапазон градуировки термометра;
- разряд эталонного средства измерения, или значение погрешности в случае перевода в разряд РСИ по п.8.3.4.3.
 - значение измерительного тока, при котором определяли градуировочные характеристики;
 - значения температур градуировки и соответствующие им значения функции отклонения относительного сопротивления по МТШ-90;
 - дата поверки;
 - указание срока проведения следующей поверки;
 - наименование владельца термометра;
- градупровочная характеристика термометра по МТШ-90 в виде полинома функции $\Delta W(T)$, или таблицы функции $\Delta W(W)$, или таблицы функции W(T);
- оттиск поверительного клейма, в соответствии с ПР 50.2.006.-94 или печати поверяющей организации.
- 9.3 Отрицательные результаты поверки термометров оформляют извещением о непригодности, свидетельство о предыдущей поверке аннулируют, а термометры не допускают к применению.