УТВЕРЖДЕНО

Первый заместитель генерального директора заместитель по научной работе

ФГУП «ВНИНОТРИ

А.Н. Ніявунов 23 »

ИНСТРУКЦИЯ

Измерители координат модернизированные ИК-м, ИК-м1 КЕДП.466961.003

МЕТОДИКА ПОВЕРКИ 651-17-19

Содержание

1.	ОБЩИЕ СВЕДЕНИЯ	3
2.	ОПЕРАЦИИ ПОВЕРКИ	3
3.	СРЕДСТВА ПОВЕРКИ	4
4.	ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	4
5.	ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	4
6.	УСЛОВИЯ ПОВЕРКИ	5
7.	ПОДГОТОВКА К ПОВЕРКЕ	5
8.	ПРОВЕДЕНИЕ ПОВЕРКИ	5
9.	ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	11
ПР	РИЛОЖЕНИЕ А ССЫЛОЧНЫЕ НОРМАТИВНЫЕ ДОКУМЕНТЫ	12
ПР	РИЛОЖЕНИЕ Б ПЕРЕЧЕНЬ СОКРАШЕНИЙ	13

1. ОБЩИЕ СВЕДЕНИЯ

- 1.1. Настоящая методика поверки распространяется на измерители координат модернизированные ИК-м, ИК-м1 КЕДП.466961.003 (далее аппаратура), изготовленные ФГУП «ПИЦ», г. Жуковский, Московской обл., и устанавливает методы и средства ее первичной и периодической поверок.
 - 1.2. Интервал между поверками 1 год.

2. ОПЕРАЦИИ ПОВЕРКИ

2.1. При поверке выполняют операции, представленные в таблице 1.

Таблица 1 — Перечень операций, выполняемых при поверки

		Проведение поверки	
Наименование операции	Номер пункта мето- дики	после	при периоди- ческой поверке
1. Внешний осмотр.	8.1	да	да
2. Опробование, идентификация программного обеспечения	8.2	да	да
3. Определение (контроль) метрологических характеристик:			
3.1. Определение границ инструментальной погрешности (при доверительной вероятности 0,95) измерения дальности между базой и объектом: - для удалений объекта от базы от 0,1 до 15 км - для удалений объекта от базы от 15 до 50 км - для удалений объекта от базы от 50 до 200 км	8.3	да	да
3.2. Определение среднеквадратического отклонения случайной составляющей погрешности измерения азимута объекта относительно базы	8.4	да	да
3.3. Определение границ инструментальной погрешности (при доверительной вероятности 0,95) измерения высоты объекта относительно базы (при удалении объекта от базы на расстояние от 0,1 до 15 км)	8.5	да	да

3. СРЕДСТВА ПОВЕРКИ

- 3.1. Рекомендуемые средства поверки, в том числе рабочие эталонные средства измерений приведены в таблице 2.
- 3.2. Все средства поверки, применяемые при поверке аппаратуры, должны быть исправны, поверены и иметь свидетельства о поверке или оттиск поверительного клейма на приборе или технической документации.

Таблица 2 — Средства измерений, используемые при поверки

Номер	Наименование	Требуемые технические	Рекомендуемое	
пункта	средств	характеристики средств	средство поверки	
методики	поверки	поверки	(тип)	
8.3,8.4,8.5	Навигационная аппаратура потребителей ГНСС	грешности хранения коорди-	единиц координат местоположения	

Примечание: вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик с требуемой точностью.

4. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1. Поверка должна осуществляться лицами, аттестованными в качестве поверителей в порядке, установленном в ПР 50.2.012-94.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1. При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80.

6. УСЛОВИЯ ПОВЕРКИ

- 6.1. При проведении поверки должны соблюдаться следующие условия (если не оговорено иное):
 - температура окружающего воздуха от плюс 15 до плюс 25 °C;
 - напряжение питания постоянного тока от 23,7 до 29,5 В.

Условия поверки аппаратуры (антенна), установленной на открытом воздухе, в соответствии с эксплуатационной документацией.

7. ПОДГОТОВКА К ПОВЕРКЕ

- 7.1. Поверитель должен изучить техническую документацию изготовителя и руководства по эксплуатации КЕДП.466961.003РЭ «Измерители координат модернизированные ИК-м, ИК-м1 КЕДП.466961.003. Руководство по эксплуатации» и КЕДП.466224.004РЭ «Устройства БОПИ ИК-м, БОПИ ИК-м1 КЕДП.466224.004. Руководство по эксплуатации» применяемых средств поверки.
 - 7.2. Перед проведением операций поверки необходимо:
- проверить комплектность рекомендованных (или аналогичных им) средств поверки;
- заземлить (если это необходимо) рабочие эталоны, средства измерений и включить питание заблаговременно перед очередной операцией поверки (в соответствии со временем установления рабочего режима, указанным в РЭ).

8. ПРОВЕДЕНИЕ ПОВЕРКИ

- 8.1. Внешний осмотр
- 8.1.1. При проведении внешнего осмотра проверить отсутствие механических повреждений и ослабления элементов, четкость фиксации их положения, чёткость обозначений, чистоту и исправность разъёмов и гнёзд.
- 8.1.2. Результаты поверки считать положительными, если отсутствуют механические повреждения и ослабления элементов, фиксация их положения чёткая, разъёмы и гнёзда чистые и исправные.
 - 8.2. Опробование, идентификация программного обеспечения
- 8.2.1. Для проверки работоспособности аппаратуры собрать схему в соответствии с рисунком 1.

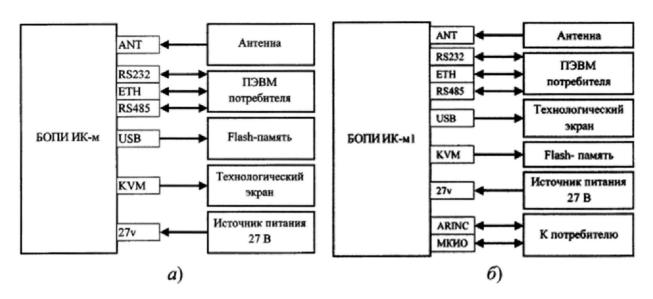


Рисунок 1 — Схема подключения для проверки работоспособности аппаратуры: a) — ИК-м; b0 — ИК-м1 КЕДП.466961.003

Аппаратура ИК-м (ИК-м1 КЕДП.466961.003) каждая состоит из двух идентичных блоков БОПИ ИК-м (БОПИ ИК-м1), отличающиеся наличием интерфейсов ARINC и МКИО у ИК-м1 КЕДП.466961.003. Условно обозначим один из блоков как базовый, а второй как мобильный. Базовый блок размещается на твёрдой точке и служит опорной точкой при расчёте относительных координат. Мобильный блок размещается на объекте измерений.

- 8.2.2. Включить устройство БОПИ ИК-м (БОПИ ИК-м1) согласно КЕДП.466224.004РЭ.
- 8.2.3. Проверить работу БОПИ ИК-м (БОПИ ИК-м1) в автономном режиме. Для этого отключить от БОПИ ИК-м (БОПИ ИК-м1) все кабели и устройства, кроме источника питания и антенны.
 - 8.2.4. Подождать не более 10 минут для получения первичных данных.
- 8.2.5. Перенести данные на ПЭВМ потребителя в соответствие с КЕЛП.466224.004РЭ.
- 8.2.6. Обработать полученные данные с помощью штатного ПО согласно КЕДП.466224.004РЭ.
 - 8.2.7. Идентификационные данные ПО представлены в таблице 3.

Таблица 3 — Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Наименование	Обработчик ИК-м
Идентификационное наименование ПО	КЕДП 00007.01-01
Номер версии (идентификационный номер)	не ниже 01
Цифровой идентификатор (контрольная сумма по	0dd09e85255ab1b4

Идентификационные данные (признаки)	Значение
алгоритму md5)	8af4e458ea11a385

- 8.2.8. Результаты поверки считать положительными, если получены результаты измерений относительных координат двух БОПИ ИК-м (БОПИ ИК-м1) по сигналам СНС GPS/ГЛОНАСС, а идентификационные данные ПО соответствуют данным, указанным в таблице 3.
- 8.3. Определение границ инструментальной погрешности (при доверительной вероятности 0,95) измерения дальности между базой и объектом
- 8.3.1. Установить базовый БОПИ ИК-м (БОПИ ИК-м1) на одном из геодезических пунктов из состава рабочего эталона единиц координат местоположения и включить в автономном режиме работы согласно пункту 8.2.3.
- 8.3.2. Установить мобильный БОПИ ИК-м (БОПИ ИК-м1) на передвижную платформу вместе с навигационной аппаратурой потребителя (НАП) из состава рабочего эталона и включить автономный режим работы согласно КЕДП.466224.004РЭ.
- 8.3.3. Провести заезд с мобильным БОПИ ИК-м (БОПИ ИК-м1) по маршруту с характеристиками, представленными в таблице 4.

Таблица 4 — Условия проведения поверки

Наименование характеристики	Значение	
Удаление от базовой станц	ии от 0,1 до 15 км	
Скоростной режим	до 35 м/с	
Передвижение по маршруту	в движении не менее 60 мин, стоянка не менее 30 мин	
Наличие объектов, препятствующих приёму навигационного сигнала, затенение	нет	
Перепад высот на маршруте	50 м	
Отклонения плоскости спутниковой антенны от плоскости местного горизонта на углы крена и тангажа		
Удаление от базовой станции от 15 до 50 км		
Скоростной режим	до 35 м/с	
Передвижение по маршруту	в движении не менее 60 мин, стоянка не менее 30 мин	
Наличие объектов, препятствующих приёму навигационного сигнала, затенение	нет	

Наименование характеристики	Значение	
Удаление от базовой станции от 50 до 200 км		
Скоростной режим	до 35 м/с	
Передвижение по маршруту	в движении не менее 60 мин, стоянка не менее 30 мин	
Наличие объектов, препятствующих приёму навигационного сигнала, затенение		

- 8.3.4. Обработать данные, полученные с НАП с помощью штатного ПО из состава рабочего эталона, получив, таким образом, значения местоположения в системе координат WGS-84, дальность и азимут мобильного блока относительно базового.
- 8.3.5. Обработать данные, полученные с базовой и мобильной станции БОПИ ИК-м (БОПИ ИК-м1) с помощью штатного ПО, получив значения местоположения в системе координат WGS-84, дальность и азимут мобильного блока относительно базового.
- 8.3.6. Из полученного массива измерений базового и мобильного БОПИ ИК-м (БОПИ ИК-м1) отобрать измерения, полученные при удалении объекта от базовой станции на дистанцию от 0,1 до 15 км. Выбрать участок длительностью не менее 500 с, с количеством общих спутников GPS не менее 6.
- 8.3.7. Рассчитать абсолютную погрешность измерения дальности l удаления объекта от базовой станции.

Абсолютная погрешность определения дальности удаления объекта от базовой станции рассчитывается по формуле (1):

$$\Delta l_{\rm j} = l_{\rm j} - l_{\rm on j},\tag{1}$$

где $l_{\text{оп j}}$ — опорное значение дальности в j-ый момент времени, м; l_{j} — измеренное значение дальности в j-ый момент времени, м.

8.3.8. Рассчитать систематическую составляющую погрешности определения дальности удаления объекта от базовой станции.

Систематическая составляющая погрешности определения дальности удаления объекта от базовой станции определяется по формуле (2):

$$\overline{\Delta l} = \frac{l}{N} \cdot \sum_{j=1}^{N} \Delta l_{j} , \qquad (2)$$

где N — количество измерений.

8.3.9. Рассчитать среднее квадратичное отклонение (СКО) случайной составляющей погрешности определения дальности удаления объекта от базовой станции.

СКО определяется по следующей формуле (3):

$$\sigma_{l} = \sqrt{\frac{\sum_{j=1}^{N} (\overline{\Delta l} - \Delta l_{j})^{2}}{N - l}}.$$
(3)

8.3.10. Рассчитать границы инструментальной погрешности (по уровню доверительной вероятности 0,95) определения дальности между базой и объектом.

Границы инструментальной погрешности (по уровню доверительной вероятности 0,95) определения дальности между базой и объектом определяются по формуле (4):

$$X_1 = \pm \left(\left| \Delta l \right| + 1,96\sigma_1 \right). \tag{4}$$

- 8.3.11. Используя данные, полученные в пунктах 8.3.4 и 8.3.5, выбрать измерения, полученные при удалении объекта от базовой станции на дистанцию от 15 до 50 км и от 50 до 200 км.
- 8.3.12. Определить погрешности (по уровню доверительной вероятности 0,95) определения дальности между базой и объектом при удалении объекта от базы на расстояние от 15 до 50 км и от 50 до 200 км аналогично пунктам 8.3.7-8.3.10.
- 8.3.13. Результаты считать положительными, если границы погрешностей (по уровню доверительной вероятности 0,95) определения дальности между базой и объектом находятся в пределах:
 - при удалении объекта от базы на расстояние от 0,1 до 15 км ±0,1 м
 - при удалении объекта от базы на расстояние от 15 до 50 км ±2 м
 - при удалении объекта от базы на расстояние от 50 до 200 км ±3 м
- 8.4. Определение среднеквадратического отклонения случайной составляющей погрешности измерения азимута объекта относительно базы
- 8.4.1. Используя данные, полученные в пунктах 8.3.4 и 8.3.5, рассчитать абсолютную погрешность определения азимута.

Абсолютная погрешность определения азимута объекта относительно базовой станции рассчитывается по формуле (5):

$$\Delta \gamma_i = \gamma_i - \gamma_{\text{ord}}, \tag{5}$$

где $\gamma_{\text{оп j}}$ — опорное значение азимута в j-ый момент времени, градус; γ_{j} — измеренное значение азимута в j-ый момент времени, градус.

8.4.2. Рассчитать систематическую составляющую погрешности определения азимута.

Систематическая составляющая погрешности определения азимута определяется по формуле (6):

$$\overline{\Delta \gamma} = \frac{I}{N} \cdot \sum_{j=1}^{N} \Delta \gamma_{j} , \qquad (6)$$

8.4.3. Рассчитать СКО случайной составляющей погрешности определения азимута.

СКО определяется по формуле (7):

$$\sigma_{\gamma} = \sqrt{\frac{\sum_{j=1}^{N} (\overline{\Delta \gamma} - \Delta \gamma_{j})^{2}}{N - 1}}.$$
(7)

- 8.4.4. Результаты считать положительными, если значение СКО случайной составляющей погрешности измерения азимута объекта относительно базы не превышает 0,01 градуса.
- 8.5. Определение границ инструментальной погрешности (при доверительной вероятности 0,95) измерения высоты объекта относительно базы (при удалении объекта от базы на расстояние от 0,1 до 15 км)
- 8.5.1. Используя данные, полученные в пункте 8.3.6 для удаления от базовой станции до 15 км, рассчитать абсолютную погрешность измерения высоты.

Абсолютная погрешность измерения высоты объекта относительно базовой станции рассчитывается по формуле (8):

$$\Delta h_{\rm j} = h_{\rm j} - h_{\rm onj}, \tag{8}$$

где $h_{\text{оп j}}$ — опорное значение высоты в j-ый момент времени, м; h_{j} — измеренное значение высоты в j-ый момент времени, м.

8.5.2. Рассчитать систематическую составляющую погрешности определения высоты.

Систематическая составляющая погрешности определения высоты объекта относительно базовой станции определяется по формуле (9):

$$\overline{\Delta h} = \frac{1}{N} \cdot \sum_{j=1}^{N} \Delta h_{j} , \qquad (9)$$

8.5.3. Рассчитать СКО случайной составляющей погрешности определения высоты.

СКО определяется по формуле (10):

$$\sigma_{\rm h} = \sqrt{\frac{\sum_{j=1}^{N} (\overline{\Delta h} - \Delta h_{\rm j})^2}{N - 1}}.$$
(10)

8.5.4. Рассчитать границы инструментальной погрешности (по уровню доверительной вероятности 0,95) определения относительной высоты.

Границы инструментальной погрешности (по уровню доверительной вероятности 0,95) определения относительной высоты рассчитывается по формуле (11):

$$X_{h} = \pm \left(\left| \overline{\Delta h} \right| + 1,96\sigma_{h} \right). \tag{11}$$

8.5.5. Результаты считать положительными, если значения погрешности (по уровню доверительной вероятности 0.95) определения высоты объекта относительно базы (при удалении от 0.1 до 15 км) находятся в пределах ± 0.1 м.

9. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1. При положительных результатах поверки аппаратуры выдается свидетельство установленной формы.
- 9.2. На оборотной стороне свидетельства о поверке записываются результаты поверки.
- 9.3. В случае отрицательных результатов поверки поверяемая аппаратура к дальнейшему применению не допускается. На такую аппаратуру выдается извещение о непригодности к дальнейшей эксплуатации с указанием причин непригодности.

Заместитель начальника НИО-8 по научной работе ФГУП «ВНИИФТРИ»

Начальник

841 лаборатории ФГУП «ВНИИФТРИ»

Старший научный сотрудник 841 лаборатории ФГУП «ВНИИФТРИ» emant "

Федотов В.Н.

(if)

Печерица Д.С.

9m -

Бурцев С.Ю.

ПРИЛОЖЕНИЕ А ССЫЛОЧНЫЕ НОРМАТИВНЫЕ ДОКУМЕНТЫ

Обозначение документа, на который дана ссылка	Номер раздела, подраздела, пункта, подпункта, перечисления, приложения, разрабатываемого документа, в котором дана ссылка
ПР 50.2.012-94 ГСИ. Порядок аттестации поверителей средств измерений	4.1
ГОСТ 12.3.019-80 Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности	5.1
КЕДП.466961.003РЭ Измерители координат модернизированные ИК м, ИК м1 КЕДП.466961.003. Руководство по эксплуатации	7.1
	7.1, 8.2.2, 8.2.5, 8.2.6, 8.3.2

ПРИЛОЖЕНИЕ Б ПЕРЕЧЕНЬ СОКРАЩЕНИЙ

GPS — Global positioning system (название глобальной спутниковой навигационной системы, разработанной США);

БОПИ — блок обработки и получения информации;

ГЛОНАСС — Глобальная навигационная спутниковая система (название глобальной спутниковой навигационной системы, разработанной Россией);

ГНСС — глобальная спутниковая навигационная система;

ИК-м — измеритель координат модернизированный;

ИНС — инерциально-спутниковая навигационная система;

ПО — программное обеспечение;

ПЭВМ — персональная электронно-вычислительная машина;

РЭ — руководство по эксплуатации;

СИ — средства измерения;

СКО — среднее квадратичное отклонение;

СНС — спутниковая навигационная система.