


В.В. Швыдун 2017 г.

# Инструкция

Система измерительная для стендовых испытаний узлов и агрегатов автомобилей СИСТ-56

Методика поверки СТ056-017.01 МП

# СОДЕРЖАНИЕ

|                                                | Стр |
|------------------------------------------------|-----|
| 1 Введение                                     | 3   |
| 2 Операции поверки                             | 3   |
| 3 Средства поверки                             | 4   |
| 4 Требования безопасности                      | 5   |
| 5 Условия поверки                              | 5   |
| 6 Подготовка к поверке                         | 5   |
| 7 Проведение поверки                           | 5   |
| 8 Обработка результатов измерений              | 12  |
| 9 Оформление результатов поверки               | 12  |
| Приложение А - Функциональные схемы поверки ИК | 13  |
| Приложение Б - Форма протокола поверки         | 15  |

# 1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки (далее по тексту «методика») распространяется на систему измерительную для стендовых испытаний узлов и агрегатов автомобилей СИСТ-56 (в дальнейшем изложении система) и устанавливает методику первичной и периодической поверки.
  - 1.2 Интервал между поверками 1 год.

# 2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны выполнятся операции, указанные в таблице 1.

Таблица 1

| таолица т                                                                                                                  | Номер                         | Проведение операции при |                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|--------------------------|--|--|
| Наименование операции                                                                                                      | пункта<br>методики<br>поверки | первичной<br>поверке    | периодической<br>поверке |  |  |
| 1 Внешний осмотр                                                                                                           | 7.1                           | да                      | да                       |  |  |
| 2 Опробование                                                                                                              | 7.2                           | да                      | да                       |  |  |
| 3 Проверка контрольной суммы исполняемого кода (цифрового идентификатора программного обеспечения (ПО))                    | 7.6                           | да                      | да                       |  |  |
| 4 Определение метрологических характеристик                                                                                |                               |                         |                          |  |  |
| 4.1 Определение приведенной (к верхнему пределу (ВП)) погрешности измерений силы Количество измерительных каналов (ИК) - 6 | 7.3<br>(8.1, 8.2)             | да                      | да                       |  |  |
| 4.2 Определение приведенной (к ВП) погрешности измерений перемещения Количество ИК - 6                                     | 7.4<br>(8.1, 8.2)             | да                      | да                       |  |  |
| 4.3 Определение приведенной (к ВП) погрешности измерений угла Количество ИК - 3                                            | 7.5<br>(8.1, 8.2)             | да                      | да                       |  |  |

2.2 Допускается проведение поверки отдельных ИК системы в соответствии с заявлением владельца системы.

# 3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки использовать средства измерений и вспомогательное оборудование, приведенные в таблице 2.

Таблица 2

| Номер    | Наименование и тип основных или вспомогательных средств поверки, номер    |
|----------|---------------------------------------------------------------------------|
| пункта   | документа, регламентирующего технические требования к рабочим эталонам    |
| методики | или вспомогательным средствам. Разряд по государственной поверочной схеме |
| поверки  | и (или) метрологические и основные технические характеристики             |
| 7.3      | Калибратор промышленных процессов универсальный АКИП-7301: диапазон       |
|          | формирования напряжения постоянного тока от 0,001 до 100 мВ, пределы      |
|          | допускаемой абсолютной погрешности воспроизведения напряжения             |
|          | постоянного тока (U) ±(0,0002·U + 10 е.м.р.), мВ                          |
| 7.3      | Динамометр электронный переносной АЦДУ-5/1И-2: диапазон измерений силы    |
|          | от 0,5 до 5 кН; пределы допускаемой относительной погрешности измерений   |
|          | силы ±0,45 %                                                              |
| 7.4      | Калибратор промышленных процессов универсальный АКИП-7301: диапазон       |
|          | воспроизведения силы постоянного тока от 0,001 до 20 мА, пределы          |
|          | допускаемой абсолютной погрешности воспроизведения силы постоянного       |
|          | тока (I) ±(0,0002·1 + 3 е.м.р.), мА                                       |
| 7.5      | Квадрант оптический КО-60М: диапазон измерений плоского угла от минус 120 |
|          | до плюс 120°; пределы допускаемой абсолютной погрешности измерений        |
|          | плоского угла ±30′′ (± 0,0084°)                                           |
|          | Вспомогательные средства поверки                                          |
| 5.1      | Измеритель комбинированный «TESTO 175-H1»: диапазоны измерений:           |
|          | -температуры от -20 до +55 °C,                                            |
|          | - относительной влажности от 5 до 95%.                                    |
|          | Пределы абсолютной погрешности измерений:                                 |
|          | -температуры $\pm 0.4$ °C,                                                |
|          | - относительной влажности ±2%.                                            |
|          | Барометр-анероид БАММ-1: диапазон измерений атмосферного давления: от 80  |
|          | до 106 кПа, пределы основной допускаемой погрешности измерений            |
|          | атмосферного давления ±200 Па                                             |
|          | Вспомогательное оборудование                                              |
| 7.3      | Рама для нагружения CT020.00.04.000*                                      |
| 7.3      | Кабель для поверки силы СТ1608.00.08.000                                  |
| 7.4      | Кабель для поверки перемещения СТ1608.00.08.000-01                        |
| 7.5      | Устройство градуировки ДУ*СТ000.00.20.000                                 |
|          |                                                                           |

- поставляется по отдельному заказу.
- 3.2 При проведении поверки допускается применять другие средства измерений, удовлетворяющие по точности и диапазону измерений требованиям настоящей методики.
  - 3.3 При поверке должны использоваться средства измерений утвержденных типов.
- 3.4 Используемые средства поверки должны быть поверены в соответствии с требованиями приказа Минпромторга России № 1815 от 02.07.2015 г. и иметь действующее свидетельство о поверке (знак поверки).
- 3.5 Средства поверки должны быть внесены в рабочее помещение не менее чем за 12 часов до начала поверки.

## 4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и «ПОТ Р М-016-2001. РД 153-34.0-03.150-00. Межотраслевыми Правилами по охране труда (Правила безопасности) при эксплуатации электроустановок». ГОСТ 12.2.007.0-75, ГОСТ Р 12.1.019-2009, ГОСТ 12.2.091-2002 и требования безопасности, указанные в технической документации на применяемые эталоны и вспомогательное оборудование.
- 4.2 Любые подключения приборов проводить только при отключенном напряжении питания системы.

**ВНИМАНИЕ!** На открытых контактах клеммных колодок системы напряжение опасное для жизни – 220 В.

- 4.3 К поверке допускаются лица, изучившие руководство по эксплуатации (РЭ) на систему, знающие принцип действия используемых средств измерений и прошедшие инструктаж по технике безопасности (первичный и на рабочем месте) в установленном в организации порядке.
- 4.4 К поверке допускаются лица, освоившие работу с используемыми средствами поверки, изучившие настоящую методику и имеющие достаточную квалификацию.
- 4.5 Лица, участвующие в поверке системы, должны проходить обучение и аттестацию по технике безопасности и производственной санитарии при работе в условиях её размещения.

#### 5 УСЛОВИЯ ПОВЕРКИ

#### 6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 При подготовке к поверке:
- проверить наличие свидетельств (знаков поверки) о поверке рабочих эталонов;
- проверить целостность электрических цепей измерительного канала (ИК);
- включить питание измерительных преобразователей и аппаратуры системы;
- запустить программу градуировки в соответствии с РЭ системы;
- перед началом поверки измерить и занести в протокол поверки условия окружающей среды (температура, влажность воздуха и атмосферное давление).

#### 7 ПРОВЕДЕНИЕ ПОВЕРКИ

- 7.1 Внешний осмотр
- 7.1.1 При внешнем осмотре проверить:
- отсутствие механических повреждений;
- исправность органов управления (четкость фиксации положения переключателей и кнопок);
  - отсутствие нарушений экранировки линий связи;
  - отсутствие обугливания изоляции на внешних токоведущих частях системы;
  - отсутствие неудовлетворительного крепления разъемов;
  - заземление стойки управления системы;
  - наличие товарного знака изготовителя и заводского номера системы.

- 7.1.2 Результаты осмотра считать положительными, если выполняются вышеперечисленные требования. В противном случае поверка не проводится до устранения выявленных недостатков.
  - 7.2 Опробование
  - 7.2.1 При опробовании системы необходимо:
  - включить систему, подав напряжение питания на все ее компоненты; запустить ПО Гарис.
- 7.2.2 Результаты опробования считать положительными, если ПО Гарис запускается и в окне «По текущим А и В» отображается информация с действующими значениями измеряемых величин.
  - 7.3 Определение приведенной (к ВП) погрешности измерений силы

Поверку ИК силы проводить комплектным или поэлементным методами.

Для ИК силы с диапазоном измерения от 0 до 5 кН.

- 7.3.1 Определение приведенной (к ВП) погрешности измерений силы комплектным методом.
- 7.3.1.1 Собрать функциональную схему поверки ИК силы согласно рисунку 1 Приложения A.

Установить в пресс гидравлический ручной динамометр электронный переносной АЦДУ-5/1И-2 последовательно с датчиком силы тензометрическим S9M (5кH) в соответствии с поверяемым ИК. Датчик силы подключить штатным кабелем к разъему «ДС2» блока подключения датчиков (БПД) СТ1608.40.00.000, зав. № 1702-0001.

- 7.3.1.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
- 7.3.1.3 Запустить ПО Гарис.
- 7.3.1.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
- 7.3.1.5 Разгрузить силовую цепь до 0. В окне «По текущим A и В» должно установиться значение близкое к 0.
  - 7.3.1.6 Записать измеренное значение в таблицу 3 (точка j = 1).

Таблица 3

| · · · · · · · · · · · · · · · · · · ·           |   |   |   |   |   |   |
|-------------------------------------------------|---|---|---|---|---|---|
| Сила по динамометру, кН                         | 0 | 1 | 2 | 3 | 4 | 5 |
| ИК № _ 1-е изм. ( <i>a</i> <sub>1</sub> )       |   |   |   |   |   |   |
| ИК № _ 2-е изм. (а2)                            |   |   |   |   |   |   |
| ИК № _ 3-е изм. (а3)                            |   |   |   |   |   |   |
| Среднее значение А <sub>j</sub> , кН            |   |   |   |   |   |   |
| Абсолютная погрешность $\Delta A_j$ , кН        |   |   |   |   |   |   |
| Приведенная (к ВП) погрешность $\gamma_{j}$ , % |   |   |   |   |   |   |

- 7.3.1.7 Проводить контрольные операции в точках 1, 2, 3, 4 и 5 кН.
- 7.3.1.8 Записать измеренные значения в таблицу 3 (точки j = 2...6).
- 7.3.1.9 Операции по п.п. 7.3.1.5...7.3.1.8 повторить еще 2 раза.
- 7.3.1.10 Рассчитать максимальное значение приведенной (к ВП) погрешности измерений силы  $\gamma_{\text{мах}}$  в соответствии с разделом 8 настоящей методики.
- 7.3.1.11 Результаты поверки считать положительными, если значение приведенной (к ВП) погрешности измерений силы находится в пределах  $\pm 1,0\%$ , в противном случае система бракуется и направляется в ремонт.
- 7.3.1.12 Выполнить действия по п.п. 7.3.1.1...7.3.1.11 для остальных 2 ИК силы (с диапазоном измерений от 0 до 5 кН), для этого в пресс гидравлический ручной устанавливать поочередно датчики силы тензометрические поверяемых ИК, подключенные к соответствующим БПД.

- 7.3.2 Определение приведенной (к ВП) погрешности измерений силы поэлементным методом
- 7.3.2.1 Приведенную (к ВП) погрешность датчика силы S9M (5 кН) определить по результатам поверки датчика, проведенной в соответствии с документом МП РТ 1765-2012 «Датчики силоизмерительные тензорезисторные серии S. Методика поверки» утвержденным ГЦИ СИ ФБУ «Ростест-Москва» в 2012 году.
- 7.3.2.2 Определение приведенной (к ВП) погрешности измерений напряжения постоянного тока, соответствующего значениям силы
- 7.3.2.2.1 Используя кабель для поверки силы СТ1608.00.08.000 из комплекта ЗИП, подсоединить калибратор АКИП-7301 к входу «ДС2» БПД СТ1608.40.00.000, зав. № 1702-0001, согласно рисунку 1 Приложения А.
  - 7.3.2.2.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
  - 7.3.2.2.3 Запустить ПО Гарис.
- 7.3.2.2.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
  - 7.3.2.2.5 Установить на калибраторе АКИП-7301 предел воспроизводимого сигнала 0 мВ.
- 7.3.2.2.6 В окне «По текущим А и В» должно установиться значение близкое к 0, что соответствует значению силы 0 кН.
  - 7.3.2.2.7 Записать измеренное значение в таблицу 4 (точка j=1).

Таблица 4

| Напряжение постоянного тока, мВ      | 0 | 2,5  | 5   | 7,5  | 10 |
|--------------------------------------|---|------|-----|------|----|
| Сила, кН                             | 0 | 1,25 | 2,5 | 3,75 | 5  |
| ИК № 1 1 изм.                        |   |      |     |      |    |
| ИК № 1 2 изм.                        |   |      |     |      |    |
| ИК № 1 3 изм.                        |   |      |     |      |    |
| Среднее значение Ај, кН              |   |      |     |      |    |
| Абсолютная погрешность Дај, кН       |   |      |     |      |    |
| Приведенная (к ВП) погрешность уј, % |   |      |     |      |    |

- 7.3.2.2.8 Установить на выходе калибратора АКИП-7301 последовательно значения воспроизводимого сигнала 2,5; 5,0; 7,5 и 10 мВ, что соответствует значениям силы 1,25; 2,5; 3,75 и 5 кН. Контролировать установившиеся значения в окне «По текущим A и В».
  - 7.3.2.2.9 Записать измеренные значения в таблицу 4 (точки j = 2...5).
  - 7.3.2.2.10 Операции по п.п. 7.3.2.2.6...7.3.2.2.9 повторить еще 2 раза.
- 7.3.2.2.11 Рассчитать максимальное значение приведенной (к ВП) погрешности измерений напряжения постоянного тока, соответствующего значениям силы,  $\gamma_{\text{мах}}$  в соответствии с разделом 8 настоящей методики.
- 7.3.2.2.12 Рассчитать значение приведенной (к ВП) погрешности измерений силы  $\gamma_{\text{силы}}$  по формуле:

$$\gamma = \gamma_{\rm A} + \gamma_{\rm HK} \,, \tag{1}$$

где  $\gamma_{\text{д}}$  – приведенная (к ВП) погрешность датчика силы S9M по п. 7.3.2.1;

- $\gamma_{\text{ик}}$  приведенная (к ВП) погрешность измерений напряжения постоянного тока, соответствующего значениям силы, ( $\gamma_{\text{мах}}$ ) по п. 7.3.2.2.11.
- 7.3.2.2.13 Результаты поверки считать положительными, если значения приведенной (к ВП) погрешности измерений силы находятся в пределах  $\pm 1,0\%$ .
- 7.3.2.3 Выполнить действия по п.п. 7.3.2.1...7.3.2.2.13 для остальных 2 ИК силы (с диапазоном измерений от 0 до 5 кH), для этого калибратор АКИП-7301 кабелем для поверки СТ1608.00.08.000 подключать поочередно к соответствующим входам БПД СТ1608.40.00.000, зав. №№ 1702-0002, 1702-0003.

Для ИК силы с диапазоном измерений от 0 до 2 кН

- 7.3.3 Определение приведенной (к ВП) погрешности измерений силы комплектным методом
- 7.3.3.1 Собрать функциональную схему поверки ИК силы согласно рисунку 1 Приложения A.

Установить в пресс гидравлический ручной динамометр электронный переносной АЦДУ-5/1И-2 последовательно с датчиком силы тензометрическим U3 (2 кH) в соответствии с поверяемым ИК. Датчик силы подключить штатным кабелем к разъему «ДС1» БПД СТ1608.40.00.000, зав. № 1702-0001.

- 7.3.3.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
- 7.3.3.3 Запустить ПО Гарис.
- 7.3.3.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
- 7.3.3.5 Разгрузить силовую цепь до 0. В окне «По текущим А и В» должно установиться значение близкое к 0.
  - 7.3.3.6 Записать измеренное значение в таблицу 5 (точка j = 1).

Таблица 5

| Сила по динамометру, кН                   | 0 | 0,5 | 1 | 1,5 | 2 |
|-------------------------------------------|---|-----|---|-----|---|
| ИК № _ 1-е изм. (а₁)                      |   |     |   |     |   |
| ИК № _ 2-е изм. ( <i>a</i> <sub>2</sub> ) |   |     |   |     |   |
| ИК № _ 3-е изм. (а <sub>3</sub> )         |   |     |   |     |   |
| Среднее значение А <sub>ј</sub> , кН      |   |     |   |     |   |
| Абсолютная погрешность $\Delta A_i$ , кН  |   |     |   |     |   |
| Приведенная (к ВП) погрешность ү, %       |   |     |   |     |   |

- 7.3.3.7 Проводить контрольные операции в точках 0,5; 1; 1,5 и 2 кН.
- 7.3.3.8 Записать измеренные значения в таблицу 5 (точки j = 2...5).
- 7.3.3.9 Операции по п.п. 7.3.3.5...7.3.3.8 повторить еще 2 раза.
- 7.3.3.10 Рассчитать максимальное значение приведенной (к ВП) погрешности измерений силы  $\sigma_{\text{мах}}$  в соответствии с разделом 8 настоящей методики.
- 7.3.3.11 Результаты поверки считать положительными, если значение приведенной (к ВП) погрешности измерений силы находится в пределах  $\pm 1,0\%$ , в противном случае система бракуется и направляется в ремонт.
- 7.3.3.12 Выполнить действия по п.п. 7.3.3.1...7.3.3.11 для остальных 2 ИК силы (с диапазоном измерений от 0 до 2 кН), для этого в пресс гидравлический ручной устанавливать поочередно датчики силы тензометрические U3 (2 кН) поверяемых ИК, подключенные к соответствующим БПД СТ1608.40.00.000, зав. №№ 1702-0002, 1702-0003.
- 7.3.4 Определение приведенной (к ВП) погрешности измерений силы поэлементным методом
- 7.3.4.1 Приведенную (к ВП) погрешность датчика силы U3 (2 кН) определить по результатам поверки датчика, проведенной в соответствии с документом МП 64341-16 «ГСИ. Датчики силоизмерительные тензорезисторные типа U. Методика поверки» утвержденным ФГУП «ВНИИМС» 16.05.2016.
- 7.3.4.2 Определение приведенной (к ВП) погрешности измерений погрешности измерения напряжения постоянного тока, соответствующего значениям силы
- 7.3.4.2.1 Используя кабель для поверки силы СТ1608.00.08.000 из комплекта ЗИП, подсоединить калибратор АКИП-7301 к входу «ДС1» БПД СТ1608.40.00.000, зав. № 1702-0001, согласно рисунку 2 Приложения А.
  - 7.3.4.2.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
  - 7.3.4.2.3 Запустить ПО Гарис.

- 7.3.4.2.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
  - 7.3.4.2.5 Установить на калибраторе АКИП-7301 предел воспроизводимого сигнала 0 мВ.
- 7.3.4.2.6 В окне «По текущим А и В» должно установиться значение близкое к 0, что соответствует значению силы 0 кН.
  - 7.3.4.2.7 Записать измеренное значение в таблицу 6 (точка j=1).

Таблина 6

| Напряжение постоянного тока, мВ           | 0 | 2,5 | 5 | 7,5 | 10 |
|-------------------------------------------|---|-----|---|-----|----|
| Сила, кН                                  | 0 | 0,5 | 1 | 1,5 | 2  |
| ИК № 1 1 изм. (а <sub>1</sub> )           |   |     |   |     |    |
| ИК № 1 2 изм. ( <i>a</i> <sub>2</sub> )   |   |     |   |     |    |
| ИК № 1 3 изм. (а3)                        |   |     |   |     |    |
| Среднее значение А, кН                    |   |     |   |     |    |
| Абсолютная погрешность $\Delta_{aj}$ , кН |   |     |   |     |    |
| Приведенная (к ВП) погрешность ү, %       |   |     |   |     |    |

- 7.3.4.2.8 Установить на выходе калибратора АКИП-7301 последовательно значения воспроизводимого сигнала 2,5; 5,0; 7,5 и 10 мВ, что соответствует значениям силы 0,5; 1; 1,5 и 2 кН. Контролировать установившиеся значения в окне «По текущим A и В».
  - 7.3.4.2.9 Записать измеренные значения в таблицу 6 (точки 2...5).
  - 7.3.4.2.10 Операции по п.п. 7.3.4.2.6...7.3.4.2.9 повторить еще 2 раза.
- 7.3.4.2.11 Рассчитать максимальное значение приведенной (к ВП) погрешности измерений напряжения постоянного тока, соответствующего значениям силы,  $\gamma_{\text{мах}}$  в соответствии с разделом 8 настоящей методики.
- 7.3.4.2.12 Рассчитать значение приведенной (к ВП) погрешности измерений силы  $\gamma_{\text{силы}}$  по формуле (1), где  $\gamma_{\text{д}}$  приведенная (к ВП) погрешность датчика силы U3 по п. 7.3.4.1;  $\gamma_{\text{ик}}$  приведенная (к ВП) погрешность измерений напряжения постоянного тока, соответствующего значениям силы, ( $\gamma_{\text{мах}}$ ) по п. 7.3.4.2.11.
- 7.3.4.2.13 Результаты поверки считать положительными, если значение приведенной (к ВП) погрешности измерений силы находится в пределах  $\pm 1.0$  %.
- 7.3.4.3 Выполнить действия по п.п. 7.3.4.1...7.3.4.2.13 для остальных 2 ИК силы (с диапазоном измерений от 0 до 2 кН), для этого калибратор АКИП-7301 кабелем для поверки СТ1608.00.08.000 подключать поочередно к соответствующим БПД СТ1608.40.00.000, зав. №№ 1702-0002, 1702-0003.
- 7.4 Определение приведенной (к верхнему пределу (ВП)) погрешности измерений перемещения

Поверку ИК перемещения проводить поэлементным методом.

- 7.4.1 Приведенную (к ВП) погрешность датчика ( $\gamma_{\rm A}$ ) перемещения BTL6 определить по результатам поверки датчика, проведенной в соответствии с документом МП РТ 1520-2010 «Преобразователи линейных перемещений BTL5, BTL6, BTL7. Методика поверки», утвержденным ФГУ «РОСТЕСТ-Москва» 14 апреля 2010 года.
- 7.4.2 Определение приведенной (к ВП) погрешности измерений силы постоянного тока, соответствующей значениям перемещения
- 7.4.2.1 Используя кабель для поверки перемещения СТ1608.00.08.000-01 из комплекта ЗИП, подсоединить калибратор АКИП-7301 к входу «ДП1» БПД СТ1608.40.00.000, зав. № 1702-0001 согласно рисунку 3 Приложения А.
  - 7.4.2.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
  - 7.4.2.3 Запустить ПО Гарис.
- 7.4.2.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».

- 7.4.2.5 Установить на выходе калибратора АКИП-7301 значение силы постоянного тока 4 мА. В окне «По текущим А и В» должно установиться значение близкое к 0 мм.
  - 7.4.2.6 Записать измеренное значение в таблицу 7 (точка j = 1).

Таблица 7

| Сила постоянного тока, мА                | 4 | 8   | 12  | 16  | 20  |
|------------------------------------------|---|-----|-----|-----|-----|
| Перемещение, мм                          | 0 | 125 | 250 | 375 | 500 |
| ИК № _ 1-е изм. (a <sub>l</sub> )        |   |     |     |     |     |
| ИК № _ 2-е изм. (a <sub>2</sub> )        |   |     |     |     |     |
| ИК № _ 3-е изм. (а <sub>3</sub> )        |   |     |     |     |     |
| Среднее значение А <sub>j</sub> , мм     |   |     |     |     |     |
| Абсолютная погрешность $\Delta A_j$ , мм |   |     |     |     |     |
| Приведенная (к ВП) погрешность ү, %      |   |     |     |     |     |

- 7.4.2.7 Установить на выходе калибратора АКИП-7301 последовательно значения силы постоянного тока 8, 12, 16 и 20 мА, соответствующие значениям перемещения 125; 250; 375 и 500 мм. Контролировать установившиеся значения в окне «По текущим А и В».
  - 7.4.2.8 Записать измеренные значения в таблицу 7(точки j = 2...5).
  - 7.4.2.9 Операции по п.п. 7.4.2.5...7.4.2.8 повторить еще 2 раза.
- 7.4.2.10 Рассчитать максимальное значение приведенной (к ВП) погрешности измерений силы постоянного тока, соответствующей значениям перемещения,  $\gamma_{\text{мах}}$  в соответствии с разделом 8 настоящей методики.
- 7.4.2.11 Расчет приведенной (к ВП) погрешности измерений перемещения  $\gamma_{\text{мах}}$  проводить по формуле (1), где  $\gamma_{\text{д}}$  приведенная (к ВП) погрешность датчика перемещения ВТL6 по п. 7.4.1;  $\gamma_{\text{ик}}$  приведенная (к ВП) погрешность измерений силы постоянного тока, соответствующей значениям перемещения, ( $\gamma_{\text{мах}}$ ) по п. 7.4.2.10.
- 7.4.2.12 Результаты поверки считать положительными, если значение приведенной (к ВП) погрешности измерений перемещения, находится в пределах  $\pm 1,0$  %, в противном случае система бракуется и направляется в ремонт.
- 7.4.3 Выполнить действия по п.п. 7.4.1...7.4.2.12 для остальных 5 ИК перемещения, для этого калибратор АКИП-7301 кабелем для поверки СТ1608.00.08.000-01 подключить к входу «ДС2» БПД СТ 1608.40.00.000 зав. № 1702-0001 и поочередно к соответствующим входам БПД СТ1608.40.00.000, зав. № 1702-0002, 1702-0003.
  - 7.5 Определение приведенной (к ВП) погрешности измерений угла

Поверку ИК угла проводить комплектным методом.

- 7.5.1 Определение приведенной (к ВП) погрешности измерений угла в диапазоне от 0 до  $60^\circ$
- 7.5.1.1 Собрать функциональную схему поверки ИК угла согласно рисунку 4 Приложения A.

Датчик угла штатным кабелем подключен к разъемам «ДУ» БПД СТ1608.40.00.000, зав. №№ 1702-0001, 1702-0002, 1702-0003.

- 7.5.1.2 Установить датчик угла (ДУ) в устройство градуировки ДУ СТ000.00.20.000.
- 7.5.1.3 Установить квадрант оптический на площадку для установки квадранта устройства градуировки ДУ СТ000.00.20.000.
  - 7.5.1.4 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
  - 7.5.1.5 Запустить ПО Гарис.
- 7.5.1.6 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
- 7.5.1.7 Установить поворотный механизм устройства градуировки в горизонтальное положение.
  - 7.5.1.8 В окне «Градуировка» нажать кнопку «обнулить».

- 7.5.1.9 Отклонить поворотный механизм устройства градуировки на произвольный угол, а затем вернуть в горизонтальное положение.
- 7.5.1.10 В окне «По текущим А и В» должно установиться значение близкое к 0, записать это показание в таблицу 8 (точка j=1).

Таблица 8

| гаолица о                                     |    |             |    |    |    |
|-----------------------------------------------|----|-------------|----|----|----|
| Угол, °                                       | 0  | 15          | 30 | 45 | 60 |
| ИК № _ 1-е изм. (а <sub>1</sub> )             |    |             |    |    |    |
| ИК № _ 2-е изм. (а2)                          |    |             |    |    |    |
| ИК № _ 3-е изм. (а <sub>3</sub> )             |    |             |    |    |    |
| Среднее значение A <sub>j</sub> , °           |    |             |    |    |    |
| Абсолютная погрешность ∆А <sub>j</sub> , °    |    |             |    |    |    |
| Приведенная (к ВП) погрешность $\gamma_j$ , % |    |             |    |    |    |
| В обратную сторону                            |    |             |    |    |    |
| Угол, °                                       | 60 | 45          | 30 | 15 | 0  |
| ИК № _ 1-е изм. (а <sub>1</sub> )             |    |             |    |    |    |
| ИК № _ 2-е изм. (а2)                          |    |             |    |    |    |
| ИК № _ 3-е изм. (а <sub>3</sub> )             |    |             |    |    |    |
| Среднее значение A <sub>j</sub> , °           |    |             |    |    |    |
| Абсолютная погрешность ∆А <sub>j</sub> , °    |    |             |    |    |    |
| Приведенная (к ВП) погрешность үј, %          |    |             |    |    |    |
|                                               |    | <del></del> |    |    |    |

- 7.5.1.11 Провести измерения на всех отметках, соответствующих показаниям квадранта оптического 15, 30, 45, 60°. Результаты измерений записать в таблицу 8 (точка j = 2...5).
- 7.5.1.12 Операции по п.п. 7.5.1.9...7.5.1.11 повторить еще 2 раза и записать результаты измерений в таблицу 11.
- 7.5.1.13 Установить площадку поворотного механизма устройства градуировки в такое положение, чтобы показания квадранта оптического равнялись  $60^{\circ}$ .
- 7.5.1.14 В диалоге «Градуировка» в окне «По текущим А и В» должно быть значение, близкое к  $60^{\circ}$ , записать это показание в таблицу 8 в раздел «В обратную сторону» (точка j=6).
- 7.5.1.15 Провести измерения на всех отметках, соответствующих показаниям квадранта оптического 45, 30, 15, 0°. Результаты измерений записать в таблицу 8 (точка j = 7...10).
- 7.5.1.16 Операции по п.п. 7.5.1.13...7.5.1.15 повторить еще 2 раза и записать результаты измерений в таблицу 8 раздел «В обратную сторону».
- 7.5.1.17 Расчет приведенной (к ВП) погрешности измерений угла у проводить в соответствии с разделом 8 настоящей методики.
- 7.5.1.18 Результаты поверки считать положительными, если значения приведенной (к ВП) погрешности измерений угла находятся в пределах  $\pm 2,0\%$ , в противном случае система бракуется и направляется в ремонт.
- 7.5.1.18 Выполнить действия по п.п. 7.5.1.1...7.5.1.17 для остальных 2 ИК угла, для этого в устройство градуировки ДУ устанавливать поочередно датчики угла подключенные к разъемам «ДУ» БПД СТ1608.40.00.000, зав. №№ 1702-0002, 1702-0003, соответственно.
- 7.6 Проверка контрольной суммы исполняемого кода (цифрового идентификатора ПО) На ПЭВМ системы запустить файл Garis.exe и открыть окно <sup>®</sup> «О программе» (меню Справка —> О программе Гарис). Идентификационные наименования отображаются в верхней части окна «О программе».

Метрологически значимая часть ПО системы представляет собой:

- исполняемый файл Garis.exe Гарис (Гибкий Адаптивный Регулятор для Испытательных Систем): многоканальные статические и динамические испытания;
- модуль GarisGrad.dll фильтрация, градуировочные расчеты;

- модуль GarisAspf.dll вычисление амплитуды, статики, фазы, частоты и других интегральных параметров сигнала;
- модуль GarisInterpreter.dll интерпретатор формул для вычисляемых каналов;

- драйверы платы L780 фирмы L-Card - файлыldevpci.sys, ldevs.sys.

Идентификационные данные (признаки) метрологически значимой части ПО указаны в разделе 17 формуляра.

Для вычисления цифрового идентификатора (хеш-суммы) файла метрологически значимого программного компонента использовать данные ПО Гарис, которое само вычисляет хеш-суммы по алгоритму md5.

# 8 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

8.1 Расчет характеристик погрешности

Среднее арифметическое значение измеряемой величины в j-той точке проверки определить по формуле:

$$A_j = \frac{1}{n} \sum_{i=1}^{n} \mathbf{a}_i, \quad i = \overline{1, n}, \quad j = \overline{1, m},$$
 (2)

где n-количество измерений в j-той точке проверки;

т-количество точек проверки;

 $a_i$ — индицируемые системой значения физической величины в j-ой точке проверки. Значение абсолютной погрешности измерений в j-той точке определить по формуле:

$$\Delta A_i = A_i - A_3, \tag{3}$$

где Аэ - значение физической величины, установленное рабочим эталоном.

8.2 Расчет значения приведенной погрешности

Значения приведенной погрешности измерений физической величины для каждой точки проверки определить по формуле:

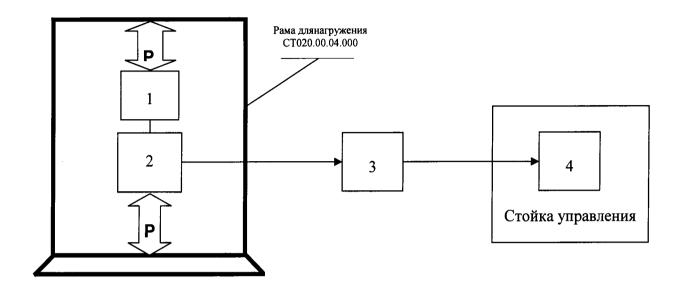
$$\gamma_j = \frac{|\Delta A_j|}{P_j} \cdot 100 \%, \tag{4}$$

At A

где  $P_j$  - значение верхнего предела измерений.

# 9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

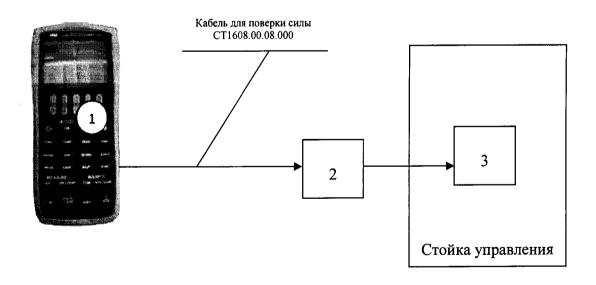
- 9.1 Результаты поверки заносятся в Протокол поверки (Приложение Б).
- 9.2 При положительных результатах поверки оформляется свидетельство о поверке, на стойку управления наносится знак поверки в виде наклейки.
- 9.3 При отрицательных результатах поверки система к применению не допускается и на неё выдается извещение о непригодности к применению с указанием причин забракования.


Начальник отдела ФГБУ «ГНМЦ» Минобороны России

В.А. Кулак

Старший научный сотрудник ФГБУ «ГНМЦ» Минобороны России

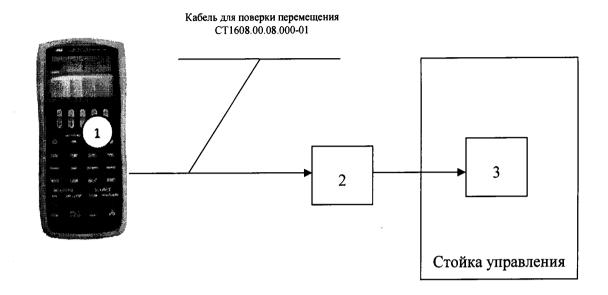
А.А. Горбачев


Приложение A Функциональные схемы поверки ИК



Комплектный метод.

- 1 эталонный динамометр;
- 2 датчик силы тензометрический;
- 3 блок подключения датчиков;
- $4 \Pi ЭВМ (с монитором)$


Рисунок 1 - Функциональная схема поверки ИК силы



Поэлементный метод.

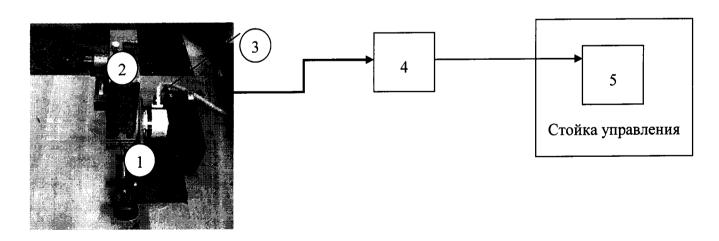

- 1 калибратор АКИП-7301;
- 2 БПД;
- $3 \Pi ЭВМ (с монитором)$

Рисунок 2 - Функциональная схема поверки ИК напряжения постоянного тока, соответствующего значениям силы



- 1 калибратор АКИП-7301;
- 2 БПД;
- $3 \Pi ЭВМ (с монитором)$

Рисунок 3 - Функциональная схема поверки ИК силы постоянного тока, соответствующей значениям перемещения



- 1 устройство градуировки ДУ;
- 2 квадрант оптический;
- 3 датчик угла;
- 4 блок подключения датчиков;
- $5 \Pi ЭВМ (с монитором)$

Рисунок 4 – Функциональная схема поверки ИК угла

# Приложение Б Форма протокола поверки

# протокол

# поверки ИК силы системы измерительной для стендовых испытаний узлов и агрегатов автомобилей СИСТ-56

| 1 Вид поверки                                                                                                 |                                                              |          |             |                       | • • • • • • • •     |                |        |  |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|-------------|-----------------------|---------------------|----------------|--------|--|--|
| 3 Средства поверки 3.1 Рабочий эталон                                                                         | ••••••                                                       | •••••    | • • • • • • | • • • • • • • • • • • | ••••••              |                |        |  |  |
|                                                                                                               | Границы диапазона Наименование измерения, кгс Погрешность, % |          |             |                       |                     |                |        |  |  |
| паименование                                                                                                  | наименование измерения, ктс нижний верхний                   |          |             |                       | — Tiorpennioers, 70 |                |        |  |  |
| Динамометр АЦД                                                                                                | 0,5                                                          |          | кН          |                       | ±0,4                | 45             |        |  |  |
| <ul><li>3.2 Вспомогательные средства:</li><li>4 Условия поверки</li><li>4.1 Температура окружающего</li></ul> |                                                              | ии с мет | одико       | й повер               | ки СТ056-           | -017.01 M      | П      |  |  |
| 4.2 Относительная влажность в                                                                                 | оздуха, %                                                    |          |             |                       |                     |                |        |  |  |
| 4.3 Атмосферное давление, мм                                                                                  | рт. ст.                                                      |          |             |                       | <del></del>         |                |        |  |  |
| 5 Результаты экспериментальна 5.1 Внешний осмотр:                                                             | х исследовани                                                | <br>ій   |             |                       |                     | <br>           |        |  |  |
| 5.3.2 Задаваемые контрольные                                                                                  | гочки                                                        |          |             |                       |                     |                |        |  |  |
| Сила по динамометру, кН                                                                                       |                                                              | 0        | 1           | 2                     | 3                   | 4              | 5      |  |  |
| ИК № _ 1-е изм. ( <i>a</i> <sub>1</sub> )                                                                     |                                                              |          |             |                       |                     |                |        |  |  |
| ИК № _ 2-е изм. (а2)                                                                                          |                                                              |          |             |                       |                     |                |        |  |  |
| ИК № _ 3-е изм. (а <sub>3</sub> )                                                                             |                                                              |          |             |                       |                     |                |        |  |  |
| Среднее значение А <sub>j</sub> , кгс                                                                         |                                                              |          |             |                       |                     |                |        |  |  |
| Абсолютная погрешность $\Delta A_{j}$ , кг                                                                    | rc                                                           |          |             |                       |                     |                |        |  |  |
| Приведенная (к ВП) погрешности                                                                                | 5γ,%                                                         |          |             |                       |                     |                |        |  |  |
| Расчет погрешности ИК провод 6 Вывод Приведенная (к ВП) погрешнос Дата очередной поверки                      | цится в соотве<br>ть измерений                               | силы     |             |                       |                     | C056-017.      | 01 МП. |  |  |
| Поверитель                                                                                                    | подпись, дата)                                               |          |             |                       | ((                  | <b>.</b> и.о.) |        |  |  |
|                                                                                                               | ·                                                            |          |             |                       | •                   | - •            |        |  |  |