

Тахеометры электронные Spectra Precision Focus 2

МЕТОДИКА ПОВЕРКИ МП АПМ 34-16 Настоящая методика поверки распространяется на тахеометры электронные Spectra Precision Focus 2 (далее - тахеометры), производства «Trimble Inc.», США, и устанавливают методику их первичной и периодической поверки.

Интервал между поверками – 1 год.

1 Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

Laoni	таолица т						
No		№ пункта доку-	Проведение операций при				
п/п	Наименование операции	мента по по-	первичной по-	периодической			
11/11		верке	верки	поверке			
1	Внешний осмотр	7.1	Да	Да			
2	Опробование, проверка работо-						
	способности функциональных	7.2	Да	Да			
	режимов, идентификация про-	1.4					
	граммного обеспечения						
3	Определение метрологических	7.3	_	_			
	характеристик	7.3	-				
3.1	Определение абсолютной и						
	средней квадратической по-	7.3.1	Да	Да			
	грешностей измерений рассто-	7.5.1	Да	Да			
	яний						
3.2	Определение абсолютной и						
	средней квадратической по-	7.3.2	Да	Да			
	грешностей измерений угла						

2 Средства поверки

При проведении поверки должны применяться эталоны и вспомогательные средства поверки, приведенные в таблице 2.

Таблица 2

№ пункта документа по	Наименование эталонов, вспомогательных средств поверки и их ос-	
поверке	новные метрологические и технические характеристики	
7.3.1	Фазовый светодальномер (тахеометр электронный) 1-го разряда по	
	ГОСТ Р 8.750-2011	
	Линейные базисы по ГОСТ 8.750-2011	
7.3.2	Стенд универсальный коллиматорный ВЕГА УКС (рег. № 44753-16)	

Примечание — Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью, удовлетворяющей требованиям настоящей методики.

3 Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы, имеющие достаточные знания и опыт работы с тахеометрами.

4 Требования безопасности

При проведении поверки, меры безопасности должны соответствовать требованиям по технике безопасности согласно эксплуатационной документации, правилам по технике безопасности, действующие на месте проведения поверки и требованиям МЭК-825 «Радиационная безопасность лазерной продукции, классификация оборудования, требования и руководство для потребителей», а также правилам по технике безопасности при производстве топографогеодезических работ ПТБ-88.

5 Условия поверки

5.1 Поверка тахеометров может быть проведена в полевых или лабораторных условиях. При проведении поверки в лабораторных условиях должны соблюдаться следующие нормальные условия измерений:

- температура окружающей среды, °С

 (20 ± 5)

- относительная влажность воздуха, %, не более

80

- атмосферное давление, мм рт. ст. (кПа)

630...800

- изменение температуры окружающей среды во время поверки, °С/ч, не более

(84,0...106,7)

Полевые измерения (измерения на открытом воздухе) должны проводиться при отсутствии осадков, порывов ветра и при температуре окружающей среды от минус 20 до плюс 50 $^{\circ}$ C.

6 Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- проверить наличие действующих свидетельств о поверке на средства измерений;
- тахеометр и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией;
- тахеометр и средства поверки должны быть выдержаны при нормальных условиях не менее 1 ч.

7 Проведение поверки

7.1 Внешний осмотр

При внешнем осмотре должно быть установлено соответствие тахеометра следующим требованиям:

- отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики тахеометра;
- наличие маркировки и комплектность согласно требованиям эксплуатационной документации на тахеометр;

Если перечисленные требования не выполняются, тахеометр признают непригодным к применению, дальнейшие операции поверки не производятся.

7.2 Опробование, проверка работоспособности функциональных режимов, идентификация программного обеспечения

- 7.2.1 При опробовании должно быть установлено соответствие тахеометра следующим требованиям:
 - отсутствие качки и смещений неподвижно соединенных деталей и элементов;
 - плавность и равномерность движения подвижных частей;
 - правильность взаимодействия с комплектом принадлежностей;
 - работоспособность всех функциональных режимов и узлов;
- дискретность отсчета измерений углов и расстояний должны соответствовать эксплуатационной документации.
- 7.2.2 Проверку идентификационных данных программного обеспечения (далее ПО) «Focus 2 Firmware» производится через интерфейс пользователя путем выбора в списке меню раздела «Info».

В появившемся диалоговом окне будет отображено наименование и версия ПО.

Данные, полученные по результатам идентификации ПО, должны соответствовать таблице 3.

Таблица 3

Идентификационное наименование ПО	Focus 2 Firmware	
Номер версии (идентификационный номер ПО), не ниже	15.06.26	
Цифровой идентификатор ПО	BF9116E7	
Алгоритм вычисления цифрового идентификатора ПО	CRC32	

Если перечисленные требования не выполняются, тахеометр признают непригодным к применению, дальнейшие операции поверки не производят.

7.3 Определение метрологических характеристик

7.3.1 Определение абсолютной и средней квадратической погрешностей измерений расстояний

Абсолютная погрешность измерений и СКП измерений расстояний определяется путем сличения с эталонным тахеометром 1-го разряда по ГОСТ Р 8.750-2011.

Необходимо провести многократно, не менее 10 раз, измерения не менее 3 значений расстояний, действительные длины которых расположены в заявляемом диапазоне измерений расстояний поверяемого тахеометра и определены с помощью эталонного тахеометра 1-го разряда по ГОСТ Р 8.750-2011.

Абсолютная погрешность измерений (при доверительной вероятности 0,95) расстояний определяется по формуле:

$$\Delta S = \left(\frac{\sum_{i=1}^{n} S_{ij}}{n_{j}} - S_{0j}\right) \pm 2 \cdot \sqrt{\frac{\sum_{i=1}^{n} \left(S_{ij} - \frac{\sum_{i=1}^{n} S_{ij}}{n_{j}}\right)^{2}}{n_{j} - 1}},$$
(1)

где ΔS – абсолютная погрешность измерений j-го расстояния, мм;

 $S_{\theta j}$ - эталонное (действительное) значение j-го расстояния, полученное по эталонному тахеометру;

 Si_{j} - полученное значение j-го расстояния i-м приемом по поверяемому тахеометру;

 n_{i} — число приемов измерений j-го расстояния.

Средняя квадратическая погрешность измерений каждой линии вычисляется по формуле:

$$m_{S_{i}} = \sqrt{\frac{\sum_{i=1}^{n_{j}} (S_{0_{j}} - S_{i_{j}})^{2}}{n_{j}}},$$
(2)

где m_{S_i} – средняя квадратическая погрешность измерения j-го расстояния.

Значение абсолютной погрешности (при доверительной вероятности 0,95) и средней квадратической погрешности измерений расстояний должны соответствовать значениям, приведённым в Приложении к настоящей методике поверки.

Если требование п.7.3.1. не выполняется, тахеометр признают непригодным к применению, дальнейшие операции поверки не производят.

7.3.2 Определение абсолютной и средней квадратической погрешностей измерений угла

Абсолютная погрешность и СКП измерений углов определяется на эталонном коллиматором стенде путем многократных измерений (не менее четырех циклов измерений, состоящих из измерений в положении «Круг право» (КП) и «Круг лево» (КЛ) горизонтального угла $(90\pm30)^{\circ}$ и вертикального угла (60лее $\pm20^{\circ}$).

Абсолютная погрешность измерений (при доверительной вероятности 0,95) горизонтального и вертикального углов вычисляется по формуле:

$$\Delta_{vi} = \left(\frac{\sum_{i=1}^{n} V_{ij}}{n} - V_{0j}\right) \pm 2 \cdot \sqrt{\frac{\sum_{i=1}^{n} (V_{ij} - \frac{\sum_{i=1}^{n} V_{ij}}{n})^{2}}{n - 1}},$$
(3)

где Δ_{vi} – абсолютная погрешность измерений горизонтального (вертикального) угла, ";

 $V_{\it 0j}$ - значение горизонтального (вертикального) угла по эталонному коллиматорному стенду, взятое из свидетельства о поверке на него, ";

 V_{ij} — значение горизонтального (вертикального) угла, по поверяемому тахеометру, "; n — число измерений.

Средняя квадратическая погрешность измерений горизонтального и вертикального углов вычисляется по формуле:

$$\mathbf{m}_{\mathbf{v}_{i}} = \sqrt{\frac{\sum_{i=1}^{n} V_{i}^{2}}{n}},\tag{4}$$

где m_{Vi} – средняя квадратическая погрешность измерений горизонтального (вертикального) угла, ";

 V_i - разность между измеренным поверяемым тахеометром значением i-го горизонтального (вертикального) угла и значением i-го горизонтального (вертикального) угла по эталонному коллиматорному стенду, взятому из свидетельства о поверке на него, ";

n — число измерений.

Значения абсолютной погрешности (при доверительной вероятности 0,95) и средней квадратической погрешности измерений углов не должны превышать значений, указанных в Приложении к настоящей методике поверки.

Если требование п.7.3.2. не выполняется, тахеометр признают непригодным к применению, дальнейшие операции поверки не произволят.

8 Оформление результатов поверки

- 8.1 Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 7 настоящей методики поверки.
- 8.2 При положительных результатах поверки, тахеометр признается годным к применению и на него выдается свидетельство о поверке установленной формы. Знак поверки наносится на свидетельство о поверке в виде наклейки и / или поверительного клейма.
- 8.3 При отрицательных результатах поверки, тахеометр признается непригодным к применению и на него выдается извещение о непригодности установленной формы с указанием основных причин.

Руководитель отдела ООО «Автопрогресс – М»

В. А. Лапшинов

Приложение (обязательное)Метрологические и технические характеристики

Наименование характеристики	Значение	
Модификация	Spectra Precision Fo-	Spectra Precision
киралификол	cus 2 2"	Focus 2 5"
Диапазон измерений:		
углов, °	от 0 до 360	
расстояний ¹⁾ , м:		
- отражательный режим	от 2,5 до 4000,0	
- диффузный режим	от 1 до 500	
Границы допускаемой абсолютной погрешности		
измерений углов (при доверительной вероятности	±4	±10
0,95), "		
Допускаемая средняя квадратическая погрешность	2	5
измерений углов, "	2	J
Границы допускаемой абсолютной погрешности	⁵⁴	
измерений расстояний (при доверительной вероят-		
ности 0,95), мм:		
- отражательный режим (1 призма)	$\pm 2 \cdot (2 + 2 \cdot 10^{-6} \cdot D)$	
- диффузный режим		
от 1 до 5 м включ.	±16	
св. 5 до 500 м. включ.	$\pm 2 \cdot (3 + 2 \cdot 10^{-6} \cdot D)$	
	где D – измеряемо	ое расстояние, мм
Допускаемая средняя квадратическая погрешность		
измерений расстояний, мм:		
- отражательный режим (1 призма)	2+2·10 ⁻⁶ ·D	
- диффузный режим		_
от 1 до 5 м включ.	±8	
св. 5 до 500 м. включ.	3+2·10 ⁻⁶ ·D	
	где D – измеряемое расстояние, мм	