Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева» ФГУП «ВНИИМ им.Д.И.Менделеева»

УТВЕРЖДАЮ

Директор

ФГУП «ВНИИМ им. Д.И.Менделеева»

К.В. Гоголинский

Государственная система обеспечения единства измерений

СПЕКТРОМЕТРЫ ЭМИССИОННЫЕ

«СПАС - 05»

модификаций «СПАС - 05», «СПАС - 05А», «СПАС - 05В»

МЕТОДИКА ПОВЕРКИ

МП-242-2123-2017

Заместитель руководителя отдела Государственных эталонов в области физико-химических измерений ФГУП «ВНИИМ им. Д.И Менделеева»"

А.В. Колобова

Ведущий инженер

ФГУП «ВНИИМ им. Д.И. Менделеева»

Т.М. Эннанова

Санкт-Петербург 2017 г.

1. ВВЕДЕНИЕ

Настоящая методика распространяется на спектрометры эмиссионные «СПАС - 05» модификаций «СПАС - 05», «СПАС – 05А», «СПАС – 05В», изготавливаемые ООО «Актив», г. Санкт-Петербург. Спектрометры подлежат первичной поверке до ввода в эксплуатацию и после ремонта и периодической поверке в процессе эксплуатации. Интервал между поверками – 1 год.

2. ОПЕРАЦИИ ПОВЕРКИ

2.1. При проведении поверки должны быть выполнены операции, указанные в таблице 1. Таблица 1- Операции поверки

	Номер пунк-	Проведение операции при	
Наименование операций	та настоя- щей методи- ки	первичной поверке	периодиче- ской поверке
Внешний осмотр.	7.1	да	да
Опробование	7.2	да	да
Подтверждение соответствия ПО	7.3	да	да
Определение метрологических характеристик.	7.4	да	да
Определение рабочего спектрального диапазона спектрометра	7.4.1	да	да
Определение пределов детектирования легирующих и примесных элементов при анализе сталей	7.4.2	да	да
Определение относительных СКО вы- ходного сигнала спектрометра в режиме измерения относительных интенсивно- стей при анализе сталей	7.4.3	да	да

2.2. Если при проведении той или иной операции поверки получен отрицательный результат, дальнейшая поверка прекращается.

3. СРЕДСТВА ПОВЕРКИ

3.1. При проведении поверки должны быть применены средства, указанные в таблице 2. Таблица 2 – Средства поверки

№ п/ п	Наименование и тип средства поверки	Основные технические и (или) метрологические характеристики или номер
1	Стандартные образцы состава сталей углеродистых и легированных (ГСО 10504-2014)	Массовые доли элементов от 0,0006 % до 2,28 %. Границы абсолютной погрешности от 0,0001 % до 0,02 % (при доверительной вероятности P=0,95)
	Стандартные образцы состава сталей легированных (ГСО 8876-2007)	Массовые доли элементов от 0,0023 % до 35,1 %. Границы абсолютной погрешности от 0,0002 % до 0,1 % (при доверительной вероятности P=0,95).
2.	Барометр-анероид М-110 или анало- гичный	Диапазон измерений не уже чем от 630 до 790 мм.рт. столба, (от 84 до 105 кПа) абс. погрешность ±2,5 мм.рт. столба
3.	Термогигрометр электронный утвержденного типа, зарегистрированный в Федеральном информационном фонде по ОЕИ	Диапазон измерений отн. влажности от 10 до 100 %; абс. погрешность не более 3,0 %; диапазон измерений температуры от +10 до +40 °C; абс. погрешность не более 0,5 °C

- 3.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик спектрометра с требуемой точностью.
- 3.3. Все средства поверки должны иметь действующие свидетельства о поверке, а стандартные образцы, действующие паспорта.

4. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ И ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1. Требования безопасности должны соответствовать рекомендациям, изложенным в руководстве по эксплуатации АКСП.415311.005 РЭ на спектрометр эмиссионный «СПАС 05».
- 4.2. К проведению поверки допускаются лица, изучившие руководство по эксплуатации АКСП.415311.005 РЭ и методику поверки МП-242-2123-2017, и имеющие удостоверение поверителя.
- 4.3. Работы с противоэлектродом (зачистка, установка зазора и т.д.) должны проводиться с отключенным генератором.
- 4.4. При проведении работ по подготовке проб следует руководствоваться правилами и нормами, регламентированными инструкциями по безопасности труда для лабораторий атомно-эмиссионного спектрального анализа, действующими на предприятии.
- 4.5. Для получения данных, необходимых для поверки, допускается участие в поверке оператора, обслуживающего спектрометр или сервис-инженера (под контролем поверителя).

5. УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

5.1. При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха

 $(15 \div 25)$ °C;

- атмосферное давление

 $(84,0 \div 106,7) \text{ k}\Pi a;$

- относительная влажность окружающего воздуха при температуре

25 °C (без конденсации влаги)

от 20 до 80%;

- напряжение питания переменного тока однофазной сети

 $(220^{+22}-33)$ B;

- - частота переменного тока

(50±2) Γц;

- вибрация, тряска, механические воздействия должны отсутствовать;
- внешние электрические и магнитные поля должны отсутствовать, кроме земных.
- 5.2. Перед проведением поверки спектрометр следует выдержать при условиях поверки (см. п. 5.1) не менее 2 часов (до подключения спектрометра к сети переменного тока).

6. ПОДГОТОВКА К ПОВЕРКЕ

- 6.1. Установку и подготовку прибора к поверке, включение соединительных устройств, заземление, выполнение операций при проведении контрольных измерений осуществляют в соответствии с правилами эксплуатации, изложенными в руководстве по эксплуатации АКСП.415311.005 РЭ спектрометра эмиссионного «СПАС - 05».
- 6.2. Подготовить спектрометр к работе в соответствии с разделом 7.3 руководства по эксплуатации АКСП.415311.005 РЭ спектрометра эмиссионного «СПАС - 05».
- 6.3. Подготовить для анализа выбранные стандартные образцы в соответствии с инструкцией по применению соответствующего комплекта стандартных образцов, являющейся Приложением к Свидетельству на комплект СО. На заточенной поверхности образца не допускаются раковины, поры, трещины, шлаковые включения, цвета побежалости и другие дефекты. Заточенные поверхности образцов не следует трогать руками. В ожидании обыскривания образцы должны лежать заточенными поверхностями вверх. Для выполнения измерений следует использовать только свежезаточенные образцы (не позднее 1 часа после заточки).

7. ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр.

- 7.1.1. При проведении внешнего осмотра должно быть установлено:
- наличие маркировки, подтверждающей тип и идентифицирующей спектрометры;
- отсутствие на наружных поверхностях спектрометров повреждений и дефектов, влияющих на их работоспособность;
 - отсутствие ослаблений элементов конструкции, чистоту разъемов;
 - надежность крепления соединительных элементов, кабелей;
- правильность размещения спектрометра в лаборатории (согласно руководства по эксплуатации).
- 7.1.2. Спектрометры считаются прошедшими поверку по п. 7.1, если корпус, внешние элементы, органы управления не повреждены, отсутствуют механические повреждения и ослабления элементов конструкции.

7.2 Опробование.

Опробование спектрометра заключается в его включении в соответствии с руководством по эксплуатации АКСП.415311.005 РЭ и загрузке ПО SPAS.

Результаты опробования считаются удовлетворительными, если на дисплее монитора после загрузки ПО SPAS не появляется сообщений об ошибках.

7.3 Подтверждение соответствия ПО

7.3.1. Определение наименования программного обеспечения и номера версии (идентификационного номера) программного обеспечения.

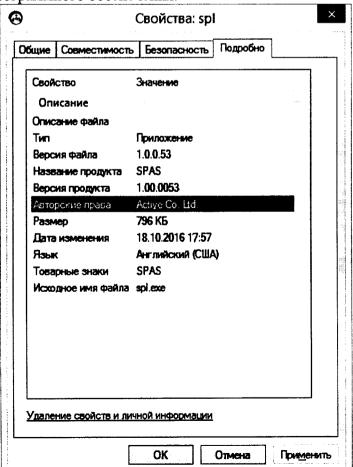


Рисунок 1. Окно с идентификационным названием и номером версии ПО SPAS.

В проводнике операционной системы в папке, где находятся файлы ПО SPAS либо на «рабочем столе» операционной системы выбрать исполняемый файл spl.exe, произвести щелчок правой кнопкой мыши по файлу spl.exe и выбрать пункт «Свойства». Затем, в появившемся окне переключиться на вкладку «Подробно». В полном номере версии ПО к метрологически значимой части относятся первые три цифры номера версии. Следующие за ними цифры, указанные после первых трех цифр, относятся к не метрологически значимой части ПО и могут принимать любые значения. Полный номер версии ПО должен быть не менее 1.0.0.ХХ и соответствовать указанному в Паспорте на поверяемый прибор. Копия примера окна идентификации приведена на рисунке 1.

7.3.2. Определение цифрового идентификатора программного обеспечения.

Для проверки цифрового идентификатора необходимо запустить Командную строку Windows. В окне Командной строки выполнить команду "certutil -hashfile C:\SPAS\spl.exe MD5" и нажать «Enter». Рассчитанное значение будет выведено на экран. Цифровой идентификатор должен соответствовать указанному в Паспорте на поверяемый прибор. Копия примера окна идентификации приведена на рисунке 2.

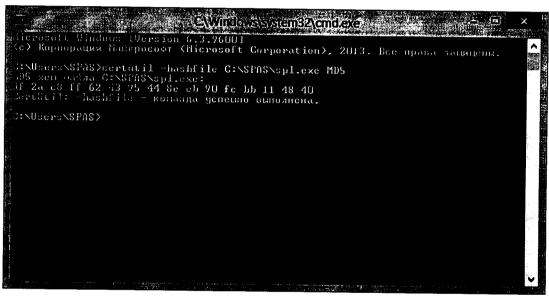


Рисунок 2. Окно с цифровым идентификатором ПО SPAS.

7.3.3. Спектрометр считается выдержавшим поверку по п. 7.3, если версия ПО SPAS не ниже 1.0.0.XX* (* - версия ПО может иметь дополнительные цифровые суффиксы), а полная версия и цифровой идентификатор ПО SPAS совпадают с указанными в Паспорте на поверяемый прибор.

7.4. Определение метрологических характеристик.

- 7.4.1. Определение рабочего спектрального диапазона спектрометра эмиссионного «СПАС 05».
- 7.4.1.1. Для проведения измерений по данному пункту применяют стандартные образцы состава сталей, указанные в Таблице 2 настоящей методики поверки либо аналогичные. Допускается применение стандартных образцов металлов с иной основой при условии, что содержание железа в них не менее 0,5 % и спектральные линии, указанные в п.п. 7.4.1.4-7.4.1.5 четко идентифицируются.
- 7.4.1.2. Переключиться на аналитическую методику «Проверка». Подготовить образец стали (либо иной в соответствии с п. 7.4.1.1) путем шлифовки его поверхности на шлифовальном станке, применяя шлифовальную шкурку №40 или №60. Провести серию тестовых измерений образца стали, проверяя каждый раз качество пятна обжига согласно Руководству по эксплуатации. Убедиться в том, что разряд дает качественное пятно обжига.

- 7.4.1.3. Произвести одно контрольное измерение образца стали. Включить кнопку «Спектр».
- 7.4.1.4. Для проверки нижней границы спектрального диапазона модификаций спектрометра «СПАС-05» и «СПАС-05А», составляющей 174 нм, вывести в окне спектра спектральный диапазон 174-180 нм. Сравнивая визуально картинку спектра на экране со стандартной распечаткой, приведенной на рисунке 3, убеждаемся в наличии контрольной линии Fe 174,271 нм.

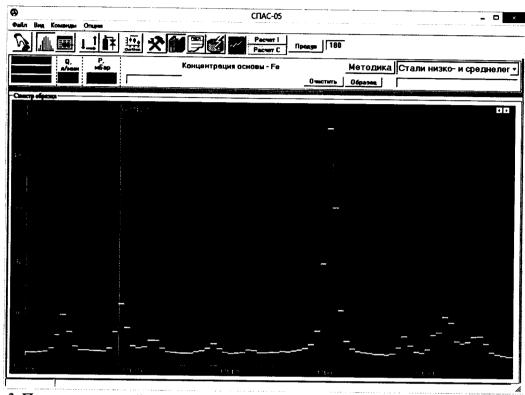


Рисунок 3. Проверка нижней границы спектрального диапазона модификаций спектрометра «СПАС-05» и «СПАС-05А»



Рисунок 4. Проверка нижней границы спектрального диапазона для модификации спектрометра «СПАС-05В».

Для проверки нижней границы спектрального диапазона модификации спектрометра «СПАС-05В», составляющей 185 нм, вывести в окне спектра спектральный диапазон 185-191 нм. Сравнивая визуально картинку спектра на экране со стандартной распечаткой, приведенной на рисунке 4, убеждаемся в наличии контрольной линии железа Fe 188,873 нм.

7.4.1.5. Для проверки верхней границы спектрального диапазона всех модификаций спектрометров эмиссионных «СПАС-05», составляющей 450 нм, следует вывести на экран спектральную область 400 - 455 нм. Сравнивая визуально картинку спектра на экране со стандартной распечаткой, приведенной на рисунке 5, убеждаемся в наличии контрольной линии железа Fe 449,456 нм.

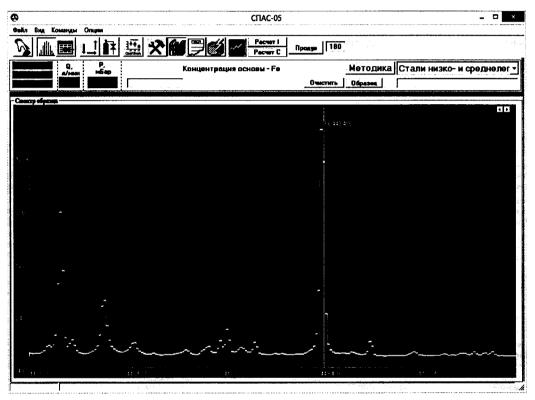


Рисунок 5. Проверка верхней границы спектрального диапазона спектрометра «СПАС-05»

- 7.4.1.6. Спектрометр эмиссионный «СПАС-05» считается выдержавшим поверку по п. 7.4.1, если, значение нижней границы спектрального диапазона, определенное по п. 7.4.1.4, не более 174 нм для модификаций «СПАС-05» и «СПАС-05А», и не более 185 нм для модификации «СПАС-05В», а значение верхней границы спектрального диапазона всех модификаций спектрометра эмиссионного «СПАС-05», определенные по п. 7.4.1.5, не менее 450 нм.
 - 7.4.2. Определение пределов детектирования легирующих и примесных элементов при анализе сталей.
- 7.4.2.1. Для проведения измерений по данному пункту применяют стандартные образцы состава сталей углеродистых и легированных ГСО 10504-2014 либо аналогичные. Выбрать из комплектов СО образец, содержание в котором не менее четырех из нижеуказанных элементов: С, Si, Mn, Cr, Ni лежит в диапазоне от 0,005% до 0,10 %. По возможности следует выбирать образец с наименьшим содержанием указанных элементов.
- 7.4.2.2. Переключиться на аналитическую методику «Проверка». Подготовить образец стали путем шлифовки его поверхности на шлифовальном станке, применяя шлифовальную шкурку №40 или №60.
 - 7.4.2.3. В таблице результатов программы SPAS перейти во вкладку «Настройки». Вклю-

чить отображение паспортных данных, отметив галочкой «С пасп.». В появившемся окне выбрать из списка необходимый образец, после чего окно закрыть. Находясь во вкладке «Настройки» переключить режим измерения с «концентрация» на «интенсивность».

7.4.2.4. Перейти во вкладку «Линии методики». Выполнить 10 параллельных анализов образца в режиме измерения относительных интенсивностей. По окончании измерений выполнить щелчок правой кнопкой мыши в таблице результатов и выбрать пункт «Предел обнаружения». Расчет предела обнаружения производится программой автоматически. Результат отображается в колонке $C_{\Pi O}$ в правой части таблицы. Для расчета предела обнаружения используется формула:

$$C_{\Pi O} = \frac{3 \times \sigma_{\phi,j}}{I_j} \times C_j \tag{1}$$

где:

- $\sigma_{\phi,j}$ среднее квадратичное отклонение (СКО) интенсивности фона под контуром аналитической линии j-го элемента. Значение интенсивности фона под контуром аналитической линии определяется аппроксимацией значений фона, измеренного справа и слева от аналитической линии в точках спектра, свободных от каких-либо спектральных линий;
- I_{j} среднее арифметическое значение абсолютной интенсивности (за вычетом интенсивности фона) аналитической линии j-го элемента по нескольким параллельным измерениям;
- C_{j} аттестованное значение содержания j-го элемента по данным свидетельства на стандартные образцы.

Величина $3 \times \sigma_{\phi,j}$ является шумовой характеристикой интенсивности спектрального фона.

Отношение C_j/I_j представляет собой тангенс угла наклона градуировочной характеристики (ΓX) j-го элемента $C_j(I_j)$ (при условии ее линейности) и характеризует чувствительность спектрометра как средства измерения содержаний элементов в анализируемых веществах.

7.4.2.5. Спектрометр эмиссионный «СПАС-05» считается прошедшим поверку п. 7.4.2, если пределы детектирования легирующих и примесных элементов при анализе сталей, вычисленные в п. 7.4.2.4, не превышают следующих значений:

Mπ - 0,0005 % Cr - 0,0010 % Ni - 0,0010 % C - 0,0010 % Si - 0,0020 %

- 7.4.3. Определение относительного СКО выходного сигнала спектрометра в режиме измерения относительных интенсивностей при анализе сталей
- 7.4.3.1. Для проведения измерений по данному пункту применяют стандартные образцы состава сталей, указанные в Таблице 2 настоящей методики поверки либо аналогичные. Для определения относительных СКО выходного сигнала спектрометра в режиме измерения относительных интенсивностей выбрать из комплектов стандартные образцы, содержание в которых не менее чем одного элемента лежит в диапазоне от 0,0005 % до 0,010 %; и не менее чем двух элементов лежит в каждом из ниже указанных диапазонов: свыше 0,010 % до 0,10%; свыше 0,10 % до 1,0 %; свыше 1,0 % до 45,0 %.
- 7.4.3.2. Переключиться на аналитическую методику «Проверка». Подготовить образцы стали путем шлифовки поверхности на шлифовальном станке, применяя шлифовальную шкурку №40 или №60. Выполнить по 10 параллельных анализов выбранных стандартных образцов в режиме измерения относительных интенсивностей.

7.4.3.3. По результатам измерений в п. 7.4.3.2 определить относительное СКО выходного сигнала спектрометра в режиме измерения относительных интенсивностей по формуле:

$$S_{j} = \frac{\sqrt{\sum_{i=1}^{n} (I_{j}^{i} - I_{cpe\partial H, j})^{2}}}{\frac{(n-1)}{I_{cpe\partial H, j}}} \times 100\%$$
(2)

где:

 I^i_j — значение i — го измерения относительной интенсивности j — ой анализируемой аналитической линии, т.е. для j — ого элемента ;

 $I_{cpedn,j}$ — среднеарифметическое значение относительной интенсивности для j — ой анализируемой аналитической линии, т.е. для j — ого элемента, - по 10-ти параллельным определениям;

n — число измерений в серии (в данном случае n = 10);

<u>Примечание</u>: Результат вычисления относительного СКО выходного сигнала спектрометра в режиме измерения относительных интенсивностей отображается в колонке СКО отн.% в правой части таблицы на экране видеомонитора.

7.4.3.4. Спектрометр эмиссионный «СПАС-05» считается прошедшим поверку по п. 7.4.3, если значения относительного СКО выходного сигнала спектрометра в режиме измерения относительных интенсивностей, вычисленные в п. 7.4.3.3, для не менее чем одного элемента в каждом из проверяемых диапазонов, не превышают следующих значений:

в диапазоне массовых долей элементов от $0,0005\,\%$ до 0,010% - $30\,\%$ в диапазоне массовых долей элементов свыше $0,010\,\%$ до 0,10% - $10\,\%$ в диапазоне массовых долей элементов свыше $0,10\,\%$ до $1,0\,\%$ - $7,5\,\%$ в диапазоне массовых долей элементов свыше $1,0\,\%$ до $45,0\,\%$ - $5,0\,\%$

<u>Примечание:</u> По согласованию с заказчиком проверку по п. 7.4 настоящей методики поверки «Определение метрологических характеристик» допускается проводить согласно МИ 2531-99 «ГСИ. Анализаторы состава веществ и материалов универсальные. Общие требования к методикам поверки в условиях эксплуатации» в соответствии с разделами «Контроль точности (погрешности, прецизионности, неопределенности)» или «Обработка результатов измерений» аттестованных и стандартизированных государственными метрологическими органами методик измерений. Протокол поверки в этом случае оформляется согласно приложения А к настоящей методике поверки, а раздел, посвященный результатам определения метрологических характеристик, согласно таблицы 2 указанного приложения А.

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТА ПОВЕРКИ.

- 8.1. Данные, полученные при поверке, оформляются в согласно приложения А к настоящей методике поверки.
- 8.2. Спектрометр, удовлетворяющий требованиям настоящей методики поверки, признается годными и на него оформляется свидетельство о поверке по установленной форме.

На оборотной стороне свидетельства приводится следующая информация:

- -результаты опробования и внешнего осмотра;
- -результат проверки соответствия ПО;
- результаты определения метрологических характеристик;
- 8.3. Спектрометры, не удовлетворяющие требованиям настоящей методики, к дальнейшей эксплуатации не допускается и на них выдается извещение о непригодности.
- 8.4. Знак поверки наносится на лицевую панель спектрометра и (или) на свидетельство о поверке.

Приложение А.

Протокол поверки

Спектрометра эмиссионного «СПАС-05» модификации					
Зав.№					
Принадлежит	ИНН				
Поверка проведена по документу					
С использованием стандартных образцов					
Условия поверки:					
температура окружающей среды	°C,				
атмосферное давление					
относительная влажность окружающего воздуха	%.				
Результаты поверки.					
Внешний осмотр					
Опробование					
Проверка соответствия ПО					
Результаты определения метрологических характеристи Таблица 1.	и к:				
	Значение метрологической характе-				
Метрологическая характеристика	ристики				
	Требования по НД	Фактическое			
D-5		значение МХ			
Рабочий спектральный диапазон спектрометра, нм	~				
Пределы детектирования легирующих и примесных элементов, %	не более				
		: 			
Относительное СКО выходного сигнала спектрометра	не более				
в режиме измерения относительных интенсивностей					
при анализе сталей, % в диапазоне массовых долей элементов					
- от 0,0005 % до 0,010 %					
- свыше 0,010 % до 0,10 %					
- свыше 0.10 % ло 1.0 %					
- свыше 1,0 % до 45,0 %					
При поверке согласно МИ 2531-99 результаты опреде	NATIONAL MATROTOCKINGON	UV Vanavtanuetuv			
оформляются согласно таблице 2.	пония метропогическі	их характеристик			
Таблица 2.					
Tuomina 2.	Зиачение метропоги	ueckoй vanakte-			
	Значение метрологической характе- ристики				
Метрологическая характеристика		Фактическое			
	Требования по НД	значение МХ			
МХ в соответствии с разделами «Контроль точности	не более				
(погрешности, прецизионности, неопределенности)»					
или «Обработка результатов измерений» аттестован-					
ных и стандартизированных государственными мет-					
рологическими органами методик измерений					
_					
Поверитель					
(подпись)	(И.О. Фами.	л ия)			