Государственная система обеспечения единства измерений

Акционерное общество «Приборы, Сервис, Торговля» (АО «ПриСТ»)

УТВЕРЖДАЮ
Главный метролог

Торгов Рай (Стводо ПриСТ»

А.Н. Новиков Стводо ПриСТ"

В СТ" (Стводо ПриСТ)

А.Н. Новиков Стводо ПриСТ"

В Стводо

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Анализаторы спектра серии АКИП-4205

МЕТОДИКА ПОВЕРКИ ПР-12-2017МП

ВВЕДЕНИЕ

Настоящая методика устанавливает методы и средства первичной и периодических поверок анализаторов спектра серии АКИП-4205, изготовленных «SIGLENT TECHNOLOGIES CO., LTD.», Тайвань

Анализаторы спектра серии АКИП-4205 (далее – анализаторы) предназначены для измерений амплитудно-частотных характеристик спектра радиотехнических сигналов.

Межповерочный интервал 1 год.

Периодическая поверка анализаторов в случае их использования для измерений (воспроизведения) меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» описания типа, допускается на основании письменного заявления владельца анализаторов, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке приборов.

1 ОПЕРАЦИИ ПОВЕРКИ

Таблица 1 – Операции поверки

	Номер пункта	Проведение	ие операции при	
Наименование операции	методики	первичной	периодической	
	поверки	поверке	поверке	
1 Внешний осмотр	7.1	Да	Да	
2 Опробование	7.2	Да	Да	
3 Проверка идентификационных данных программного обеспечения	7.3	Да	Да	
4 Определение относительной погрешности частоты опорного генератора	7.4	Да	Да	
5 Определение погрешности измерения частоты встроенным частотомером	7.5	Да	Да	
6 Определение относительной погрешности установки полос пропускания фильтров промежуточной частоты (ПЧ)	7.6	Да	Да	
7 Определение коэффициента прямоугольности фильтров ПЧ	7.7	Да	Нет	
8 Определение абсолютной погрешности измерения уровня сигнала на частоте 50 МГц	7.8	Да	Да	
9 Определение неравномерности амплитудно- частотной характеристики (АЧХ)	7.9	Да	Да	
10 Определение абсолютной погрешности из- за нелинейности логарифмической шкалы	7.10	Да	Да	
11 Определение погрешности измерений уровня сигнала из-за переключения входного аттенюатора	7.11	Да	Да	
12 Определение погрешности измерения уровня сигнала при изменении полосы пропускания	7.12	Да	Да	
13 Определение уровня гармонических искажений 2-го порядка	7.13	Да	Да	
14 Определение уровня фазовых шумов	7.14	Да	Да	
15 Определение точки пересечения 3-го порядка	7.15	Да	Да	
16 Определение уровня собственных шумов	7.16	Да	Да	

2 СРЕДСТВА ПОВЕРКИ

- При проведении поверки должны применяться средства поверки, перечисленные в таблицах 2 и 3.
- 2.2 Допускается применять другие средства поверки, обеспечивающие измерение значений соответствующих величин с требуемой точностью.
- 2.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

Таблица 2 - Средства поверки

	Средства поверки
Номер пункта МП	Тип средства поверки
1	2
7.4	Частотомер универсальный CNT-90. Пределы допускаемой относительной погрешности частоты опорного генератора $\pm 2\cdot 10^{-7}$.
7.5 - 7.17	Калибратор многофункциональный Fluke 9640A-LPNX. Диапазон частот выходного сигнала от 1 мГц до 4 ГГц; пределы допускаемой относительной погрешности установки частоты ±5·10 ⁻⁸ ; пределы допускаемой абсолютной погрешности установки уровня в диапазоне от -20 до -40 дБм ¹⁾ на частоте 50 МГц не более ±0,05 дБ; пределы допускаемой абсолютной погрешности установки уровня выходного сигнала в диапазоне частот от 100 кГц до 3 ГГц не более ±0,3 дБ; диапазон установки ослабления от 0 до 116 дБ; пределы допускаемой абсолютной погрешности установки ослабления в диапазоне от 0 до 64 дБ не более ±0,03 дБ; уровень гармонических составляющих в выходном сигнале не более -70 дБ (с использованием фильтров нижних частот); максимальный уровень фазовых шумов при отстройке от несущей 1 ГГц на 10 кГц, 100 кГц, 1 МГц не более -134 дБ/Гц.
7.17	Генератор сигналов N5181A. Диапазон частот выходного сигнала от 0,25 до 3000 МГц.
Примечание	
1) Здесь и да	алее дБм – уровень мощности в дБ относительно 1 мВт

Таблица 3 – Вспомогательные средства поверки

Измеряемая	Диапазон измере-	Класс точности,	Тип средства поверки	
величина	ний	погрешность		
Температура	от 0 до +50 °C.	±0,25 °C	Цифровой термометр-гигрометр Fluke 1620A	
Давление	от 30 до 120 кПа	±300 Па	Манометр абсолютного давления Testo 511	
Влажность	от 10 до 100 %	±2 %	Цифровой термометр-гигрометр Fluke 1620A	

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке допускаются лица, изучившие эксплуатационную документацию на поверяемые средства измерений, эксплуатационную документацию на средства поверки и соответствующие требованиям к поверителям средств измерений согласно ГОСТ Р 56069-2014.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования ГОСТ 12.27.0-75, ГОСТ 12.3.019-80, ГОСТ 12.27.7-75, требованиями правил по охране труда при эксплуатации

электроустановок, утвержденных приказом Министерства труда и социальной защиты Российской Федерации от 24 июля 2013 г № 328H.

4.2 Средства поверки, вспомогательные средства поверки и оборудование должны соответствовать требованиям безопасности, изложенным в руководствах по их эксплуатации.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха (25 ± 5) °C;
- относительная влажность от 30 до 80 %;
- атмосферное давление от 84 до 106 кПа или от 630 до 795 мм рт. ст.;

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.27.0-75;
- проверить наличие действующих свидетельств поверки на основные и вспомогательные средства поверки.
- 6.2 Средства поверки и поверяемый прибор должны быть подготовлены к работе согласно их руководствам по эксплуатации.
- 6.3 Проверено наличие удостоверения у поверителя на право работы на электроустановках с напряжением до 1000 В с группой допуска не ниже III.
- 6.4 Контроль условий проведения поверки по пункту 5 должен быть проведен перед началом поверки.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие поверяемого прибора следующим требованиям:

- не должно быть механических повреждений корпуса. Все надписи должны быть четкими и ясными;
- все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемый прибор бракуется и подлежит ремонту.

7.2 Опробование

Опробование анализаторов проводить путем проверки их на функционирование в соответствии с руководством по эксплуатации.

Подготовить анализатор к работе в соответствии с руководством по эксплуатации.

Включить анализатор и проверить отсутствие сообщений о неисправности в процессе загрузки.

Проверить правильность прохождения процедуры самотестирования, описанной в руководстве по эксплуатации.

Результат опробования считать положительным, если на дисплее отсутствуют сообщения об ошибках, прибор функционирует согласно руководству по эксплуатации.

При отрицательном результате опробования прибор бракуется и направляется в ремонт.

7.3 Проверка идентификационных данных программного обеспечения

осуществляется путем вывода на дисплей анализатора информации о версии программного обеспечения.

Войти в меню «Система» анализатора и выбрать «Инфо о системе».

Результат считается положительным, если версия программного обеспечения соответствует данным, приведенным в таблице 4.

Таблица 4 – Характеристики программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	SW1
Номер версии (идентификационный номер ПО)	не ниже 1.1.0.0

7.4 Определение относительной погрешности частоты опорного генератора проводить методом прямых измерений с помощью частотомера универсального CNT-90.

7.4.1 Собрать измерительную схему в соответствии с рисунком 1.

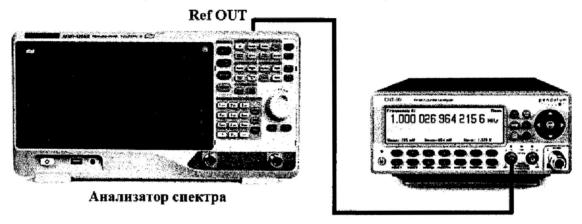


Рисунок 1

7.4.2 Подать сигнал с выхода "Ref OUT 10 MHz" (на задней панели анализатора) на вход частотомера. Измерить по частотомеру частоту сигнала внутреннего опорного генератора анализатора спектра Fд. Рассчитать относительную погрешность по формуле (1):

$$\delta$$
F=(10 MΓų – Fд)/10 MΓų, (1)

где Fд – значение частоты, измеренное частотомером, МГц

Результаты поверки считать положительными, если погрешность не превышает допускаемых пределов:

$$\pm (1.10^{-6} + 5.10^{-7} \cdot \text{N})$$

где N – количество лет после выпуска из производства.

- 7.5 Определение погрешности измерения частоты встроенным частотомером проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.
 - 7.5.1 Собрать измерительную схему в соответствии с рисунком 2.

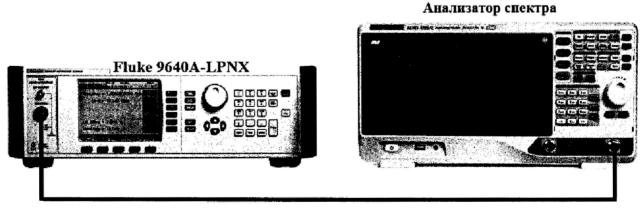


Рисунок 2

На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

- 1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст»
- 2. Установить на поверяемом анализаторе следующие параметры:

• полоса пропускания: 10 Гц

видеофильтр: авто
полоса обзора: 200 Гц
опорный уровень: 0 дБм

• шкала 5 dB/дел

• центральную частоту устанавливать равной частоте сигнала генератора в соответствии с п. 7.5.2.

- 7.5.2 Установить уровень мощности выходного сигнала 0 дБм, выходную частоту генератора устанавливать из ряда: 100 к Γ ц, 1 М Γ ц, 100 М Γ ц, 1 Г Γ ц, 2 Г Γ ц. Для модификации АКИ Π -4205/2 дополнительно установить частоту 3 Γ Γ ц.
- 7.5.3 Включить в анализаторе функцию частотомера. Для этого войти в меню «Fn» и выбрать режим «Частотомер». После чего, с помощью функции поиск пика установить маркер на пик несущей частоты. Записать значение частоты, на которую установился маркер. Измерения провести на всех частотах, приведенных в п. 7.5.2.
 - 7.5.4 Определить абсолютную погрешность измерения частоты по формуле (2):

$$\Delta f = f_{\text{ИЗM}} - f_{\text{TeH}},\tag{2}$$

где fизм — значение частоты сигнала, измеренное анализатором по п. 7.5.3, Γ ц. freн — значение частоты сигнала, установленное на генераторе, Γ ц.

Результаты поверки считать положительными, если абсолютная погрешность измерения частоты не превышает пределов, Гц:

$$\pm (\delta_0 \cdot \text{fизм} + 1)$$
,

где δ_0 – относительная погрешность частоты опорного генератора, fuзм – измеренное значение частоты, Γ ц.

7.6 Определение относительной погрешности установки полос пропускания фильтров промежуточной частоты (ПЧ)

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

7.6.1 Собрать измерительную схему в соответствии с рисунком 3.

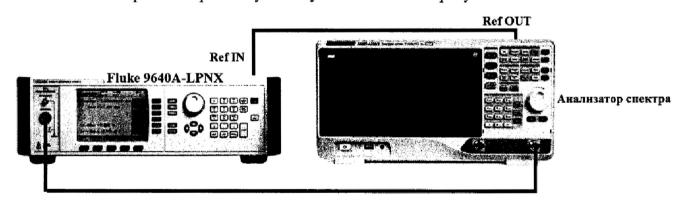


Рисунок 3

- 7.6.2 Установить на выходе генератора сигнал с частотой 50 МГц и уровнем -30 дБм, генератор перевести в режим работы по внешнему сигналу опорной частоты.
- 7.6.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

- 1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст»
- 2. Установить на поверяемом анализаторе следующие параметры:
- центральная частота 50 МГц
- полоса пропускания: 1 МГц, далее значения устанавливать из таблицы 5
- полоса обзора: 1,5 х (полоса пропускания); (для полосы пропускания 10 Гц и 30 Гц установить полосу обзора 100 Гц)
 - опорный уровень: -30 дБм
 - шкала: 1 дБ/дел

7.6.4 В меню анализатора «Fn» включить измерение полосы пропускания по уровню (N дБ) и установить значение уровня -3 дБ. Результат измерения записать в таблицу 5. Повторить измерения для других значений полос пропускания, устанавливая их в соответствии с таблицей 5.

Таблица 5

Установленная полоса пропускания	Измеренная полоса пропускания
10 Гц	
30 Гц	
100 Гц	
300 Гц	
1 кГц	
3 кГц	
10 к Гц	
30 кГц	
100 кГц	
300 кГц	
1 МГц	
200 Гц (при наличии опции ЭМС)	
9 кГц (при наличии опции ЭМС)	
120 кГц (при наличии опции ЭМС)	

7.6.5 Полосы пропускания 200 Гц, 9 кГц и 120 кГц устанавливаются в полосе пропускания после включения в меню «ПП» функции «Фильтр ЭМС». Установить по очереди эти фильтры и произвести для каждого из них измерение полосы пропускания. Измерения проводить по методике, описанной в п.7.6.4 за исключением того, что перед началом измерений в меню «Fn» анализатора установить уровень, по которому измеряется полоса пропускания, равный –6дБ.

7.6.6 Рассчитать погрешность установки полосы пропускания по формуле (3):

$$\delta RBW = [(RBWyc_T - RBWиз_M)/RBWyc_T] \cdot 100\%,$$
 (3)

где RBWуст – номинальное значение полосы пропускания, установленное в меню «ПП» анализатора;

RBWизм – измеренное по п.п. 7.6.4, 7.6.5 действительное значение полосы пропускания.

Результаты поверки считать положительными, если погрешность установки полос пропускания находится в пределах: ±5 %.

7.7 Определение коэффициента прямоугольности фильтров ПЧ проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

7.7.1 Собрать измерительную схему в соответствии с рисунком 3.

- 7.7.2 Установить на выходе генератора сигнал с частотой 50 МГц и уровнем -30 дБм, генератор перевести в режим работы по внешнему сигналу опорной частоты.
- 7.7.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:
 - 1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст»
 - 2. Установить на поверяемом анализаторе следующие параметры:
 - центральная частота 50 МГц
 - полоса пропускания: 1 МГц, далее значения устанавливать из таблицы 6
 - полоса обзора: 1,5 х (полоса пропускания)
 - опорный уровень: -30 дБм
 - шкала: 10 дБ/дел

7.7.4 В меню анализатора «Fn» включить измерение полосы пропускания по уровню (N дБ) и установить уровень -3 дБ. Провести измерение полосы пропускания по индикации на дисплее. Результат измерения записать в таблицу 7. Затем в меню «Fn» анализатора установить уровень, по которому измеряется полоса пропускания, равный -60 дБ. Провести измерение полосы пропускания. Результат измерения записать в таблицу 6. Повторить измерения для других значений полос пропускания, устанавливая их в соответствии с таблицей 6.

Таблица 6

Установленная полоса	Измеренная полоса пропускания	Измеренная полоса пропускания
пропускания	по уровню -3 дБ (RBW _{-3дБ})	по уровню -60 дБ (RBW-60лБ)
1	2	3
10 Гц		
30 Гц		
100 Гц		
300 Гц		
1 кГц		
3 кГц		
10 кГц		
30 кГц		
100 кГц		
300 кГц		
1 МГц		

7.7.5 Вычислить коэффициент прямоугольности по формуле (4):

$$K_{(60,\Delta E:3,\Delta E)} = RBW_{-60,\Delta E}/RBW_{-3,\Delta E}, \tag{4}$$

где RBW- $_{60дБ}$ — измеренное значение полосы пропускания по уровню -60 дБ; RBW- $_{3дБ}$ — измеренное значение полосы пропускания по уровню -3 дБ.

Результаты поверки считать положительными, если значение коэффициента прямоугольности, вычисленное по формуле (4), не превышает допускаемого значения 4,8.

7.8 Определение абсолютной погрешности измерения уровня сигнала на частоте 50 МГц

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

- 7.8.1 Собрать измерительную схему в соответствии с рисунком 3.
- 7.8.2 Установить на выходе генератора сигнал с частотой 50 МГц и уровнем -20 дБм, генератор перевести в режим работы по внешнему сигналу опорной частоты.

- 7.8.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:
 - 1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст»
 - 2. Установить на поверяемом анализаторе следующие параметры:
 - центральная частота 50 МГц
 - полоса пропускания 1 кГц
 - полоса видеофильтра 1 кГц
 - полоса обзора 10 кГц
 - опорный уровень: -20 дБм
 - шкала: 1 дБ/дел
- 7.8.4 В меню «Маркер» анализатора выбрать функцию «Поиск пика» и измерить при помощи маркера уровень сигнала.
 - 7.8.5 Установить на генераторе уровень сигнала -40 дБм
- 7.8.6 На анализаторе спектра установить опорный уровень -40 дБм, включить предусилитель и повторить измерения по п. 7.8.4.
 - 7.8.7 Вычислить погрешность измерения уровня по формуле (5):

$$\Delta P = P_{\text{H3M}} - P_{\text{reh}},\tag{5}$$

где Ризм – измеренное анализатором значение уровня сигнала;

Рген – установленный уровень сигнала на генераторе.

Результаты поверки считать положительными, если значение погрешности, вычисленное по формуле (5) не превышает следующих значений:

- $\pm 0,4$ дБ для уровня сигнала -20 дБм,
- $\pm 0,5$ дБ для уровня сигнала -40 дБм.
- **7.9** Определение неравномерности амплитудно-частотной характеристики (AЧX) проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.
- 7.9.1 Собрать измерительную схему в соответствии с рисунком 3 и выполнить операции по п.п. 7.8.2 7.8.3.
- 7.9.2 Измерить при помощи маркера уровень сигнала на опорной частоте 50 МГц. Записать измеренное значение уровня в таблицу 8.
- 7.9.3 Последовательно устанавливая значение частот на генераторе из таблицы 7, произвести измерение уровня анализатором при помощи маркера, устанавливая соответствующую центральную частоту. Записать результаты измерений в таблицу 7.
- 7.9.4 В меню анализатора «Уровень» включить предусилитель и произвести измерения по п.п. 7.9.2 7.9.3 с включенным предусилителем. Записать результаты измерений в таблицу 7.

Таблица 7

Частота сигнала, установленная на	Измеренное значение уровня Ризм, дБм		
генераторе	С выключенным предуси-	С включенным предусили-	
	лителем	телем	
1	2	3	
50 МГц (опорная)	Ропорное =	Ропорное =	
100 кГц			
300 кГц			
600 кГц			
1 МГц			
500 МГц			
900 МГц			
1200 МГц			
1500 МГц			

Продолжение таблицы 7

1	2	3
1800 МГц		
2300 MΓц ¹⁾		
2900 MΓц ¹⁾		
Примечание		
1) только для модификации АКИП-420	05/2	

7.9.5 Вычислить значение неравномерности АЧХ анализатора по формуле (6):
$$\Delta \, \text{AЧX} = P_{\text{опорное}} - P_{\text{изм}}, \tag{6}$$

где $P_{\text{опорное}}$ – значение уровня, измеренное анализатором на частоте 50 МГц; $P_{\text{изм}}$ – значение уровня, измеренное на частотах из таблицы 7.

Результаты поверки считать положительными, если полученные значения неравномерности АЧХ не превышают значений:

±0,6 дБ с выключенным предусилителем,

±0,8 дБ с включенным предусилителем.

7.10 Определение абсолютной погрешности измерений уровня из-за нелинейности логарифмической шкалы

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

- 7.10.1 Собрать измерительную схему в соответствии с рисунком 3.
- 7.10.2 Установить на выходе генератора сигнал с частотой 50 МГц и уровнем 0 дБм, аттенюатор 0 дБ. Генератор перевести в режим работы по внешнему сигналу опорной частоты.
- 7.10.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:
 - 1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст»
 - 2. Установить на поверяемом анализаторе следующие параметры:
 - центральная частота 50 МГц
 - полоса пропускания 1 кГц
 - полоса видеофильтра 1 кГц
 - полоса обзора 10 кГц
 - опорный уровень: 0 дБм
 - шкала: 1 дБ/дел
 - усреднение: Вкл, 50
- 7.10.4 Дождаться окончания усреднения спектрограммы и измерить анализатором уровень при помощи маркера. Записать измеренное значение в таблицу 8 в качестве опорного значения.
- 7.10.5 Установить на генераторе ослабление согласно таблице 8 и после окончания усреднения спектрограммы измерить амплитуду маркером. Измеренные значения $P_{\text{изм}}$ записать в таблицу 8.

Таблица 8

Значение ослабления, задаваемого аттенюатором генератора, дБ	Измеренное значение уровня анализатором Р _{изм} , дБм
0	Po
10	
20	
30	
40	
50	-

7.10.6 Абсолютную погрешность измерений уровня из-за нелинейности шкалы определить по формуле (7):

$$\Delta P_{\rm H} = P_{\rm H3M} - (P_{\rm o} - D), \tag{7}$$

где Ро – значение уровня сигнала, измеренное при ослаблении 0 дБ;

D – вносимое ослабление, задаваемое аттенюатором генератора, указанное в таблице 8

Результаты поверки считать положительными, если полученные значения погрешности находятся в пределах ± 0.5 дБ.

7.11 Определение абсолютной погрешности измерений уровня сигнала из-за переключения входного аттенюатора (относительно 20 дБ)

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

- 7.11.1 Собрать измерительную схему в соответствии с рисунком 3.
- 7.11.2 Установить на выходе генератора сигнал с частотой 50 МГц и уровнем 0 дБм, аттенюатор 30 дБ. Генератор перевести в режим работы по внешнему сигналу опорной частоты.
- 7.11.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации;
 - 1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст»
 - 2. Установить на поверяемом анализаторе следующие параметры:
 - центральная частота 50 МГц
 - полоса пропускания 1 кГц
 - полоса видеофильтра 1 кГц
 - полоса обзора 10 кГц
 - аттенюатор 20 дБ
 - шкала: 10 дБ/дел
 - опорный уровень: -20 дБм
 - усреднение: Вкл, 50
- 7.11.4 С помощью меню «Поиск пика» измеряют амплитуду сигнала. Записывают измеренное значение в таблицу как Р_{опорное.} Далее установить настройки согласно таблице 9 и после окончания усреднения спектрограммы измерить амплитуду маркером. Измеренные значения Ризм записать в таблицу 9.

Таблица 9

Ослабление внутреннего ат-	Опорный	Ослабление внешнего ат-	Измеренное значе-
тенюатора анализатора А, дБ	уровень, дБм	тенюатора генератора, дБ	ние уровня, Ризм
1	2	3	4
10	-30	40	
0	-40	50	
5	-35	45	
15	-25	35	
20 (Аопорное)	-20	30	Ропорное
25	-15	25	
30	-10	20	
35	-5	15	
40	0	10	
45	5	5	
50	10	0	

7.11.5 Погрешность измерений уровня сигнала из-за переключения входного аттенюатора определить по формуле (8):

$$\Delta A = (P_{\text{опорное}} - Pизм) - (A_{\text{опорное}} - A), \tag{8}$$

где $P_{\text{опорное}}$ — значение уровня сигнала, измеренное при ослаблении внутреннего аттенюатора анализатора 20дБ;

Ризм – значение уровня сигнала, измеренное при заданных из таблицы 9 значениях ослабления;

А_{опорное} — значение ослабления 20 дБ, задаваемое внутренним аттенюатором анализатора; А — значение внутреннего ослабления, задаваемое из таблицы 9.

Результаты поверки считать положительными, если вычисленные по формуле (8) значения погрешности находятся в пределах ± 0.5 дБ.

7.12 Определение погрешиости измерения уровия при изменении полосы пропускания

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

- 7.12.1 Собрать измерительную схему в соответствии с рисунком 3.
- 7.12.2 Установить на выходе генератора сигнал с частотой 50 МГц и уровнем 0 дБм. Генератор перевести в режим работы по внешнему сигналу опорной частоты.
- 7.12.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:
 - 1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст»
 - 2. Установить на поверяемом анализаторе следующие параметры:
 - центральная частота 50 МГц
 - полоса пропускания 10 кГц
 - полоса обзора 50 кГц
 - аттенюатор 20 дБ
 - шкала: 1 дБ/дел
 - опорный уровень: 0 дБм
 - усреднение: Вкл, 20

7.12.4 Измерить уровень сигнала при полосе пропускания 10 кГц и записать в таблицу 10 как опорное значение. На анализаторе последовательно устанавливать полосы пропускания из таблицы 10, меняя при этом полосу обзора как указано в таблице. Измерять отклонение уровня сигнала при изменении полосы пропускания относительно опорного значения. Измерения проводить при помощи дельта-маркера. Для этого войти в меню «Маркер» и включить функцию «Дельта».

Таблина 10

Значение полосы пропускания	Полоса обзора	Отклонение амплитуды
анализатора		
10 Гц	100 Гц	
30 Гц	150 Гц	
100 Гц	500 Гц	
300 Гц	1,5 кГц	
1 кГц	5 кГц	
3 кГц	15 кГц	
10 кГц (опорная)	50 кГц	0 (опорное значение)
30 кГц	150 кГц	
100 кГц	500 кГц	
300 кГц	1,5 МГц	
1 МГц	5 МГц	

Результаты поверки считать положительными, если отклонение уровня сигнала при установленных полосах пропускания относительно опорной $10 \ \mathrm{k\Gamma}$ ц не превышает $\pm 0,15 \ \mathrm{дБ}$.

7.13 Определение уровня гармонических искажений 2-го порядка

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX. В качестве фильтра нижних частот (ФНЧ) использовать фильтры, соответствующие частоте несущей с уровнем подавления второй гармоники не менее 30 дБ.

7.13.1 Собрать измерительную схему в соответствии с рисунком 4.

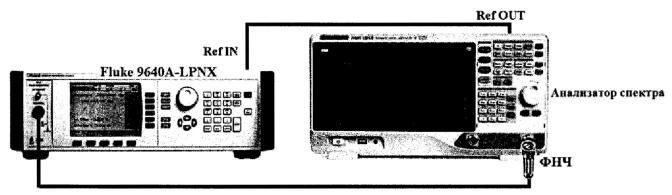


Рисунок 4

- 7.13.2 Установить на выходе генератора сигнал с частотой 450 МГц и уровнем -30 дБм.
- 7.13.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:
 - 1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст»
 - 2. Установить на поверяемом анализаторе следующие параметры:

• центральная частота: 450 МГц

• полоса обзора: 500 Гц

• полоса пропускания: 10 Гц

• видеофильтр: авто

• опорный уровень: -30 дБм

аттенюатор: 0 дБ усреднение: Вкл, 20

7.13.4 Дождаться окончания усреднения спектрограммы. С помощью меню «Поиск пика» измерить уровень сигнала основной гармоники P_{fl} . На анализаторе спектра установить значение центральной частоты в два раза больше выходной частоты генератора. После окончания усреднения спектрограммы маркером измерить уровень сигнала второй гармоники P_{2fl} .

7.13.5 Уровень гармонических искажений определить по формуле (9):

$$dBc = P_{2fi} - P_{fi}, (9)$$

где P_{2f1} – уровень второй гармоники,

P_{fl} - уровень основной гармоники.

7.13.6 Повторить измерения на частоте сигнала 900 МГц, используя соответствующий фильтр.

Результаты поверки считать положительными, если уровень второй гармоники относительно уровня несущей не более -65дБ.

7.14 Определение уровня фазовых шумов

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

- 7.14.1 Собрать измерительную схему в соответствии с рисунком 3.
- 7.14.2 Установить на выходе генератора сигнал с частотой 1 ГГц и уровнем 0 дБм, генератор перевести в режим работы по внешнему сигналу опорной частоты.

- 7.14.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:
 - 1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст»
 - 2. Установить на поверяемом анализаторе следующие параметры:

центральная частота: 1000 МГц
полоса пропускания: 10 кГц

видеофильтр: 10 Гц
полоса обзора: 100 кГц
опорный уровень: 0 дБм
усреднение: Вкл, 20

7.14.4 Дождаться окончания усреднения спектрограммы. С помощью меню «Маркер» включить маркер 1, с помощью меню «Поиск пика» установить маркер анализатора на максимум сигнала. Затем включить в меню «Маркер» режим дельта-маркера. Отстроить дельта-маркер от сигнала на 10 кГц, и измерить уровень сигнала при данной отстройке Δ Mkr1 (дБ). Привести данный уровень к полосе 1 Гц, рассчитав значение РФШ по формуле (10):

$$P_{\Phi III} = \Delta M k r 1 - 10 \cdot lg$$
 (полоса пропускания /1 Γ ц), дБ/ Γ ц (10)

7.14.5 Повторить измерения для отстроек 100 к Γ ц и 1 М Γ ц при установленных полосах обзора 500 к Γ ц и 3 М Γ ц соответственно.

Результаты поверки считать положительными, если уровень фазовых шумов не превышает (-88 дБн/ Γ ц) для отстройки 10 к Γ ц, (-95 дБн/ Γ ц) для отстройки 100 к Γ ц и (-113 дБн/ Γ ц) для отстройки 1 М Γ ц.

7.15 Определение точки пересечения 3-го порядка

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX и генератора сигналов N5181A.

7.15.1 Собрать измерительную схему в соответствии с рисунком 5. В качестве генератора 1 использовать калибратор многофункциональный Fluke 9640A-LPNX. В качестве генератора 2 использовать генератор сигналов N5181A.

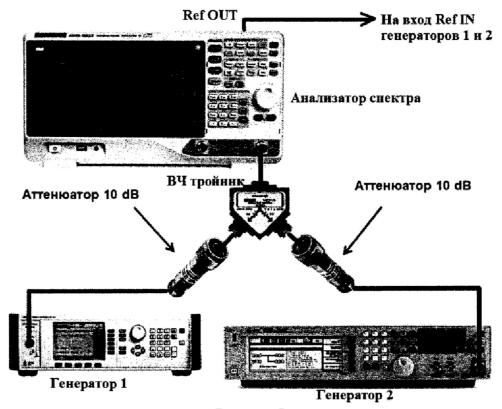


Рисунок 5

- 7.15.2 На генераторе 1 установить частоту 500 М Γ ц, уровень -10 дБм; на генераторе 2 (частота 1-ого генератора + 100 к Γ ц), уровень -10 дБм.
- 7.15.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:
 - 1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст»
 - 2. Установить на поверяемом анализаторе следующие параметры:
 - центральная частота = частоте генератора 1

• полоса обзора: 1 кГц

• полоса пропускания: 10 Гц

• видеофильтр: авто

• опорный уровень: -20 дБм

аттенюатор: 0 дБусреднение: Вкл, 50

- 7.15.4 При наличии опции автоматических измерений войти в меню «Измерения» и выбрать функцию «измерение интермодуляционных искажений 3-го порядка». Провести измерение точки пересечения третьего порядка (ТОІ) согласно руководству по эксплуатации.
- 7.15.5 Повторить измерения для частот 1-го генератора 999 МГц; 1,9 ГГц и 2,9 ГГц (только для модификации АКИП-4205/2).
- 7.15.6 При отсутствии опции автоматических измерений определить точку пересечения третьего порядка (TOI) согласно п.п. 7.15.7 7.15.9.
- 7.15.7 С помощью меню «Маркер» и «Поиск пика», установить маркер анализатора поочередно на максимум одного из сигналов и регулировкой выходной мощности генераторов настроить уровни сигналов по экрану анализатора на -20 дБм.
- 7.15.8 Дождаться окончания усреднения спектрограммы и измерить уровни с помощью маркера на частотах интермодуляции:

Частота нижнего бокового тона: 2f1 - f2,

Частота верхнего бокового тона: 2f2 - f1,

где f1 - частота сигнала с генератора 1, f2 - частота сигнала с генератора 2.

7.15.9 Рассчитать точку пересечения третьего порядка (ТОІ) по формулам (11) и (12):

$$TOI = P(f1) + (P(f2) - P(2f1 - f2)) / 2,$$
(11)

$$TOI = P(f2) + (P(f1) - P(2f2 - f1)) / 2,$$
(12)

где P (f1) – измеренный уровень сигнала на частоте сигнала с генератора 1,

P (f2) - измеренный уровень сигнала на частоте сигнала с генератора 2,

P(2f1-f2) - измеренный уровень сигнала на частоте интермодуляции 2f1-f2 (нижний боковой тон),

P(2f2-f1) - измеренный уровень сигнала на частоте интермодуляции 2f2-f1 (верхний боковой тон).

Результаты поверки считать положительными, если значения точки пересечения третьего порядка (TOI), вычисленные по формулам (11) и (12) не менее +10 дБ.

7.16 Определение уровня собственных шумов

выполняется методом прямых измерений и определяется как максимальный уровень отображаемой шумовой дорожки при следующих значениях параметров анализатора: аттенюатор 0 дБ, полоса пропускания 10 Гц, полоса видеофильтра 10 Гц, полоса обзора 500 Гц, опорный уровень -60 дБ относительно 1 мВт, усреднение ≥ 50.

- 7.16.1 На вход анализатора спектра подключить согласованную нагрузку 50 Ом.
- 7.16.2 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:
 - 1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст»
 - 2. Установить на поверяемом анализаторе следующие параметры:

• предусилитель: Выкл

• аттенюатор: 0 дБ

• полоса пропускания: авто

• видеофильтр: авто

• опорный уровень: -60 дБм

• усреднение: Вкл, 50

• начальную и конечную частоты устанавливать в соответствии с таблицей 12.

7.16.3 Дождаться окончания усреднения спектрограммы.

- 7.16.4 При помощи меню «Поиск пика» произвести измерения максимального уровня отображаемой шумовой дорожки на экране прибора. Записать частоту максимально измеренного значения уровня Fmax в таблицу 12.
- 7.16.5 Установить частоту, определенную по п. 7.16.4 в качестве центральной. Для этого войти в меню «Маркер→» и выбрать функцию «Установить частоту маркера на центр». 7.16.6 На анализаторе выполнить следующие установки: полоса пропускания: 10 Гц, видеофильтр: 1 Гц, полоса обзора 500 Гц. Определить максимальный уровень отображаемой шумовой дорожки при данных установках. Записать измеренный уровень собственных шумов в таблицу 12.
 - 7.16.6 Повторить измерения для остальных диапазонов частот, указанных в таблице 11.
- 7.16.7 Повторить измерения по п.п. 7.16.1 7.16.6, включив в меню «Уровень» встроенный предусилитель.

Таблица 11

Начальная	Конечная	Центральная	Измеренный уровень	собственных шумов
частота	частота	частота Fmax	с выключенным преду- силителем	с включенным преду- силителем
9 кГц	100 кГц			
100 кГц	1 МГц			
1 МГц	10 МГц			
10 МГц	200 МГц			
200 МГц	2,1 ГГц			
2,1 ГГц	3,2 ГГц			

Примечание:

поверка в диапазоне частот свыше 2,1 ГГц проводится только для модификации АКИП-4205/2

Результаты поверки считать положительными, если уровень собственных шумов анализатора не превышает значений, приведенных в таблице 12

Таблина 12

Наименование характеристик	Значения характеристик
Средний уровень собственных шумов относительно 1 мВт, дБ, не более	
Параметры нормируются при следующих условиях: аттенюатор 0 дБ,	
полоса пропускания 10 Гц, полоса видеофильтра 10 Гц, полоса обзора	
500 Гц, опорный уровень -60 дБ относительно 1 мВт, усреднение > 50	
С выключенным предусилителем в полосе частот:	
от 9 кГц до 100 кГц	-100
св. 100 кГц до 1 МГц	-97
св. 1 МГц до 10 МГц	-122
св. 10 МГц до 200 МГц	-127
св. 200 МГц до 2,1 ГГц	-125
св. 2,1 ГГц до 3,2 ГГц (только для модификации АКИП-4205/2)	-116

Продолжение таблицы 12

С включенным предусилителем в полосе частот:	
от 9 кГц до 100 кГц	-107
св. 100 кГц до 1 МГц	-122
св. 1 МГц до 10 МГц	-138
св. 10 МГц до 200 МГц	-146
св. 200 МГц до 2,1 ГГц	-145
св. 2,1 ГГц до 3,2 ГГц (только для модификации АКИП-4205/2)	-135

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 При положительных результатах поверки шунтов оформляется свидетельство о поверке в соответствии с приказом Минпромторга России от 02.07.2015 № 1815 "Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке".

8.2 При отрицательных результатах поверки приборы не допускаются к дальнейшему применению, свидетельство о поверке аннулируется и выдается извещение о непригодности.

Главный метролог АО «ПриСТ»

А.Н. Новиков

Short

Начальник отдела испытаний и сертификации

С.А. Корнеев