УТВЕРЖДАЮ

Технический директор ООО «ИЦРМ»

М. С. Казаков

разработок 2017 г.

М.т. исти метропогии»

Контроллеры электростанции серии Multi-line2 (модификации AGC-4, AGCPM, ASC-4, PPM-3, PPU-3, GPU-3)

Методика поверки

Содержание

1 Вводная часть	3
2 Операции поверки	3
3 Средства поверки	
3 Средства поверки	د
4 Требования к квалификации поверителей	6
5 Требования безопасности	<i>6</i>
6 Условия поверки	4
7 Подготовка к поверке	5
8 Проведение поверки	5
9 Оформление результатов поверки	7
10 Приложение А	ç

1 ВВОДНАЯ ЧАСТЬ

- 1.1 Настоящая методика поверки распространяется на контроллеры электростанции серии Multi-line2 (модификации AGC-4, AGC PM, ASC-4, PPM-3, PPU-3, GPU-3) (далее контроллеры), и устанавливает методы, а также средства их первичной и периодической поверок.
- 1.2 На первичную поверку следует предъявлять контроллеры до ввода в эксплуатацию и после ремонта.
- 1.3 На периодическую поверку следует предъявлять контроллеры в процессе эксплуатации и/или хранения.
- 1.4 Интервал между поверками в процессе эксплуатации и хранения устанавливается потребителем с учетом условий и интенсивности эксплуатации контроллеров, но не реже одного раза в 4 года.
- 1.5 Основные метрологические характеристики (диапазоны измерений, пределы допускаемых погрешностей) приведены в таблице 1.

Таблина 1

Наименование характеристики	Значение характеристики
Диапазон измерений напряжения переменного тока в диапазоне частот от 30 до 70 Гц, В	от 100 до 690
Пределы допускаемой основной приведенной к диапазону	
измерений погрешности измерений напряжения переменного тока, %	±0,5*; ±1
Пределы измерений силы переменного тока в диапазоне частот от 30 до 70 Гц, А	1; 5
Пределы допускаемой основной приведенной к пределу измерений погрешности измерений силы переменного тока, %	±0,5*; ±1
Диапазон измерений частоты переменного тока, Гц	от 30 до 70
Пределы допускаемой основной приведенной к диапазону измерений погрешности измерений частоты переменного тока, %	±0,5*; ±1
Диапазон измерений активной фазной (суммарной по 3-м фазам) электрической мощности, МВт	от -600 до +600 (от -1 800 до +1 800)
Пределы допускаемой основной приведенной к диапазону измерений погрешности измерений активной фазной (суммарной по 3-м фазам) электрической мощности, %	±0,5*; ±1
Диапазон измерений реактивной фазной (суммарной по 3-м фазам) электрической мощности, Мвар	от -600 до +600 (от -1 800 до +1 800)
Пределы допускаемой основной приведенной к диапазону измерений погрешности измерений реактивной фазной (суммарной по 3-м фазам) электрической мощности, %	±0,5*; ±1
Диапазон измерений полной фазной (суммарной по 3-м фазам) электрической мощности, МВ·А	от -600 до +600 (от -1 800 до +1 800)
Пределы допускаемой основной приведенной к диапазону измерений погрешности измерений полной фазной (суммарной по 3-м фазам) электрической мощности, %	±0,5*; ±1
Диапазон измерений коэффициента мощности ($\cos \varphi$)**	от -1 до +1
Пределы допускаемой основной приведенной к диапазону измерений погрешности измерений коэффициента мощности, %	±0,5*; ±1

Продолжение таблицы 1

Натменование успоительности	Значение
Наименование характеристики	характеристики
Диапазоны измерений напряжения постоянного тока, В:	
- для аналоговых входов типа № 1	от -10 до +10
- для аналоговых входов типа № 2	от 0 до 40
- для аналоговых входов типа № 3	от 0 до 5
Пределы допускаемой приведенной к диапазону измерений	
погрешности измерений напряжения постоянного тока, %:	
для аналоговых входов типа № 1	±1
для аналоговых входов типа № 2	±1
для аналоговых входов типа № 3	±2
Циапазоны измерений силы постоянного тока для аналоговых	от 0 до 20
входов типа № 1, № 2 и № 3, мА	от 4 до 20
Тределы допускаемой приведенной к диапазону измерений	
погрешности измерений силы постоянного тока, %:	
для аналоговых входов типа № 1	±1
для аналоговых входов типа № 2	±1
для аналоговых входов типа № 3	±2
Циапазон измерений электрического сопротивления постоянному	om 0 == 1700
оку для аналоговых входов типа № 2, Ом	от 0 до 1700
Тределы допускаемой приведенной к диапазону измерений	
огрешности измерений электрического сопротивления	±2
остоянному току для аналоговых входов типа № 2, Ом	
Циапазон измерений температуры при преобразовании входных	
сигналов от термопреобразователей сопротивления для	от -40 до +250
иналоговых входов типа № 2 и № 3, °C	
Тределы допускаемой приведенной к диапазону измерений	
погрешности измерений температуры при преобразовании	
ходных сигналов от термопреобразователей сопротивления, %:	
для аналоговых входов типа № 2	±1
для аналоговых входов типа № 3	±2
Циапазоны преобразований (напряжения, силы и частоты	
переменного тока, фазной и суммарной по трем фазам активной,	от -25 до +25
реактивной и полной электрической мощности, напряжения и	от 0 до 20
илы постоянного тока, сопротивления постоянному току) в силу	от 4 до 20
постоянного тока, мА	
Тределы допускаемой приведенной к диапазону преобразований	
югрешности преобразований (напряжения, силы и частоты	
переменного тока, фазной и суммарной по трем фазам активной,	
реактивной и полной электрической мощности, напряжения и	±1
вилы постоянного тока) в силу постоянного тока, %	
Тределы допускаемой приведенной к диапазону преобразований	
погрешности преобразований (сопротивления постоянному току)	±2
в силу постоянного тока, %	- <u>-</u>
Примечания	
тримечания * - с опцией Q1;	
** - среднее значение по 3-м фазам.	

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки выполняют операции, указанные в таблице 2.

Таблица 2

	Номер	Необходимость выполнения	
Наименование операции поверки	пункта методики поверки	при первичной поверке	при периодической поверке
Внешний осмотр	8.1	Да	Да
Опробование и подтверждение соответствия программного обеспечения	8.2	Да	Да
Определение метрологических характеристик	8.3	Да	Да

- 2.2 Последовательность проведения операций поверки обязательна.
- 2.3 При получении отрицательного результата в процессе выполнения любой из операций поверки контроллер бракуют и его поверку прекращают.

3 СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки рекомендуется применять средства поверки, приведённые в таблице 3.
- 3.2 Применяемые средства поверки должны быть исправны, средства измерений поверены и иметь действующие документы о поверке. Испытательное оборудование должно быть аттестовано.
- 3.3 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых средств измерений с требуемой точностью.

Таблица 3

No	Наименование средства поверки	Номер пункта Методики	Рекомендуемый тип средства поверки и его регистрационный номер в Федеральном информационном фонде или метрологические				
			характеристики				
1	2	3	4				
		Основное с	ередство поверки				
1	Калибратор	8.3.1-8.3.3	Калибратор универсальный 9100, рег. №				
		8.3.8-8.3.12	25985-09				
2	Вольтметр	8.3.12	Вольтметр универсальный цифровой GDM-78261, рег. № 52669-13				
3	Установка	8.3.4-8.3.7	Установка универсальная поверочная УППУ-МЭ, рег. № 57346-14				
	универсальная поверочная	8.3.12					
	Вспомогательные средства поверки (оборудование)						
2	Источник	8.3.1-8.3.12	Источник питания постоянного тока				
	постоянного тока		GPR-73060D, per. № 55898-13				
3	Термогигрометр	8.1-8.3	Термогигрометр электронный «CENTER»				
	электронный		модель 313, рег. № 22129-09				

Продолжение таблицы 3

1	2	3	4			
	Компьютер и принадлежности к компьютеру					
5	Компьютер	8.2-8.3	Интерфейс Ethernet; объем оперативной памяти не менее 1 Гб; объем жесткого диска не менее 10 Гб; дисковод для чтения CD-ROM; операционная система Windows			
Программное обеспечение (ПО)						
6	Внешнее ПО	8.2-8.3	USW3, версия v. 3.36.0 и выше			

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К проведению поверки допускают лица, имеющие документ о повышении квалификации в области поверки средств измерений электрических величин.
- 4.2 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением до 1000 В с квалификационной группой по электробезопасности не ниже III.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.
- 5.2 Во избежание несчастного случая и для предупреждения повреждения поверяемого контроллера необходимо обеспечить выполнение следующих требований:
- подсоединение оборудования к сети должно производиться с помощью кабеля или адаптера и сетевых кабелей, предназначенных для данного оборудования;
- заземление должно производиться посредством заземляющего провода или сетевого адаптера, предназначенного для данного оборудования;
- присоединения поверяемого контроллера и оборудования следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах);
 - запрещается работать с оборудованием при снятых крышках или панелях;
- запрещается работать с поверяемым контроллером в условиях температуры и влажности, выходящих за допустимые значения, а также при наличии в воздухе взрывоопасных веществ;
- запрещается работать с поверяемым контроллером в случае обнаружения его повреждения.

6 УСЛОВИЯ ПОВЕРКИ

- 6.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха от +15 до +30°C;
- относительная влажность воздуха от 30 до 80 %.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- изучить эксплуатационные документы на поверяемые контроллеры, а также руководства по эксплуатации на применяемые средства поверки;
- выдержать контроллеры в условиях окружающей среды, указанных в п. 6.1, не менее 1 ч, если они находились в климатических условиях, отличающихся от указанных в

п. 6.1;

 подготовить к работе средства поверки и выдержать во включенном состоянии в соответствии с указаниями руководств по эксплуатации.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

При проведении внешнего осмотра контроллеров проверяют:

- соответствие комплектности перечню, указанному в руководстве по эксплуатации;
 - соответствие серийного номера указанному в руководстве по эксплуатации;
 - чистоту и исправность разъемов;
 - маркировку и наличие необходимых надписей на контроллере;
- отсутствие механических повреждений и ослабление крепления элементов конструкции (повреждение корпуса, разъёма);
 - сохранность органов управления, четкость фиксаций их положений.

Результат внешнего осмотра считают положительным, если выполняются все вышеуказанные требования.

- 8.2 Опробование и подтверждение соответствия программного обеспечения.
- 8.2.1 Опробование проводят в следующей последовательности:
- 1) Подают напряжение питания на контроллер.
- 2) При подаче напряжения питания загорается светодиод «Power» (для модификации без дисплейной панели) или происходит включение дисплея и загорается светодиод «Питание» (для модификаций с дисплейной панелью).

Результаты считают положительными, если при подаче питания на контроллер загорается зеленый светодиод Power» (для модификации без дисплейной панели) или происходит включение дисплея и загорается светодиод «Питание» (для модификаций с дисплейной панелью).

8.2.2 Подтверждение соответствия программного обеспечения

Подтверждение соответствия программного обеспечения осуществляется в следующей последовательности:

- 1) Повторяют п. 8.2.1.
- 2) Подключают контроллер к персональному компьютеру (далее по тексту-ПК) согласно руководству по эксплуатации и выполняют установку программного обеспечения USW3 на ПК (для модификаций без дисплейной панели).
- 3) Проверить соответствие номера версии внешнего ПО в правом верхнем углу открывшегося диалогового окна, указанному в описании типа (для модификаций без дисплея)
- 4) В программе USW3 перейти в раздел информация и считывают наименование и номер версии встроенного ПО (для модификаций без дисплея) или считывают наименование и номер версии при загрузке контроллера (для модификаций с дисплеем).

Результаты считают положительными, если наименования встроенного и внешнего программного обеспечения совпадают с данными представленными в описании типа, а номера версий встроенного и внешнего программного обеспечения не ниже представленного в описании типа на контроллер.

- 8.3 Определение метрологических характеристик
- 8.3.1 Определение основной приведенной к диапазону измерений погрешности измерений напряжения переменного тока

Определение основной приведенной к диапазону измерений погрешности измерений напряжения переменного тока осуществляется в следующей последовательности:

- 1) Подготовить и включить контроллер и калибратор универсальный 9100 (далее по тексту калибратор) в соответствии с их эксплуатационными документами.
- 2) Подключить калибратор к контроллеру согласно структурной схеме, представленной на рисунке 1 (клеммы подключения контроллера указаны в руководстве по эксплуатации).

Рисунок 1 — Структурная схема определения приведенной к диапазону измерений погрешности измерений напряжения и частоты переменного тока, напряжения постоянного тока, электрического сопротивления постоянному току, температуры при преобразовании входных сигналов от термопреобразователей сопротивления

- 3) При помощи калибратора поочередно подать следующие испытательные сигналы напряжения переменного тока с частотой 50 Гц: 100, 200, 300, 500, 690 В.
- 4) Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают значения приведенной к диапазону измерений погрешности измерений напряжения переменного тока $\gamma U_{\rm nep}$, %, по формуле (1).

$$\gamma U_{\text{nep}} = \frac{U_{\text{MSM}} - U_{\text{ST}}}{U_{\pi}} \times 100\% \tag{1}$$

где $U_{\rm эт}$ – значение напряжения переменного тока, воспроизведённое при помощи калибратора, B;

 $U_{\text{изм}}$ – значение напряжения переменного тока, измеренное контроллером, B;

- $U_{\rm n}$ значение напряжения переменного тока, равное диапазону измерений, В.
- 5) Повторить операции 1)-4) для всех каналов измерений напряжения переменного тока.
 - 6) Повторить операции 1) 5) при значениях частоты 30 и 70 Гц.

Результаты считают положительными, если полученные значения приведенной к диапазону измерений погрешности измерений напряжения переменного тока во всех проверяемых точках не превышают значений, представленных в таблице 1.

8.3.2 Определение основной приведенной к пределу измерений погрешности измерений силы переменного тока

Определение основной приведенной к пределу измерений погрешности измерений силы переменного тока осуществляется в следующей последовательности:

- 1) Подготовить и включить контроллер и калибратор в соответствии с их эксплуатационными документами.
- 2) Подключить калибратор к контроллеру согласно структурной схеме, представленной на рисунке 2 (клеммы подключения контроллера указаны в руководстве по эксплуатации).

Рисунок 2— Структурная схема определения приведенной к пределу измерений погрешности измерений силы переменного тока, приведенной к диапазону измерений погрешности измерений частоты переменного тока, приведенной к диапазону измерений погрешности измерений силы постоянного тока

- 3) При помощи калибратора поочередно подать следующие испытательные сигналы силы переменного тока с частотой 50 Γ ц: 0,1; 0,25; 0,5; 0,75; 1 A (для предела 1 A) или 0,5; 1,25; 2,5; 3,75; 5 A (для предела 5 A).
- 4) Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают значения приведенной к пределу измерений погрешности измерений силы переменного тока $\gamma I_{\rm nep}$, %, по формуле (2).

$$\gamma l_{\text{mep}} = \frac{l_{\text{MSM}} - l_{\text{ST}}}{l_n} \times 100\% \tag{2}$$

где $I_{\rm эт}$ — значение силы переменного тока, воспроизведённое при помощи калибратора, A;

 $I_{\text{изм}}$ – значение силы переменного тока, измеренное контроллером, A;

 I_0 – значение силы переменного тока, равное пределу измерений, A.

- 5) Повторить операции 1) 4) для всех каналов измерений силы переменного тока.
 - 6) Повторить операции 1) 5) при значениях частоты 30 и 70 Гц.

Результаты считают положительными, если полученные значения приведенной к пределу измерений погрешности измерений силы переменного тока во всех проверяемых точках не превышают значений, представленных в таблице 1.

8.3.3 Определение основной приведенной к диапазону измерений погрешности измерений частоты переменного тока

Определение основной приведенной к диапазону измерений погрешности измерений частоты переменного тока осуществляется в следующей последовательности:

- 1) Подготовить и включить контроллер и калибратор в соответствии с их эксплуатационными документами.
- 2) Подключить калибратор к контроллеру согласно структурной схеме, представленной на рисунке 1 (клеммы подключения контроллера указаны в руководстве по эксплуатации).
- 3) При помощи калибратора поочередно подать следующие испытательные сигналы частоты переменного тока при значении напряжения переменного тока 100 В: 30, 40, 50, 60, 70 Гц.
- 4) Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают значения приведенной к диапазону измерений погрешности измерений частоты переменного тока yf_{nep} , %, по формуле (3).

$$\gamma f_{\text{nep}} = \frac{f_{\text{uzw}} - f_{\text{pt}}}{f_{\text{n}}} \times 100\% \tag{3}$$

где $f_{\rm 3T}$ — значение частоты переменного тока, воспроизведённое при помощи калибратора, Γ ц;

 $f_{\rm 3M}$ – значение частоты переменного тока, измеренное контроллером, Γ ц;

 f_0 – значение частоты переменного тока, равное диапазону измерений, Γ ц.

- 5) Повторить операции 1) 4) для всех каналов измерений частоты переменного тока при измерении напряжения переменного тока.
- 6) Разобрать схему, представленную на рисунке 1 и собрать схему, представленную на рисунке 2 (клеммы подключения контроллера указаны в руководстве по эксплуатации).
- 7) При помощи калибратора поочередно подать следующие испытательные сигналы частоты переменного тока при значении силы переменного тока 1 A: 30, 40, 50, $60, 70 \, \Gamma$ ц.
- 8) Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают значения приведенной к диапазону измерений погрешности измерений частоты переменного тока yf_{nep} , %, по формуле (3).
- 9) Повторить операции 7) 9) для всех каналов измерений частоты переменного тока при измерении силы переменного тока.

Результаты считают положительными, если полученные значения приведенной к диапазону измерений погрешности измерений частоты переменного тока во всех проверяемых точках не превышают значений, представленных в таблице 1.

8.3.4 Определение основной приведенной к диапазону измерений погрешности измерений активной фазной (суммарной по 3-м фазам) электрической мощности

Определение основной приведенной к диапазону измерений погрешности измерений активной фазной (суммарной по 3-м фазам) электрической мощности осуществляется в следующей последовательности:

- 1) Подготовить и включить контроллер и установку поверочную универсальную УППУ-МЭ (далее по тексту УППУ) в соответствии с их эксплуатационными документами.
- 2) Подключить УППУ к контроллеру согласно структурной схеме, представленной на рисунке 3 (клеммы подключения контроллера указаны в руководстве по эксплуатации).

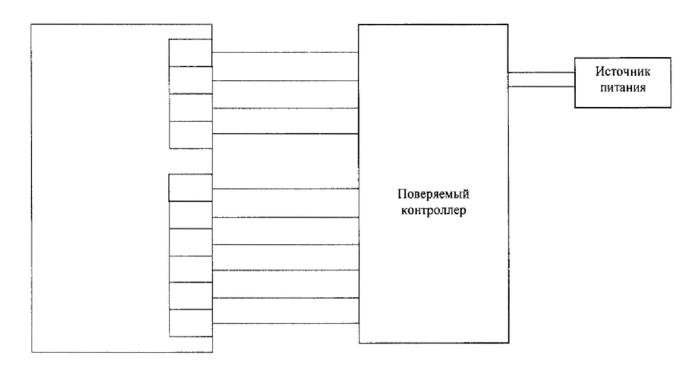


Рисунок 3 — Структурная схема определения приведенных к диапазону измерений погрешностей измерений активной фазной (суммарной по 3-м фазам) электрической мощности, реактивной фазной (суммарной по 3-м фазам) электрической мощности, полной фазной (суммарной по 3-м фазам) электрической мощности и коэффициента мощности

3) При помощи УППУ воспроизводят испытательные сигналы с характеристиками, представленными в таблице 4. При определении основной приведенной к диапазону измерений погрешности измерений фазной активной электрической мощности испытательные сигналы напряжения и силы переменного тока с УППУ воспроизводятся только по одной фазе. При определении приведенной к диапазону измерений погрешности измерений суммарной по 3-м фазам активной электрической мощности испытательные сигналы напряжения и силы переменного тока с УППУ воспроизводятся одновременно по всем трем фазам.

Таблица 4

№ испытательного сигнала	Напряжение переменного тока	Сила переменного тока, А ³⁾	cos φ
1		$0,1 \cdot I_{\Pi}$	0,5 L (C) 1) 2)
2	100	$0.25 \cdot I_{\Pi}$	0,8 L (C)
3		$0.5 \cdot I_{\Pi}$	0,5 L (C)
4		$0.75 \cdot I_{\Pi}$	1,0
5		I_{Π}	1,0
1		$0,1 \cdot I_{\Pi}$	0,5 L (C)
2		$0,25 \cdot I_n$	0,8 L (C)
3	220	$0.5 \cdot I_{\Pi}$	0,5 L (C)
4		$0,75 \cdot I_{\rm n}$	1,0
5		I_{π}	1,0
1	500	$0,1 \cdot I_{\rm n}$	0,5 L (C)
2	300	0,25·I _n	0,8 L (C)

Продолжение таблицы 4

№ испытательного сигнала	Напряжение переменного тока	Сила переменного тока, А3)	cos φ
3		0,5·I _n	0,5 L (C)
4		0,75·I _п	1.0
5		I_{Π}	1,0

Примечания

- 1) Знаком «L» обозначена индуктивная нагрузка.
- 2) Знаком «С» обозначена емкостная нагрузка.
- ³⁾ Значение $I_{\rm n}$ выбирается 1 или 5 A в зависимости от используемого предела измерений
- 4) Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают приведенную к диапазону измерений погрешность измерений активной фазной электрической мощности γP , %, и приведенную к диапазону измерений погрешность измерений активной суммарной по 3-м фазам электрической мощности $\delta P_{\text{сум}}$, %, по формулам (4) и (5) соответственно.

$$\gamma P = \frac{P_{\text{MBM}} - P_{\text{gr}}}{P_{\text{c}}} \times 100\% \tag{4}$$

где $P_{\text{изм}}$ — измеренное значение фазной активной электрической мощности при помощи контроллера, Вт;

 $P_{\rm эт}$ — воспроизведенное значение фазной активной электрической мощности при помощи УППУ, Вт;

 $P_{\rm n}$ –значение фазной активной электрической мощности равное диапазону измерений, Вт.

$$\gamma P_{\text{cym}} = \frac{P_{\text{MEM CYM}} - P_{\text{ST CYM}}}{P_{\text{TI CYM}}} \times 100\%$$
 (5)

где $P_{\text{изм сум}}$ — измеренное значение суммарной по 3-м фазам активной электрической мощности при помощи контроллера, Вт;

 $P_{\text{эт сум}}$ – воспроизведенное значение суммарной по 3-м фазам активной электрической мощности при помощи УППУ, Вт;

 $P_{\rm n\ cym}$ –значение суммарной по 3-м фазам активной электрической мощности равное диапазону измерений, Вт.

Результаты считают положительными, если полученные значения приведенной к диапазону измерений погрешности измерений активной фазной (суммарной по 3-м фазам) электрической мощности во всех проверяемых точках не превышают значений, представленных в таблице 1.

8.3.5 Определение основной приведенной к диапазону измерений погрешности измерений реактивной фазной (суммарной по 3-м фазам) электрической мощности

Определение основной приведенной к диапазону измерений погрешности измерений реактивной фазной (суммарной по 3-м фазам) осуществляется в следующей последовательности:

1) Подготовить и включить контроллер и УППУ в соответствии с их эксплуатационными документами.

- 2) Подключить УППУ к контроллеру согласно структурной схеме, представленной на рисунке 3 (клеммы подключения контроллера указаны в руководстве по эксплуатации).
- 3) При помощи УППУ воспроизводят испытательные сигналы с характеристиками, представленными в таблице 5. При определении основной приведенной к диапазону измерений погрешности измерений фазной реактивной электрической мощности испытательные сигналы напряжения и силы переменного тока с УППУ воспроизводятся только по одной фазе. При определении приведенной к диапазону измерений погрешности измерений суммарной по 3-м фазам реактивной электрической мощности испытательные сигналы напряжения и силы переменного тока с УППУ воспроизводятся одновременно по всем трем фазам.

Таблица 5

№ испытательного сигнала	Напряжение переменного тока	Сила переменного тока,А ¹⁾	sinφ
1		$0.1 \cdot I_{\rm n}$	0,5
2		0,25·I _n	0,8
3	100	$0.5 \cdot I_{n}$	0,5
4		0,75·I _n	1.0
5		I_{n}	1,0
1		$0,1 \cdot I_{\Pi}$	0,5
2		0,25·I _n	0,8
3	220	0,5·I _n	0,5
4		0,75·I _n	1,0
5		I_{n}	1,0
1		0,1·I _n	0,5
2	500	0,25·I _n	0,8
3		$0.5 \cdot I_{\rm m}$	0,5
4		0,75·I _n	1,0
5		$I_{ m n}$	1,0

Примечания

4) Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают приведенную к диапазону измерений погрешность измерений реактивной фазной электрической мощности γQ , %, и приведенную к диапазону измерений погрешность измерений реактивной суммарной по 3-м фазам электрической мощности $\delta Q_{\text{сум}}$, %, по формулам (6) и (7) соответственно.

$$\gamma Q = \frac{Q_{\text{MIM}} - Q_{\text{BT}}}{Q_{\text{T}}} \times 100\% \tag{7}$$

где $Q_{\rm изм}$ – измеренное значение реактивной фазной электрической мощности при помощи контроллера, вар;

 $Q_{\rm эт}$ — воспроизведенное значение реактивной фазной электрической мощности при помощи УППУ, вар;

 $Q_{\rm n}$ –значение реактивной фазной электрической мощности равное диапазону

 $^{^{1)}}$ Значение $I_{\rm n}$ выбирается 1 или 5 A в зависимости от используемого предела измерений

измерений, вар.

$$\gamma Q_{\text{cym}} = \frac{Q_{\text{MBM Cym}} - Q_{\text{ST cym}}}{Q_{\text{RICSM}}} \times 100\%$$
 (8)

где $Q_{\text{изм сум}}$ – измеренное значение реактивной суммарной по 3-м фазам электрической мощности при помощи контроллера, вар;

 $Q_{\rm эт}$ сум — воспроизведенное значение реактивной суммарной по 3-м фазам электрической мощности при помощи УППУ, вар;

 $Q_{\text{п сум}}$ –значение реактивной суммарной по 3-м фазам электрической мощности равное диапазону измерений, вар.

Результаты считают положительными, если полученные значения приведенной к диапазону измерений погрешности измерений реактивной фазной (суммарной по 3-м фазам) электрической мощности во всех проверяемых точках не превышают значений, представленных в таблице 1.

8.3.6 Определение основной приведенной к диапазону измерений погрешности измерений полной фазной (суммарной по 3-м фазам) электрической мощности.

Определение основной приведенной к диапазону измерений погрешности измерений полной фазной (суммарной по 3-м фазам) электрической мощности проводят одновременно с пунктами 8.3.4 и 8.3.5

Полная мощность S, B·A, рассчитывается по формуле (9).

$$S = \sqrt{P^2 + Q^2} \qquad (9)$$

где P – активная электрическая мощность, Вт; Q– реактивная электрическая мощность, вар.

Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают приведенную к диапазону измерений погрешность измерений полной фазной электрической мощности γS , %, и приведенную к диапазону измерений погрешность измерений полной суммарной по 3-м фазам электрической мощности γS_{cym} , %, по формулам (10) и (11) соответственно.

$$\gamma S = \frac{S_{\mu \text{5M}} - S_{\text{5T}}}{S_{\pi}} \times 100\% \tag{10}$$

где $S_{\text{изм}}$ — измеренное значение полной фазной электрической мощности при помощи контроллера, $\mathbf{B} \cdot \mathbf{A}$;

 $S_{\text{эт}}$ – воспроизведенное значение полной фазной электрической мощности при помощи УППУ, В·А;

 $S_{\rm n}$ —значение полной фазной электрической мощности равное диапазону измерений, В-А.

$$\gamma S_{\text{cym}} = \frac{S_{\text{MBM CYM}} - S_{\text{BT CYM}}}{S_{\text{RCYM}}} \times 100\%$$
 (11)

где $S_{\text{изм} \ \text{сум}}$ — измеренное значение полной суммарной по 3-м фазам электрической мощности при помощи контроллера, В·А;

 $S_{
m 3T\ cym}$ — воспроизведенное значение полной суммарной по 3-м фазам электрической

мощности при помощи УППУ, В-А;

 $S_{\text{п сум}}$ —значение полной суммарной по 3-м фазам электрической мощности равное диапазону измерений, $\mathbf{B}\cdot\mathbf{A}$.

Результаты считают положительными, если полученные значения приведенной к диапазону измерений погрешности измерений полной фазной (суммарной по 3-м фазам) электрической мощности во всех проверяемых точках не превышают значений, представленных в таблице 1.

8.3.7 Определение основной приведенной к диапазону измерений погрешности измерений коэффициента мощности.

Определение основной приведенной к диапазону измерений погрешности измерений коэффициента мощности осуществляется одновременно с п. 8.3.4.

Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают приведенную к диапазону измерений погрешность измерений коэффициента мощности усоѕф, %, по формуле (12).

$$y\cos\varphi = \frac{\cos\varphi_{\rm R} - \cos\varphi_{\rm B}}{\cos\varphi_{\rm B}} \cdot 100 \%, \tag{12}$$

где $\cos \varphi_{\rm M}$ – измеренное значение коэффициента мощности при помощи контроллера;

 $cos \varphi_0$ – воспроизведенное значение коэффициента мощности при помощи УППУ;

 $\cos \varphi_0$ –значение коэффициента мощности, соответствующее диапазону измерений.

Результаты считают положительными, если полученные значения приведенной к диапазону измерений погрешности измерений коэффициента мощности во всех проверяемых точках не превышают значений, представленных в таблице 1.

8.3.8 Определение приведенной к диапазону измерений погрешности измерений напряжения постоянного тока (для аналоговых входов типа № 1, № 2, № 3).

Определение приведенной к диапазону измерений погрешности измерений напряжения постоянного тока осуществляется в следующей последовательности:

- 1) Подготовить и включить контроллер и калибратор в соответствии с их эксплуатационными документами.
- 2) Подключить калибратор к контроллеру согласно структурной схеме, представленной на рисунке 1 (клеммы подключения контроллера указаны в руководстве по эксплуатации).
- 3) При помощи калибратора поочередно на вход контроллера подать следующие испытательные сигналы напряжения постоянного тока:
 - а) -10, -5, 1, 5, 10 В для аналоговых входов типа № 1;
 - б) 1, 10, 20 30, 40 В для аналоговых входов типа № 2;
 - в) 1, 2, 3, 4, 5 В для аналоговых входов типа \mathbb{N}_2 3.
- 4) Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают значения приведенной к диапазону измерений погрешности измерений напряжения постоянного тока $\gamma U_{\rm nocr}$, %, по формуле (13).

$$\gamma U_{\text{moct}} = \frac{U_{\text{mem noct}} - U_{\text{pt noct}}}{U_{\text{n noct}}} \times 100\%$$
 (13)

где $U_{\rm эт}$ пост — значение напряжения постоянного тока, воспроизведённое при помощи калибратора, B;

 $U_{\text{изм пост}}$ — значение напряжения постоянного тока, измеренное при помощи контроллера, В;

 $U_{\text{п пост}}$ – значение напряжения постоянного тока, равное диапазону измерений, В.

5) Повторить операции 1)-4) для всех каналов измерений напряжения постоянного тока.

Результаты считают положительными, если полученные значения приведенной к диапазону измерений погрешности измерений напряжения постоянного тока во всех проверяемых точках не превышают значений, представленных в таблице 1.

8.3.9 Определение приведенной к диапазону измерений погрешности измерений силы постоянного тока (для аналоговых входов типа № 1, № 2, № 3).

Определение приведенной к диапазону измерений погрешности измерений силы постоянного тока осуществляется в следующей последовательности:

- 1) Подготовить и включить контроллер и калибратор в соответствии с их эксплуатационными документами.
- 2) Подключить калибратор к контроллеру согласно структурной схеме, представленной на рисунке 2 (клеммы подключения контроллера указаны в руководстве по эксплуатации).
- 3) При помощи калибратора поочередно на вход контроллера подать 5 испытательных сигналов равномерно распределённых внутри диапазона измерений силы постоянного тока (в зависимости от выбранного диапазона измерений).
- 4) Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают значения приведенной к диапазону измерений погрешности измерений силы постоянного тока $\gamma I_{\text{пост}}$, %, по формуле (14).

$$\gamma I_{\text{most}} = \frac{I_{\text{MIM most}} - I_{\text{PT most}}}{I_{\text{m most}}} \times 100\%$$
 (14)

где $I_{\rm 3T\ noct}$ — значение силы постоянного тока, воспроизведённое при помощи калибратора, A;

 $I_{\text{изм пост}}$ — значение силы постоянного тока, измеренное при помощи контроллера, A;

 $I_{\text{п пост}}$ – значение силы постоянного тока, равное диапазону измерений, А.

5) Повторить операции 1)-4) для всех каналов измерений силы постоянного тока.

Результаты считают положительными, если полученные значения приведенной к диапазону измерений погрешности измерений силы постоянного тока во всех проверяемых точках не превышают значений, представленных в таблице 1.

8.3.10 Определение приведенной к диапазону измерений погрешности измерений электрического сопротивления постоянному току (для аналоговых входов типа \mathbb{N}_2 2).

Определение приведенной к диапазону измерений погрешности измерений электрического сопротивления постоянному току осуществляется в следующей последовательности:

- 1) Подготовить и включить контроллер и калибратор в соответствии с их эксплуатационными документами.
- 2) Подключить калибратор к контроллеру согласно структурной схеме, представленной на рисунке 1 (клеммы подключения контроллера указаны в руководстве по эксплуатации).
- 3) При помощи калибратора поочередно на вход контроллера подать 5 испытательных сигналов электрического сопротивления постоянному току: 1, 100, 500, 1000, 1700 Ом.
- 4) Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают значения приведенной к диапазону измерений погрешности измерений электрического сопротивления постоянному току γR , %, по формуле (15).

$$\gamma R = \frac{R_{\text{MSM}} - R_{\text{BT}}}{R_{\text{m}}} \times 100\% \tag{15}$$

где $R_{\rm эт}$ — значение электрического сопротивления постоянному току, воспроизведённое при помощи калибратора, Ом;

 $R_{\rm изм}$ — значение электрического сопротивления постоянному току, измеренное при помощи контроллера, Ом;

 $R_{\rm n}$ – значение электрического сопротивления постоянному току, равное диапазону измерений, Ом.

5) Повторить операции 1)-4) для всех каналов измерений электрического сопротивления постоянному току.

Результаты считают положительными, если полученные значения приведенной к диапазону измерений погрешности измерений силы постоянного тока во всех проверяемых точках не превышают значений, представленных в таблице 1.

8.3.11 Определение приведенной к диапазону измерений погрешности измерений температуры при преобразовании входных сигналов от термопреобразователей сопротивления (для аналоговых входов типа № 2 и № 3).

Определение приведенной к диапазону измерений погрешности измерений температуры при преобразовании входных сигналов от термопреобразователей сопротивления осуществляется в следующей последовательности:

- 1) Подготовить и включить контроллер и калибратор в соответствии с их эксплуатационными документами.
- 2) Подключить калибратор к контроллеру согласно структурной схеме, представленной на рисунке 1 (клеммы подключения контроллера указаны в руководстве по эксплуатации).
- 3) Переводят калибратор в режим имитирования теромопреобразователей сопротивления и поочередно на вход контроллера подать 5 испытательных сигналов температуры: -40, 0, 50, 100, 250 °C.
- 4) Считывают значения, измеренные контроллером, на экране ПК или на дисплейной панели (в зависимости от модификации) и рассчитывают значения приведенной к диапазону измерений погрешности измерений температуры при преобразовании входных сигналов от термопреобразователей сопротивления γT , %, по формуле (16).

$$\gamma T = \frac{T_{\text{MIM}} - T_{\text{ST}}}{T_{\text{T}}} \times 100\% \tag{16}$$

где T_{π} — значение температуры, воспроизведённое при помощи калибратора, °C; $T_{\text{изм}}$ — значение температуры, измеренное при помощи контроллера, °C;

 $T_{\rm n}$ – значение температуры, равное диапазону измерений, °C.

5) Повторить операции 1)-4) для всех каналов измерений температуры при преобразовании входных сигналов от термопреобразователей сопротивления.

Результаты считают положительными, если полученные значения приведенной к диапазону измерений погрешности измерений температуры при преобразовании входных сигналов от термопреобразователей сопротивления во всех проверяемых точках не превышают значений, представленных в таблице 1.

8.3.12 Определение приведенной к диапазону преобразований погрешности преобразований (напряжения, силы и частоты переменного тока, фазной и суммарной по трем фазам активной, реактивной и полной электрической мощности, напряжения и силы постоянного тока, электрического сопротивления постоянному току) в силу постоянного тока.

Определение приведенной к диапазону преобразований погрешности преобразований (напряжения, силы и частоты переменного тока, фазной и суммарной по трем фазам активной, реактивной и полной электрической мощности, напряжения и силы

постоянного тока, электрического сопротивления постоянному току) в силу постоянного тока осуществляется одновременно с п. 8.3.1-8.3.9 (в зависимости от преобразуемого значения) путем подключения к аналоговым выходам контроллера вольтметра универсального цифрового GDM-78261 согласно схемам представленным на рисунках 4, 5, 6 (клеммы подключения контроллера указаны в руководстве по эксплуатации).

Рисунок 4 — Структурная схема определения приведенной к диапазону преобразований погрешности преобразований напряжения и частоты переменного тока, напряжения постоянного тока, электрического сопротивления постоянному току, в значение силы постоянного тока



Рисунок 5— Структурная схема определения приведенной к диапазону преобразований погрешности преобразований силы переменного тока, частоты переменного тока, силы постоянного тока в значение силы постоянного тока

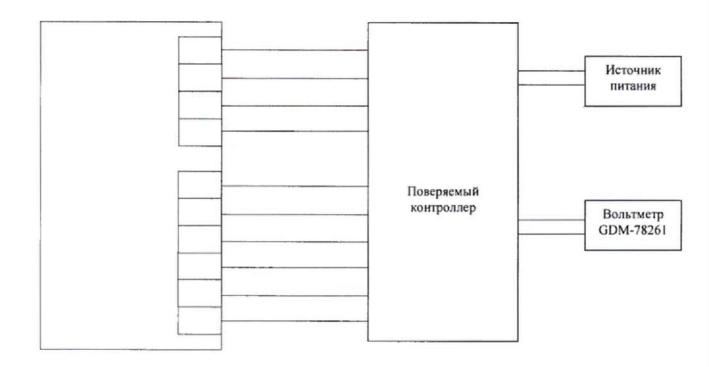


Рисунок 6 – Структурная схема определения приведенных к диапазону преобразований погрешностей преобразований активной фазной (суммарной по 3-м фазам) электрической мощности, реактивной фазной (суммарной по 3-м фазам) электрической мощности, полной фазной (суммарной по 3-м фазам) электрической мошности в значение силы постоянного тока

Значение приведенной к диапазону преобразований погрешности преобразований (напряжения, силы и частоты переменного тока, фазной и суммарной по трем фазам активной, реактивной и полной электрической мощности, напряжения и силы постоянного тока, электрического сопротивления постоянному току) в силу постоянного тока определяется по формуле (17).

$$\gamma X = \frac{X_{\text{MIN}} - X_{\text{NT}}}{X_{-}} \times 100\%$$
 (17)

где $X_{\text{эт}}$ — значение преобразуемого параметра, умноженное на коэффициент преобразования соответствующего параметра (указанный в руководстве по эксплуатации), воспроизведённое при помощи калибратора или УППУ, мА

 $X_{\text{изм}}$ — значение силы постоянного тока, измеренное при помощи контроллера, мА; $R_{\text{п}}$ — значение силы постоянного тока, равное диапазону измерений, мА.

Результаты считают положительными, если полученные значения приведенной к диапазону преобразований погрешности преобразований (напряжения, силы и частоты переменного тока, фазной и суммарной по трем фазам активной, реактивной и полной электрической мощности, напряжения и силы постоянного тока, сопротивления постоянному току) в силу постоянного тока во всех проверяемых точках не превышают значений, представленных в таблице 1.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:
 - полное наименование аккредитованной на право поверки организации;
 - номер и дата протокола поверки;

- наименование и обозначение поверенного средства измерений;
- заводской (серийный) номер;
- обозначение документа, по которому выполнена поверка;
- наименования, обозначения и заводские (серийные) номера использованных при поверке средств поверки (со сведениямио поверке последних);
 - температура и влажность в помещении;
 - фамилия лица, проводившего поверку;

результаты каждой из операций поверки согласно таблице 2.

Допускается не оформлять протокол поверки отдельным документом, а результаты операций поверки указывать на оборотной стороне свидетельства о поверке.

- 9.2 При положительном результате поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. № 1815.
- 9.3 При отрицательном результате поверки, выявленных при любой из операций поверки, описанных в таблице 2, выдается извещение о непригодности в соответствии с Приказом Министерства промышленности и торговли РФ от 02.07.2015 г. № 1815.

Инженер отдела испытаний ООО «ИЦРМ»

ЕУстинова