УТВЕРЖДАЮ

Генеральный директор ОАО «Центрохимсерт»

Газоанализаторы ЕН7000 Методика поверки ЛНПК2.840.266 МП Настоящая методика поверки распространяется на все исполнения газоанализатора ЕН7000 и устанавливает: методику первичной поверки при выпуске газоанализатора из производства и после ремонта, методику периодической поверки в процессе эксплуатации.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

 $1.1\ {
m При}$ проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер пункта методики	Обязательность операции при поверке		
	поверки	первичной	периодической	
1. Внешний осмотр	6.1	да	да	
2. Идентификация программного обеспечения	6.2	да	да	
3. Проверка сопротивления изоляции	6.3	да	нет	
4. Проверка герметичности	6.4	да	да	
5. Опробование	6.5	да	да	
 Проверка диапазона измерений, определение ос- новной погрешности газоанализатора 	6.6	да	да	
 Проверка погрешности срабатывания порого- вого устройства. Проверка входных и выходных сигналов 		да	нет	

- $1.2~{
 m Hp}$ и получении отрицательных результатов при проведении той или иной операции, указанной в таблице 1, поверка прекращается.
- 1.3 Допускается проводить поверку отдельных диапазонов измерений и отдельных компонентов по письменному заявлению владельца средства измерений с обязательным указанием в свидетельстве о поверке информации об объёме проведённой поверки.

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки применяют средства, указанные в таблице 2.

Номер	Наименование, тип, марка эталонного средства измерений или вспомогательного сред-
помер	паименование, тип, марка эталонного средства измеренив или вспомогательного сред-
пункта	ства поверки, ГОСТ, ТУ или основные технические и (или) метрологические характе-
	ристики
4.1	Измеритель влажности и температуры ИВТМ-7 ТУ 4311- 001-70203816-11.
4.1	Барометр-ансроид метеорологический БАММ-1 ТУ 25-11.1513-79
6.3	Мегомметр Еб- 24
6.4	Редуктор баллонный БАЗО -50- 4 ТУ 3645-026-00220531-95
6.4	Баллон с газообразным азотом ГОСТ 9293-74
6.4, 6.6	Манометр для точных показаний МТИ
6.4, 6.6	Секундомер механический СОСпр-26-2-000
6.4, 6.6	Мультиметр цифровой типа Fluke
6,4, 6.6	Баллоны с ПГС в соответствии с приложением Б
П.	HATHAMANIA AND AND AND AND AND AND AND AND AND AN

Примечание – Допускается применение других средств измерений, метрологические характеристики которых не хуже указанных. Все средства измерений должны иметь действующие свидетельства о поверке.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 При проведении поверки соблюдают следующие требования безопасности:
- при работе с баллонами под давлением должны выполняться требования техники безопасности в соответствии с техническим регламентом Таможенного союза ТР ТС 032/2013 «О безопасности оборудования, работающего под избыточным давлением»;
- к проведению поверки допускаются лица, изучившие руководство по эксплуатации ЛИПК2.840.266 РЭ или ЛИПК2.840.266-02 РЭ прошедшие необходимый инструктаж;
- операции поверки должны проводиться с соблюдением действующих отраслевых правил

4 УСЛОВИЯ ПОВЕРКИ

4.1 Поверка газоанализатора должна проводиться при следующих условиях:

 механические воздействия, наличие агрессивных примесей, внешние электрические и магнитные поля должны находиться в пределах, не влияющих на работу газоанализатора.

5 ПОДГОТОВКА К ПОВЕРКЕ

- 5.1 Проверяют наличие: действующих свидстельств о поверке на эталонные средства измерений, действующих паспортов на баллоны с ПГС.
- 5.2 Выдерживают газоанализатор и средства измерений в помещении, предназначенном для проведения поверки, в течение 2 ч при температуре (20±5) °C.
- 5.3 Подготавливают эталонные средства измерений к работе в соответствии с их руконолствами по эксплуатации.
- 5.4 При периодической поверке газоанализаторов ЕН7000-В, ЕН7000-ТКВ, ЕН7000-ТКВ, ЕН7000-ТКВ, ЕН7000-ТКВ, установленных на месте эксплуатации рекомендуется использовать блок БВП-3, извлечённый из взрывозащищённого корпуса блока БВП-3В. Частичный демонтаж и подготовку к работе газоанализатора проводить согласно руководству по эксплуатации ЛНПК2.840.266-02 РЭ.

Для остальных исполнений газоанализатора подготовку к работе провести в соответствии с руководством по эксплуатации JIHIIK2.840.266 РЭ.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

- 6.1.1 При внешнем осмотре проверяют соответствие газоанализатора следующим требо-
 - отсутствие внешних повреждений, влияющих на работоспособность газоанализатора;
- исправность органов управления, полноту и чёткость надписей на лицевой и задней панслях газоанализатора;
 - отсутствие повреждений линий электрического питания;
- соответствие комплектности и маркировки требованиям эксплуатационной документании на газоанализатор;
 - целостность соединений внешних газовых линий и кабелей с газоанализатором;
 - наличие и целостность крепёжных элементов;
 - наличие контура заземления;
 - наличие освещения согласно действующим санитарным нормам.

Результаты внепнего осмотра считают положительными, если они соответствуют перечисленным выше требованиям.

6.2 Идентификация программного обеспечения

Для идентификации программного обеспечения (далее по тексту – ΠO) проверить соответствие следующих заявленных идентификационных данных программного обеспечения (выводится на дисплей газоанализатора при включении) таблице 4:

- наименование ПО:
- идентификационное наименование ПО;
- номер версии (идентификационный номер) ПО;
- цифровой идентификатор ПО (контрольная сумма исполняемого кода);

Таблина 4

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	EN7000.bin
Номер версии (идентификационный номер) ПО	не ниже V1.1.01
Цифровой идентификатор ПО	Нет контрольной суммы

6.3 Проверка сопротивления изоляции

6.3.1 Измерение электрического сопротивления изоляции гальванически несвязанных электрических цепей газовнализатора относительно корпуса и между собой проводят мегаомметром с погрешностью измерения не более ± 20 % при условиях, указанных в разделе 4.

Измерение электрического сопротивления изолящи проводить для газоанализаторов ЕН7000, ЕН7000-Н, ЕН7000-ИК, ЕН7000-ИКН, ЕН7000-ТК, ЕН7000-ТКН, ЕН7000-ТМ, ЕН7000-ТМН на контактах, согласно таблице 5.

Измерение электрического сопротивления изолящии проводить для газоанапизаторов ЕН7000-В, ЕН7000-ИКВ, ЕН7000-ТКВ, ЕН7000-ТМВ на контактах, согласно таблице 6.

Таблица 5

140	MAIGA 5		
NºNº	Точі	ки приложения	Испытательное напряжение, В
1	Зажим защитного зазем-	Соединённые вместе контакты 1 и 2 евровилки «~(187 – 253) В, 50/60 Гтр»	1500±50
2	Зажим защитного зазем-	Соединённые вместе контакты 2, 6, 3, 7, 5, 9 розетки «ТОК ВЫХ»	500±25
3	Зажим защитного зазем- ления	Соединённые вместе контакты 1,9 вилки «СИГН.»	500±25
4	Зажим защитного зазем-	Соединённые вместе контакты 2,10 вилки «СИГН.»	500±25
5	Зажим защитного зазем- ления	Соединённые вместе контакты 3,11 вилки «СИГН.»	500±25
6	Зажим защитного зазем- дения	Соединённые вместе контакты 4,12 вилки «СИГН.»	500±25
7	Зажим защитного зазем- ления	Соединённые вместе контакты 7, 8,14,15 вилки «СИГН.»	500±25
8	Зажим защитного зазем-	Соединённые попарно контакты 1-2, 3-4,, 15-16 розетки «ВЫ- ХОД1»	500±25
9	Зажим защитного заземления	Соединённые попарно контакты 1-2, 3-4,,11-12 розетки «ВХОД»	500±25

Таблица б

Наименование	_		Испытательное	
изделия	Точь	ки приложения	напряжение, В	
Преобразователь ПИП	Зажим защитного заземления преобра- зователя ПИП	Соединённые вместе концы проводов кабеля связи преобразователя ПИП	500±25	
	Зажим защитного заземления	Соединённые вместе контакты 1 и 2 евровалки «~(187 – 253) В, 50/60 Гц»	1500±50	
	Зажим защитного заземления	Соединённые вместе контакты 1 - 12 розетки «ВХОД»	500±25	
Блок вторичного преобразователя	Зажим защитного заземления	Соединённые вместе контакты 1 - 6 розстки «ВЫХОД 1»	500±25	
БВП-3В	Зажим защитного заземления	Соединённые вместе контакты 7 - 14 розетки «ВЫХОД 1»	500±25	
	Зажим защитного заземления	Соединённые вместе контакты 1 - 14 розетки «ВЫХОД 2»	500±25	
	Зажим защитного заземления	Соединённые вместе контакты 1 - 16 розетки «ВЫХОД 3»	500±25	

- 6.3.2 Плавно повышают испытательное напряжение от нуля до значения испытательного значения за время от 5 до 20 с. Показания мегаомметра считывают по истечении 1 мин после приложения испытательного напряжения.
- 6.3.3 Результаты испытаний должны считаться положительными, если электрическое сопротивление изоляции при нормальных условиях составило не менее 40 МОм.

6.4 Проверка герметичности

- 6.4.1 Проверку герметичности газового канала газоанализатора проводит при отключённом электрическом питании методом оточёта падения давления пробного газа за фиксированное время в замкнутой газовой системе при условиях, указанных в разделе 4.
 - 6.4.2 Снимают заглушки со штуцеров «ВХОД ГАЗА», «ВЫХОД ГАЗА»

Собирают схему проверки согласно рисунку А.1

Длина соединительных трубок должна быть не более 0,3 м между:

- -запорным вентилем BH1 и штуцером «ВХОД ГАЗА»;
- штуцером «ВЫХОД ГАЗА» и манометром МН1.

Переводят установочный винт стабилизатора давления РД2 в сторону «меньше».

6.4.3 Открывают баллон Бл1 и запорный вентиль ВН1, при помощи редуктора РД1 устанавливают на входе стабилизатора давления РД2 избыточное давление (0.20 ± 0.05) МПа $[(2.0\pm0.5)$ кгс/сх 2].

- 6.4.4 Устанавливают с помощью стабилизатора давления газа РД2 по манометру МН1
 - ЕН7000-ИК, ЕН7000-ИКН, ЕН7000-ИКВ(0,5±0,05) кгс/см2;
 - ЕН7000-ТК, ЕН7000-ТКН, ЕН7000-ТКВ.......(2,0±0,1) кгс/см2;
 - EH7000-TM, EH7000-TMH, EH7000-TMB......(0,5±0,05) kTc/cm2;

Закрывают вентиль ВН1 и баллон Бл1.

- 6.4.5 После выдержки 10 мин фиксируют установившиеся показания манометра МН1.
 Выдерживают газовую линию газоанализатора под избыточным давлением в течение следующих 5 мин. Повторно фиксируют показания манометра МН1 и вычисляют падение давления.
- 6.4.6 Результаты испытаний считают положительными, если падение давления не превышает 1 % от испытательного давления.

6.5 Опробование

6.5.1 При опробовании газоанализаторов ЕН7000, ЕН7000-Н, ЕН7000-ИК, ЕН7000-ИКН, ЕН7000-ТК, ЕН7000-ТКН, ЕН7000-ТМН проводят настройку и проверку функционирования газоанализатора согласно разделу «Использование по назначению» руководства по эксплуатации ЛНПК2.840.266 РЭ.

Результаты опробования считаются положительными, если:

- операции, приведённые в разделе «Использование по назначению» руководства по эксплуатации ЛНПК2.840.266 РЭ, проходят без отказов;
- органы управления газоанализатора функционируют в соответствии с руководством по эксплуатации ЛНПК2.840.266 РЭ.
- 6.5.2 При опробовании газоанализаторов ЕН7000-В, ЕН7000-ИКВ, ЕН7000-ТКВ, ЕН7000-ТКВ проводят настройку и проверку функционирования газоанализатора согласно разделу «Использование по назначению» руководства по эксплуатации ЛНПК2.840.266-02 РЭ.

Результаты опробования считаются положительными, если:

- операции, приведённые в разделе «Использование по назначению» руководства по эксплуатация ЛНПК2.840.266-02 РЭ. проходят без отказов;
- органы управления газоанализатора функционируют в соответствии с руководством по эксплуатации ЛНПК2.840.266-02 РЭ.

6.6 Проверка диапазона измерений, определение основной погрешности газоанализатора

- 6.6.1 Перед определением основной погрешности подготовить газоанализатор к работе:
- ЕН7000, ЕН7000-Н, ЕН7000-ИК, ЕН7000-ИКН, ЕН7000-ТК, ЕН7000-ТКН, ЕН7000-ТМ, ЕН7000-ТМН в соответствии с руководством по эксплуатация ЛНПК2.840.266 РЭ;
- ЕН7000-В, ЕН7000-ИКВ, ЕН7000-ТКВ, ЕН7000-ТМВ в соответствии с руководством по эксплуатации ЛНПК2.840.266-02.

Выбрать диапазон измерений (для газоанализаторов имеющих два или три диапазона измерений), далее корректировка показаний в ходе определения основной погрешности не допускается.

6.6.2 Определение основной погрешности газоанализатора проводят при подаче на вход газоанализатора ПГС в последовательности: № 1 – № 2 – № 3 – № 2 – № 1 – № 3.

Номинальные значения концентрации определяемого компонента в III°C, допускаемое отклонение от номинального значения и источник получения III°C указаны в приложении Б.

- 6.6.3 Определение погрешности газоанализатора без блока БКН
- 6.6.3.1 Снять заглушки со штуцеров «ВХОД ГАЗА», «ВЫХОД ГАЗА».

Собрать пневматическую схему согласно рисунку А.2.

Собрать электрическую схему проверки:

- для газоанапизаторов ЕН7000, ЕН7000-Н, ЕН7000-ИК, ЕН7000-ИК, ЕН7000-ТК, ЕН7000-ТК, ЕН7000-ТМ, ЕН7000-ТМ Согласно рисунку А.3;
- для газоанализаторов ЕН7000-В, ЕН7000-ИКВ, ЕН7000-ТКВ, ЕН7000-ТМВ согласно рисунку А.4.

Заземлить корпус газоанализатора.

Подсоединить газоанализатор к сети \sim (187-253) В, 50/60 Гц. Монтаж силовой цепи вести проводом МГШВ-0,75.

Установить вентиль ВН1 в среднее положение.

6.6.3.2 Включить газоанализатор. Через 1 с на дисплее газоанализатора появляется сообщение: АО «ЭНАЛ» ЕН7000, спустя 1 с на дисплей газоанализатора выводятся идентификационные данные программного обеспечения.

Через 2 с газоанализатор автоматически переходит в режим прогрева, на дисплее появляется сообщение, формат которого приведён на рисунке 1.

Рисунок 1 – Пример окна газоанализатора в режиме прогрева

6.6.3.3 Установить нажатием кнопки ВВОД режим «НАСТРОЙКА», войти в меню «ВЫХОДНОЙ ТОК» по схеме: «НАСТРОЙКА» \blacksquare «ПАРАМЕТРЫ» \blacksquare «ПАРАМЕТРЫ ВЫХОДНЫЕ» \blacksquare «ВЫХОДНОЙ ТОК». Ввести пароль, установить диапазон выходного тока, равным (0-5) мА, сохранить установленные значения, нажатиями кнопки ОТМЕНА вывести на экран сообщение в формате рисунка 1.

6.6.3.4 По окончании прогрева газоанализатор автоматически переходит в режим измерений, на дисплее газоанализатора выводится окно в формате рисунка 2.

Рисунок 2 – Пример окна в режиме измерений

6.6.3.5 Подать на вход газоанализатора ПГС в последовательности 1-2-3-2-1-3, для честу

а) установить ручку крана Кр1 в положение:

- 2 для подачи ПГС №1;
- 3 для подачи ПГС №2;
- 4 для полячи ПГС №3:

6) открыть соответствующий баллон (Бл1, ..., Бл3), установить при помощи баллонного вентиля (РД2, ..., РД4) избыточное давление (0,65±0,5) МПа [(6,5±0,5) ктс/см 2], установочным винтом стабилизатора давления РД1 установить показания манометра МН1, равными (30±10) кПа [(0,3±0,1) ктс/см 2];

 в) вращая маховик вентиля ВН1 установить поплавок индикатора расхода УР1 на уровне средней риски;

г) продуть газовый канал газоанализатора ПГС №1 (ПГС №2, ПГС №3) в течение 5 мин;

 д) зафиксировать установившиеся показания с экрана газоанализатора и показания миллиамперметра АЗ;

6.6.3.6 Определить основную погрешность газоанализатора

6.6.3.6.1 Определить основную приведенную погрешность ($L\!\!\!\!/,\,\%$) газоанализатора по формуле:

где $C_J^{\ mc}$ – значение объёмной доли анализируемого газа, указанное в паспорте на ПГС, % об. или млн 3 .

 $\mathbf{C}_{\scriptscriptstyle J}$ — результат измерений содержания анализируемого газа при подаче J-ой ПГС,

% об. или млв $^{-1}$, считанный с экрана газоанализатора или рассчитанный по выходному токовому сигналу по формуле:

$$C_i \coprod_{H} \coprod_{i=1}^{H} I_i^{\text{min}} \coprod_{H} I_i^{\text{min}} \coprod_{H} I_{\text{min}}$$
(2)

где Св. Сн—верхний и нижний предел диапазона измерений содержания анализируемого газа, % об. или млн-1;

- $I_{\text{вых}}$ текущее значение выходного тока газоанализатора, мА;
- $I_{\rm B},\ I_{\rm H}$ верхняя и нижняя границы диапазона выходного сигнала, м**A**.
- 6.6.3.6.2 Определить основную абсолютную погрешность (Δ , % об. или мли $^{-1}$) газоанализатора с оптико-абсорбционным измерительным каналом измержемым компонентом для которого является гексафторид серы (SF $_6$), по формуле:

$$\square \Phi_j \square_j^{\text{nrc}}. \tag{3}$$

6.6.3.6.3 Определить основную относительную погрешность (δ , %) газовнализатора с оптико-абсорбционным измерительным каналом измеряемым компонентом для которого является гексафторид серы (SF_{δ}), по формуле:

$$C_{\mathcal{C}}^{\text{nrc}}$$
 $C_{\mathcal{C}}^{\text{nrc}}$ $C_{$

- 6.6.3.7 Установить по методике п. 6.6.3.3 диапазон выходного токового сигнала (4 20) мА.
 - 6.6.3.8 Выполнить операции пп. 6.6.3.5, 6.6.3.6.
 - 6.6.3.9 Баллоны закрыть.
- 6.6.3.10 Для газоанализаторов, имеющих два или три диапазона измерений, выбрать второй диапазон измерений в соответствии с указаниями в руководстве по эксплуатации ЛНПК2.840.266 РЭ (или ЛНПК2.840.266-01 РЭ) и провести проверку диапазона измерений и основной потрешности газоанализатора без блока БКН по методике пп. 6.6.3.
- 6.6.3.11 Результаты испытаний считают положительными, если результаты определения основной погрешности соответствуют значениям, приведённым в приложении Γ
 - 6.6.4 Определение основной погрешности газоанализатора с блоком БКН
- 6.6.4.1 Снять заглушки со штуцеров «ВХОД ГАЗА», «ВЫХОД ГАЗА», «ВХОД НУЛЬ-ГАЗА».

Собрать пневматическую схему согласно рисунку А.5.

Собрать электрическую схему проверки:

- для газоанализаторов ЕН7000, ЕН7000-Н, ЕН7000-ИК, ЕН7000-ИКН, ЕН7000-ТК, ЕН7000-ТКН, ЕН7000-ТМ, ЕН7000-ТМ Согласно рисунку Λ .3;

- для газоанализаторов ЕН7000-В, ЕН7000-ИКВ, ЕН7000-ТКВ, ЕН7000-ТМВ согласно рисунку А.4.

Заземлить корпус газоанализатора.

Подсоединить газоанализатор к сети \sim (187 - 253) В, 50/60 Гд. Монтаж силовой цени вести проводом МГШВ-0,75.

Установить вентили ВН1, ВН2 в среднее положение.

- 6.6.4.2 Открыть баллон Бл4, установить при помощи баллонного вентиля РД5 избыточное давление (0,65±0,05) МПа [(6,5±0,5) ктс/см²], установочным винтом стабилизатора давления РД6 установить показания манометра МН2, равными (30±10) кПа [(0,3±0,1) ктс/см²]. Вращая маховик вентиля ВН2 установить по индикатору расхода УР1 расход нулевого газа, равным (60±5) л/ч.
 - 6.6.4.3 Выполнить операции пп. 6.6.3.2, ..., 6.6.3.8.
 - 6.6.4.4 Баллоны с закрыть.
- 6.6.4.5 Для газоанализаторов, имсющих два или три диапазона измерений, выбрать второй диапазон измерений в соответствии с указаниями в руководстве по эксплуатации ЛНПК2.840.266 РЭ (или ЛНПК2.840.266-01 РЭ) и провести проверку диапазона измерений и основной погрешности газоанализатора с блоком БКН по методике пл. 6.6.4.
- 6.6.4.6 Результаты испытаний считают положительными, если результаты определения основной погрешности соответствуют значениям, приведённым в приложении Г.

6.7 Определение погрешности срабатывания порогового устройства. Проверка входных и выходных сигналов

6.7.1 Определение погрешности срабатывания порогового устройства.

Собрать электрическую схему проверки

- для газоанапизаторов ЕН7000, ЕН7000-Н, ЕН7000-ИК, ЕН7000-ИКН, ЕН7000-ТК, ЕН7000-ТКН, ЕН7000-ТМ, ЕН7000-ТМ Согласно рисунку А.б.;
- для газоанализаторов ЕН7000-В, ЕН7000-ИКВ, ЕН7000-ТКВ, ЕН7000-ТМВ согласно рисунку А.7.

Заземлить газоанализатор.

- 6.7.2 Подсоединить газоанализатор к сети \sim (187—253) В, 50/60 Гц. Монтаж силовой цепи вести проводом МГПІВ—0,75. Включить газоанализатор.
- 6.7.3 Установить нажатием кнопки ВВОД режим «НАСТРОЙКА» по схеме: «ПАРАМЕТРЫ» Ш «ПАРАМЕТРЫ ВЫХОДНЫЕ» Ш «СИГНАЛИЗАЦИЯ». Ввести пароль. Установить пороговое значение по уровню «Порот 1», равным (5±1) % от диапазона измерений.

- 6.7.4 При помощи кнопки Пустановить курсор на строке «Порог 2». Установить пороговое значение по уровню «Порог 2», равным (10±1) % от диапазона измерений.
- 6.7.5 В режиме «НАСТРОЙКА» войти в меню «ПРОВЕРКА» по схеме «НАСТРОЙКА» \boxplus «ДИАГНОСТИКА» \boxplus «ПРОВЕРКА». Ввести пароль.

С помощью кнопки Пувеличить значение содержания определяемого компонента от 0 до 100 % от диапазона измерений. Зафиксировать показания на экране газоанализатора в момент срабатывания порогового устройства (на экране должно появиться сообщение о срабатывании порога «п1» и/вли «п2»).

- 6.7.6 Определить погрещность срабатывания порогового устройства.
- 6.7.6.1 Определить приведённую погрешность срабатывания порогового устройства (\blacksquare) но формуле:

6.7.6.2 Определить абсолютную погрешность срабатывания порогового устройства (Λ с, % об. или млн⁻¹) газоанализатора с оптико-абсорбционным измерительным каналом, измеряемым компонентом для которого является гексафторид серы по формуле:

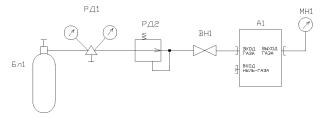
6.7.6.3 Определить относительную погрешность срабатывания порогового устройства (8 с, %) газоанализатора с оптико-абсорбционным измерительным каналом, измеряемым компонентом для которого является тексафторид серы по формуле:

$$\overbrace{\mathbb{C}_{\text{reg.}}}^{\text{Fort.}} \overbrace{\mathbb{M}}_{\text{reg.}} [\mathbb{M}] 0, \qquad \qquad (7)$$

где $C_{\text{огн}}$ — значение содержания определяемого компонента, считанное с экрана газоанализатора, при котором срабатывает пороговое устройство, % об. или мли $^{-1}$;

 $C_{\text{nep.}}$ — установленное пороговое значение по уровню «Порог 1» («Порог 2»), % об. или млн $^{-1}$.

- 6.7.7 Выполнить операции пп. 6.6.3, ..., 6.6.7 для следующих пороговых значений:
- по уровню «Порог 1» (45 \pm 1) %, по уровню «Порог 2» (55 \pm 1) %;,
- по уровню «Порог 1» (90±1) %, по уровню «Порог 2» (95±1) %.
- 6.7.8 Результаты испытаний считаются положительными, если:
- —погрешность срабатывания устройства сигнализации составляет менее 0,2 $\square 0,2$ Δ , 0,2 δ для газоанализаторов с оптико-абсорбционным измерительным жаналом, измержемым компонентом для которого является гексафторид серы).


- 6.7.9 Проверка входных сигналов.
- 6.7.9.1 Собрать электрическую схему проверки
- для газоанализаторов ЕН7000, ЕН7000-Н, ЕН7000-ИК, ЕН7000-ИКН, ЕН7000-ТК, ЕН7000-ТКН, ЕН7000-ТМ, ЕН7000-ТМ СОГЛАСНО РИСУИКУ А.6;
- для газоанализаторов ЕН7000-В, ЕН7000-ИКВ, ЕН7000-ТКВ, ЕН7000-ТМВ согласно рисунку А.7.
- 6.7.9.2 Подсоединить газоанализатор к сети \sim (187 \sim 253) В, 50/60 Гд. Монтаж силовой цепи вести проводом МГШВ \sim 0,75. Заземлить газоанализатор. Включить газоанализатор.
 - 6.7.9.3 В режиме «НАСТРОЙКА» войти в меню «ПРОВЕРКА» по схеме:
- «НАСТРОЙКА» Ш«ДИАГНОСТИКА» Ш «ПРОВЕРКА» Ш «ПРОВЕРКА ТОК ВХО-ІОВ» Ввести пяроль
- Нажать на кнопку SB1, на экране газоанализатора отображается сообщение: «Ток вх1=10 мА». Нажать на кнопку SB2, на экране газоанализатора отображается сообщение: «Ток вх2=10 мА».
 - 6.7.9.4 В режиме «НАСТРОЙКА» войти в меню «ПРОВЕРКА» по схеме:
- «НАСТРОЙКА» $\hbox{$$\square$}$ «ДИАГНОСТИКА» $\hbox{$$\square$}$ «ПРОВЕРКА» $\hbox{$$\square$}$ «ПРОВЕРКА ЛОГ ВХОДОВ». Ввести пароль.
- Нажать на кнопку SB3, на экране газоанализатора отображается сообщение: «Лог вх1=1».
- Нажать на кнопку SB4, на экране газоанализатора отображается сообщение: «Лог вх2=1».
- Нажать на кнопку SB5, на экране газоанализатора отображается сообщение: «Лог вх3=1».
- Нажать на кнопку ${\rm SB}$ 6, на экране газоанализатора отображается сообщение: «Лог вх4=1».
- 6.7.9.5 Результаты испытаний считаются положительными, если на экране газоанализатора отображаются все сообщения приведённые в шт.6.6.9.3 и 6.6.9.4.
 - 6.7.10 Проверка выходных сигналов.
 - 6.7.10.1 Собрать электрическую схему проверки
- для газоанализаторов ЕН7000, ЕН7000-Н, ЕН7000-ИК, ЕН7000-ИКН, ЕН7000-ТК, ЕН7000-ТКН, ЕН7000-ТМ, ЕН7000-ТМ Согласно рисунку А.б.
- для газоанализаторов ЕН7000-В, ЕН7000-ИКВ, ЕН7000-ТКВ, ЕН7000-ТМВ согласно висунку А.7.
- 6.7.10.2 Подсоединить газоанализатор к сети ~(187–253) В, 50/60 Гц. Монтаж силовой пепи вести проводом МГППВ-0.75. Заземлить газоанализатор. Включить газоанализатор.
 - 6.7.10.3 В режиме «НАСТРОЙКА» войти в меню «ПРОВЕРКА» по схеме:
- «НАСТРОЙКА» \blacksquare «ДИАГНОСТИКА» \blacksquare «ПРОВЕРКА» \blacksquare «ПРОВЕРКА ЛОГ ВЫХОДОВ». Ввести пароль.
- С помощью кнопок л, ї выбрать номер логического выхода, убедиться в срабатывании соответствующего светодиода (HL).

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 При проведении поверки оформляют протокол результатов поверки. Форма протокола приведена в приложении В.
- 7.2 Газоанализатор считается годным к эксплуатации, если он удовлетворяет требованиям настоящего документа.
- 7.3 Положительные результаты поверки оформляют свидетельством установленной формля
- $7.4~{
 m Hp}$ и отрицательных результатах поверки выдают извещение о непригодности с указанием причии непригодности по установленной форме.

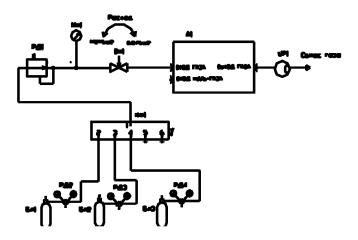
А ЗИНЗЖОГЛИП

(обязательное)

A1 – газоанализатор ЕН7000;

Бл1 — баллон с газообразным техническим азотом ГОСТ 9513–74;

ВН1 — вентиль механический 10Э3 ТУ 6-86 5Г4.463.025;


 $MH1\ -$ манометр для точных показаний MTИ;

РД1 — редуктор баллонный БАЗО-50–4 ТУ 3645–026–00220531–95;

РД2 — стабилизатор давления газа СДГ-111A 5КО.256.004 ТУ.

Монтаж пневматической схемы проверки герметичности вести трубкой ПВХ.

 $\label{eq:preserved} \textbf{Pисунок A.1} - \textbf{Схема} \ \ \text{пневматическая проверки герметичности газового канала газоана- } \\ \textbf{лизатора}$

 A1
 — газоанализатор ЕН7000;

 Бл1
 — баллон с ПГС №1;

 Бл2
 — баллон с ПГС №2;

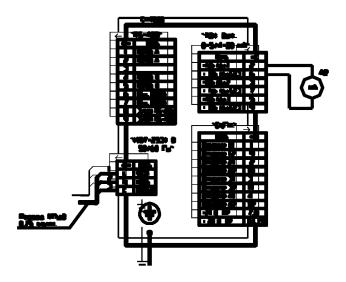
 Бл3
 — баллон с ПГС №3;

 Вн1
 — вентиль ВТР—4;

 Кр1
 – кран механический поворотный КМП4—661;

 МН1
 – манометр для точных показаний МТИ;

 РД1
 – стабилизатор давления СДГ-111АМ;


РД2, ..., РД4 — вентиль точной регулировки баллонный ВТР—1—М160 ЛНПК4.463.000;

УР1 — индикатор расхода газа ИР-2-03 ЛНПК5.184.009—02.

Перечень поверочных газовых смесей приведён в приложении В.

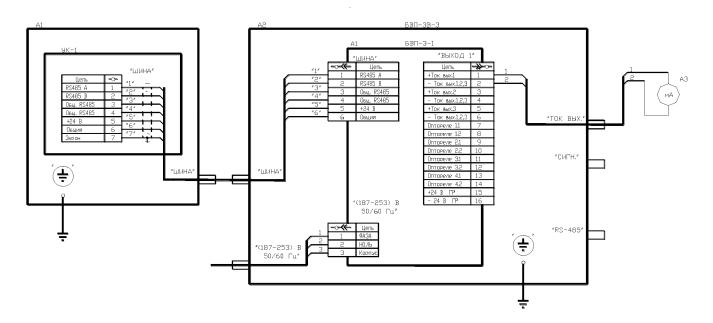

Монтаж пневматической схемы вести трубкой ПВХ.

Рисунок А.2 – Схема пневматическая проверки основной погрешности газоанализатора (без блока БКН)

- А1 газоанализатор ЕН7000;
- **A2** мультиметр цифровой типа Fluke мод. 287.

Рисунок А.3 – Схема электрическая проверки основной погрепиности газоанализаторов ЕН7000, ЕН7000-Н, ЕН7000-ИК, ЕН7000-ИКН, ЕН7000-ТК, ЕН7000-ТКН, ЕН7000-ТКН, ЕН7000-ТМН

A1 — преобразователь ПИП (EH200, EH400, EH500, EH700)

А2 – блок вторичного преобразователя БВП-3В;

А3 – мультиметр цифровой типа Fluke мод. 287.

Монтаж силовой цепи вести кабелем сечением $0,75~\text{мm}^2$.

Рисунок А.4 – Схема электрическая проверки основной погрешности газоанализаторов ЕН7000-В, ЕН7000-ИКВ, ЕН7000-ТКВ, ЕН7000-ТМВ

 A1
 — газовнализатор ЕН7000;

 Бл1
 — баллон с ПГС №1;

 Бл2
 — баллон с ПГС №2;

 Бл3
 — баллон с ПГС №3;

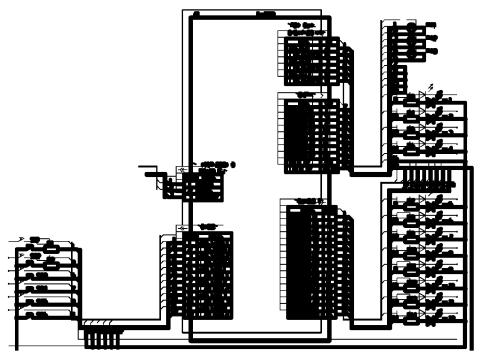
Бл4 — баллон с азотом газообразном техническим ГОСТ 9293–74;

ВН1, ВН2 – **вентиль ВТР**–4;

Кр1 — кран механический поворотный КМП4—661;

МН1, МН2 — манометр для точных показаний МТИ; РД1, РД7 — стабилизатор давления СДГ-111АМ;

 РД2, ..., РД5
 – вентиль точной регулировки баллонный ВТР-1-М160;


 УР1, УР2
 – индикатор расхода газа ИР-2-03 ЛИПК5.184.009-02.

Перечень поверочных газовых смесей приведён в приложении В.

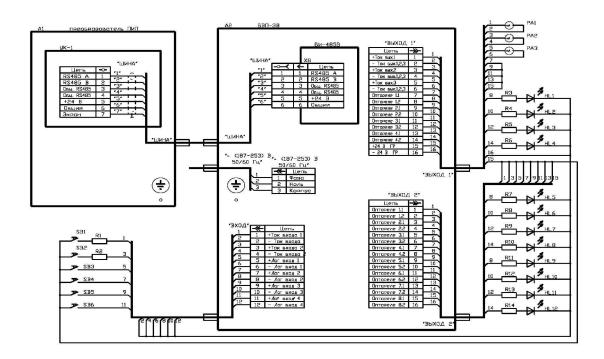
Монтаж пневматической схемы вести трубкой ПВХ.

Длина соединительной линии между вентилем ВН2 и штуцером «ВХОД НУЛЬ—ГАЗА» газоанализатора должна быть не более 200 мм.

Рисунок A.5 – Схема пневматическая проверки основной погрепіности исполнения газоанализатора (с блоком БКН)

А1 – газоанализатор ЕН7000;

R1...R2 — резистор: C2-33-0,5-2,2 кОм ± 10%;


R3...R14 — резистор: C2-33-0,5-2,4 кОм ± 10%;

HL1...HL12 – светодиодный индикатор BL-L513UBC;

SB1, SB2 - kholika PBS-26B

Монтаж силовой цепи вести кабелем сечением 0,75 \mbox{mm}^2

m Pисунок A.6 - Cxема электрическая проверки срабатывания порогового устройства газоанализаторов ЕН7000, ЕН7000-И, ЕН7000-ИК, ЕН7000-ИКН, ЕН7000-ТКН, ЕН7000-ТМН, ЕН7000-ТМН

 ${\bf A1}-$ преобразователь ПИП;

А2 – блок вторичного преобразователя БВП-3В;

R1...R2 – резистор: C2-33-0,5-2,2 кОм ± 10%;

R3...R14- резистор: C2-33-0,5-2,4 кОм ± 10%;

HL1...HL12 — светодиодный индикатор BL-L513UBC;

SB1, SB2 - kholika PBS-26B

Монтаж силовой цепи вести кабелем сечением 0,75 мм²

Рисунок А.7 – Схема электрическая проверки срабатывания порогового устройства газоанализаторов ЕН7000-В, ЕН7000-ТКВ, ЕН7000-ТКВ, ЕН7000-ТКВ

ПРИЛОЖЕНИЕ Б
Перечень ПГС
Перечень ПГС для газоанализаторов с оптико-абсорбционным измерительным каналом приведён в таблице Б.1

Таблица Б.1

Анализируемый газ, диапазон измерений	Номер	Компонент- ный состав Немер ПГС по Госре- естру, ГОСТ, ТУ		Номинальное зна- чение концентра- ции ПГС		Предены допускаемо- го отклоне-	Пределы допускаемой пограпности
		шс	шру,гост, гэ	%	MUH-1	никПГС,±Д	аттестации, ±А
			$CO_2 + N_2$				
$\mathbf{CO}_2 + \mathbf{N}_{2}, (0-10) \mathbf{MHH}^{-1}$	1	N ₂	TY 2114-004- 05798345-2009	100	-	-	
	2	CO ₂ + N ₂	PCO 10546-2014	-	5,0	20 % OTH.	4,0 % стн.
	3	CO ₂ + N ₂	TCO 10546-2014	-	9,0	20.% отн.	4,0% отн.
	1	N_2	TY 2114-004- 05798345-2009	100	-	-	7.
$CO_2 + N_2$, $(0-25)$ moth ⁻¹ ,	2	$CO_2 + N_2$	PCO 10545-2014	-	12,5	10 % отн.	1,5% отн.
	3	CO2 + N2	TCO 10545-2014	-	20,0	10 % ons.	1,5 % оти.
	1	N_2	TY 2114-004- 05798345-2009	100	=	-	-:
$CO_2 + N_2$, $(0-50)$ moth ⁻¹	2	CO ₂ + N ₂	TCO 10545-2014	-	25	10 % отн.	1,5% стн.
	3	$CO_2 + N_2$	PCO 10545-2014	-	45	10 % om.	1,5 % orn.
	1	N ₂	FOCT 9293-74	100	-	-	
$CO_2 + N_2$, $(0-100)$ MJH ⁻¹	2	$CO_2 + N_2$	TCO 10545-2014	-	50	10 % oth.	1,5 % OTH.
	3	CO ₂ + N ₂	PCO 10545-2014	-	95	10 % отн.	1,5 % отн.
	1	N_2	FOCT 9293-74	100	-	-	
$CO_2 + N_2$, $(0-200)$ mme ⁻¹	2	CO ₂ + N ₂	PCO 10545-2014	-	100	10 % отн.	1,5 % ODE.
	3	CO ₂ + N ₂	TCC 10545-2014	_	180	10 % one.	1,5 % отн.
	1	N_2	FOCT 9293-74	100	-	-	N=0
$CO_2 + N_2$, $(0 - 500)$ min ⁻¹	2	CO2 + N2	PCO 10545-2014	ien.	250	10. % oms	1,5 % cms.
	3	$CO_2 + N_2$	TCO 10545-2014	-	475	10 % отн.	1,5 % ODE
0.00	1	N_2	FOCT 9293-74	100	-	-	
$CO_2 + N_2$, $(0 - 1000) \text{ MJH}^{-1}$	2	CO2 + N2	PCO 10545-2014	-	500	10 % отн.	1,5 % OTHL
	3	$CO_2 + N_2$	TCO 10545-2014	_	950	10 % отн.	1,5 % OTH.
	1	N_2	FOCT 9293-74	100	_	~	-
$CO_2 + N_2$, $(0-0.2)\%$	2	CO ₂ + N ₂	PCO 10546-2014	0,11	-	5 % OTH.	1,5 % cms.
	3	CO ₂ + N ₂	TCO 10546-2014	0,19	-	5 % one.	1,5% опи.
	1	N_2	FOCT 9293-74	100	=	~	-
CO ₂ + N ₂ , (0-0,5)%	2	CO ₂ + N ₂	ГСО 3760-87	0,25	1-	0,05	0,008
	3	CO2 + N2	PCO 3760-87	0,45	-	0,05	0,008
	1	N ₂	ГОСТ 9293-74	100	-	-	-
$CO_2 + N_2$, $(0-1)\%$	2	CO ₂ + N ₂	PCO 3760-87	0,5	-	0,05	0,008
	3	CO ₂ + N ₂	PCO 9741-2011	0,95	.=	0,1	0,9 % orn
	1	N ₂	FOCT 9293-74	100	~	~	2-8
$CO_2 + N_2$, $(0-2)$ %,	2	CO ₂ + N ₂	PCO 10545-2014	0,95	-	5 % OTEL	0,6 % one
	3	CO ₂ + N ₂	PCO 10545-2014	1,9	-	4 % CTH.	0,4 % отн
	1	N ₂	FOCT 9293-74	100	-	-	-
$CO_2 + N_2$, $(0-3)\%$,	2	CO ₂ + N ₂	PCO 10545-2014	1,5	1-	4 % OTH.	0,4 % отн
	3	CO2 + N2	ГСО 10545-2014	2,85	-	4 % ores.	0,4 % one

Анализируемый газ, диапазон измерений	Номер ПГС	Компонент- ный состав ПГС	Номер ПГС по Госре- сстру, ГОСТ, ТУ	Номинальное зна- чение концентра- ции ПГС		Пределы допускаемо- го отклюно-	Пределы допускаемой испрепиостя
	1	NO WARRIOTS	FOCT 9293-74	% 100	MIII	ния ПГС,±Д	аттестации,±/
00 131 /0 00/		N ₁	TCC 3769-87		-	-	-
$CO_2 + N_2$, $(0-5)\%$	2	CO ₂ + N ₂		2,5	.e.	0,25	0,8 % отн
	3	CO ₂ + N ₂	ГСО 3769-87	4,75	-	0,25	0,8 % ore.
	1	N ₂	FOCT 9293-74	100	-	-	-
$CO_2 + N_2$, $(0-10)$ %	2	CO ₂ + N ₂	ГСО 9742-2011	5	-	0,5	0,8 % one.
	3	CO ₂ + N ₂	FCO 9742-2011	9,5	-	0,5	0,8 % отн.
	1	N ₁	ГОСТ 9293-74	100	-	-	1-1
$CO_2 + N_2$, $(0-20)$ %,	2	CO ₂ + N ₂	rco 3777-87	10	-	1	0,1
	3	CO ₂ + N ₂	FCO 3777-87	19	=	1	0,1
	1	N ₂	FOCT 9293-74	100	-	-	N=0
CO ₂ + N ₂ , (0-30) %	2	CO ₂ + N ₂	ГСО 9743-2011	15	-	1,5	0,54% стн.
	3	CO ₂ + N ₂	PCO 9743-2011	28,5	-	1,5	0,27 % стн.
	1	N ₂	FOCT 9293-74	100	-	-	-
CO ₂ + N ₂ , (0-40) %	2	CO ₂ + N ₂	ГСО 9743-2011	20	-	1,5	0,44 % one.
	3	CO2 + N2	ГСО 3783-87	37,5	1000	2,5	0,8 % on u.
CO ₂ + N ₂ , (0-50) %	1	N_2	FOCT 9293-74	100	-		_
	2	CO ₂ + N ₂	FCO 3783-87	25	-	2,5	0,8 %one.
	3	$CO_2 + N_2$	ГСО 3783-87	47,5	=	2,5	0,8 % ores .
	1	N_2	POCT 9293-74	100	=	·=	,=q
$CO_2 + N_2$, $(0-100)$ %	2	CO ₂ + N ₂	ГСО 3785-87	50	-	2,5	0,8 % om.
	3	CO2 + N2	PCO 9762-2011	95	-	5,0	0,46% one.
			CO + N ₂	<u> </u>	1		
	1	N ₂	TY 2114-004-	100.	-	T-	I
$CO + N_2$, $(0-10)$ MODE	2	CO + N ₂	05798345-2009 FCO 10240-2013	-	5,0	30 % отн.	4,55 % cms.
	3	CO+N	PCO 10240-2013	-	9,0	30 % one.	4,11% ons.
	1	N ₂	TY 2114-004-	100	-5%	30744114	-
$CO + N_2$, $(0-25)$ Multi-	- 22	00.6	05798345-2009	5250	_		
CO + N ₂ , (0-25) MUH	2	CO + N ₂	ГСО 10546-2014		12,5	10 % оты,	2,5 % ons.
	3	CO + N ₂	ГСО 10546-2014	-	22,5	10 % отн.	2,5% он.
	1	N_2	TY 2114-004- 05798345-2009	100	-	-	
$CO + N_2$, $(0-50)$ much ⁻¹	2	CO + N ₂	ГСО 10546-2014	-	25	10 % отн.	2,5% отн.
	3	CO + N ₂	ГСО 10546-2014	=	45,0	10 % отн.	2,5%онь
	1	N ₂	TY 2114-004-	100	-	=	-
$CO + N_2$, $(0-100)$ MIH ⁻¹	2	CO + N ₂	05798345-2009 POD 10545-2014		50	10.% ons.	1,5 % cms.
#10d 19	3	CO+N	TCO 10545-2014	_	95	10 % отн.	1.5% отн.
	1	N ₂	FOCT 9293-74	100	22	10 79 0111.	1,5 79 O.H.
CO + N ₂ , (0 – 200) MOTH ⁻¹	2	CO + N ₂		-	100	10 % отн.	1.5 % cms.
1 112, (0-200) MIH	3.	CO + N ₂	POO 10545-2014	8	180	10 % orns.	1,5 % OTH.
	1100	N ₂	FOCT 9293-74	100	160	10.76 UIM.	1,3 % Unit.
CO 137 (0 200)	1		arrespondentials was	955	250	10.00	100/
CO + N ₂ , (0 – 500) mme ⁻¹	2	CO + N ₂	PCO 10545-2014	-		10 % отн.	1,5 % OTH.
	3	CO + N ₂	POO 10545-2014	=	450	10 % отн.	1,5 % отн.
	1	N ₂	FOCT 9293-74	100	_	-	-
$CO + N_2$, $(0-1000)$ Mother	2	CO + N ₂	PCO 10545-2014	-	500	10 % отн.	1,5 % COS .
	3	CO + N ₂	PCO 10545-2014	100	950	10 % OTH.	1,5 % отн.

Анализируемый газ, диапазон измерений	Номер ПГС	Компонент- ный состав ПГС	Номер ПГС по Госре- сстру, ГОСТ, ТУ	Номинальное зна- чение концентра- ции ПГС		Пределы допускаемо- то отклоно-	Пределы допускаемой гипреписсти
				%	M/III	ния ПГС,±Д	аттестации, ±
	1	N ₂	FOCT 9293-74	100	-	-	-
$CO + N_2$, $(0-0.2)$ %	2	CO + N ₂	TCO 10546-2014	0,11	-	5% OTH.	1,5 % one.
	3	CO + N ₂	FCO 10546-2014	0,19	-	5 % о тн.	1,5 % спн.
	1	N ₂	ГОСТ 9293-74	100	-	-	-
$CO + N_2$, $(0-0.5)$ %	2	CO + N ₂	TCO 3814-87	0,25	-	0,025	0,01
	3	CO + N ₂	TCO 3816-87	0,475	-	0,05	1,5% om
	1	N ₂	ГОСТ 9293-74	100	-	-	-
CO + N ₂ , (0-1)%	2	CO + N ₂	ГСО 3816-87	0,5	-	0,05	0,8 % onn.
	3	CO + N ₂	TCO 3816-87	0,95	-	0,05	0,8 % onn.
	1	N ₂	ГОСТ 9293-74	100	-	-	-
$CO + N_2, (0-2)\%$	2	CO + N ₂	ГСО 3819-87	1	-	0,1	0,7% onn.
	3	CO + N ₂	ГСО 3819-87	1,9	-	0,1	0,7% onn.
	1	N ₂	FOCT 9293-74	100	-	-	-
$CO + N_2$, $(0-5)\%$	2	CO + N ₂	ГСО 3827-87	2,5	-	0,25	0,8 % onn.
	3	CO + N ₂	ГСО 3827-87	4,75	-	0,25	0,8 % omi.
	1	N ₂	FOCT 9293-74	100	-	-	-
CO + N ₂ , (0-10) %	2	CO + N ₂	ГСО 3831-87	5	-	0,5	0,8 % ones.
	3	CO + N ₂	ГСО 3831-87	9,5	-	0,5	0,8% oge ,
	1	N ₂	FOCT 9293-74	100	-	İ-	-
CO + N ₂ , (0-20) %	2	CO + N ₂	ГСО 3834-87	10	-	1	0,16
	3	CO + N ₂	ГСО 3834-87	19	-	1	0,16
	1	N ₂	FOCT 9293-74	100	-	-	-
CO + N ₂ , (0-30) %	2	CO + N ₂	PCO 3835-87	15	-	1,5	0,2
	3	CO + N ₂	ГСО 3835-87	28,5	-	1,5	0,2
	1	N ₂	FOCT 9293-74	100	-	-	-
CO + N ₂ , (0-40)%	2	CO + N ₂	ГСО 3835-87	20	-	1,5	0,2
	3	CO + N ₂	PCO 9746-2011	38	-	2	0,37% стн.
	1	N ₂	FOCT 9293-74	100	-	-	-
CO + N ₂ , (0 - 50) %	2	CO + N ₂	ГСО 3839-87	25	-	2,5	0,4
	3	CO + N ₂	ГСО 3839-87	47,5	-	2,5	0,4
	1	N ₂	ГОСТ 9293-74	100	-	-	-
CO + N ₂ , (0 - 100) %	2	CO + N ₂	ГСО 9746-2011	50	-	5 % отн.	0,28 % crns.
	3	CO + N ₂	FCO 9761-2011	95	-	5 % отн.	0,82 % one.

Анализируемый газ, диапазон измерсний	TITICO HIMIN COCTAB		Намер ПГС по Госре- естру, ГОСТ, ТУ	Номинальное зна- чение концентра- пии ПГС		Пределы депускаемо- то отклено-	Пределы допусковмой испреписотя
изморения	in c	mc	сору, гос. 1, 1 у	%	MOTES.	ния ПГС,±Д	аттестации,±А
			$\mathbf{CH_4} + \mathbf{N_2}$				
	1	N_2	TY 2114-004- 05798345-2009	100	-	=	
$CH_4 + N_2, (0-50) \text{ MIR}^{-1}$	2	CH ₄ + N ₂	FCO 10256-2013	-:	25	20 % oth.	3,441 % cms.
	3	CH4 + N2	FCO 10256-2013	-	45	20 % one.	3,947 % one.
	1	N ₂	TY 2114-004-	100	-		-
CH ₄ + N ₂ , (0 – 100) MODE ⁻¹	2	CH4 + N2	05798345-2009 FCO 10256-2013	-	50	20 % one.	3,939 % one.
	3	CH4 + N2	FCO 9747-2011		100	10 % one.	2,1 % om.
	ī	N ₂	TY 2114-004-	100		-	-
CH ₄ + N ₂ , (0 – 200) More ⁻¹	-	2005	05798345-2009	100	100	10.00	0.184
CII - 112, (0 - 200) MAIL	3	CH ₄ + N ₂	FCO 9747-2011	-	190	10 % ont.	2,1% one.
	3.0	CH ₄ + N ₂	TY 2114-004-		SCER	5 % CTHL	2,1% опн.
	1	N_2	05798345-2009	100	-	-	-
$CH_4 + N_2, (0-500) \text{ Month}^{-1}$	2	CH4 + N2	FCO 10530-2014	-1	250	10 % стн.	1,5 % CDE
	3	CH ₄ + N ₂	ГСО 10530-2014	-	475	10 % OTEL	1,5 % oth.
no.	1	N_2	FOCT 9293-74	100	<u> </u>	=	-n
$CH_4 + N_2$, $(0 - 1000)$ Moth ⁻¹	2	$CH_4 + N_2$	ГСО 10530-2014	-	500	10 % CTIL	1,5 % cms.
	3	CH ₄ + N ₂	FCO 10530-2014		950	10 % CTEL	1,5 % ora.
	1	N ₂	ГОСТ 9293-74	100	E-1	8	=
CH ₄ + N ₂ , (0 - 0,15) %	2	CH ₄ + N ₂	FCO 10530-2014	-	750	10 % OTEL	1,5 % OTH.
	3	CH ₄ + N ₂	FCO 10530-2014		1450	5 % OTH.	0,6 % отн.
	1	N_2	FOCT 9293-74	100	ж.	=	=
CH ₄ + N ₂ , (0-0,2) %	2	CH4 + N2	ГСО 10530-2014	0,11		5 % OTH.	0,6 % отн.
	3	CH4 + N2	ГСО 10530-2014	0,18		5 % OTH.	0,6 % отн.
	1	N_2	FOCT 9293-74	100	-	-	-
CH ₄ + N ₂ , (0 – 0,5) %	2	CH ₄ + N ₂	ГСО 10530-2014	0,25	-	5 % OTH.	0,6 % отн.
	3	$CH_4 + N_2$	ГСО 10530-2014	0,475	-	5% OTH.	0,6% отн.
	1.	N_2	ГОСТ 9293-74	100		-	-
CH ₄ + N ₂ , (0-1)%	2	CH ₄ + N ₂	FCO 9748-2011	0,5	-	0,05	0,7% опн.
	3	CH ₄ + N ₂	ГСО 9748-2011	0,95	= ₹	0,05	0,7% отн.
	1	N_2	ГОСТ 9293-74	100	=	8	=
$CH_4 + N_2, (0-2)\%$	2	CH ₄ + N ₂	ГСО 9749-2011	1		0,1	0,8% отн.
	3	CH ₄ + N ₂	ГСО 9749-2011	1,9	-	0,1	0,8 % опн.
	1	N ₂	ГОСТ 9293-74	100	=		-
$\mathbf{CH}_4 + \mathbf{N}_2, (0-5)\%$	2	$CH_4 + N_2$	ГСО 9750-2011	2,5	8	0,25	0,8 % опн.
	3	CH ₄ + N ₂	FCO 9750-2011	4,75	=	0,25	0,8 %ons .
	1	N ₂	ГОСТ 9293-74	100	-	-	-
CH ₄ + N ₂ , (0-10) %	2	CH ₄ + N ₂	ГСО 3885-87	5	=	0,5	0,08
	3	CH ₄ + N ₂	ГСО 3885-87	9,5	8	0,5	90,0
	1	N_2	FOCT 9293-74	100	_	=	N=0
CH ₄ + N ₂ , (0-20) %	2	CH ₄ + N ₂	FCO 3888-87	10	-	1	0,16
	3	CH4 + N2	FCO 3888-87	19	=:	1	0,16
	1	N_2	FOCT 9293-74	100	8	-	-
CH ₄ + N ₂ , (0 – 50) %	2	CH ₄ + N ₂	ГСО 3892-87	25	=:	2,5	0,4
	3	CH ₄ + N ₂	FCO 3892-87	47,5	-	2,5	0,4
	1	N_2	ГОСТ 9293-74	100	=:	=	-
CH ₄ + N ₂ , (0 – 100) %	2	CH ₄ + N ₂	ГСО 10532-2014	51	Ψ.	5 % OTH.	0,5 %ons .
	3	CH4 + N2	ГСО 10532-2014	92	-	0,5 % OTH.	0,2 %ons.

Анализируемый газ, диапазон измерсний	Номер ПГС	Компонент- ный состав	Новер ПГС по Госресстру, ГОСТ,		альное зна- концентра- С	Пределы допускаемого сполнения	Пределы допускаемой испрешности
	120021401	nrc	Ty	%	M/III	пгс,±д	аттестации,±/
			$C_2H_2 + N_2$				
	1	N ₂	ГОСТ 9293-74	100	-	T-	T-
$C_2H_2 + N_2$, $(0-100)$ Mult ⁻¹	2	$C_1H_1 + N_2$	ΓCO 10379-2013	020	50	20% отн.	3,939 % спн.
	3	$C_2H_2 + N_2$	ГСО 10379-2013	-	95	20 % OTH.	3,87 % cm.
	1	N ₂	ГОСТ 9293-74	100	-	-	() - (;
$C_2H_2 + N_2$, $(0-200)$ mme ⁻¹ ,	2	$C_2H_2 + N_2$	ГСО 10379-2013	656	100	20 % ons.	3,863 % сты.
	3	$C_1H_1 + N_2$	ГСО 10379-2013	-	180	20 % отн.	3,742 % отн.
	1	N ₂	ГОСТ 9293-74	100	-	-	
$C_2H_2 + N_2$, $(0-500)$ must ⁻¹	2	$C_2H_2 + N_2$	ГСО 10379-2013	(W)	250	20 % one.	3,636 % cms.
	3	$C_2H_2 + N_2$	ГСО 10379-2013		450	20 % OTH.	3,333 % отн.
	1	N_2	ГОСТ 9293-74	100	-	-	-
$C_2H_2 + N_2$, $(0-1000)$ MIH ⁻¹	2	$C_2H_2 + N_2$	ГСО 10379-2013	190	500	20 % отн.	3,258 % OTH.
	3	$C_2H_2 + N_2$	ГСО 10379-2013	-	950	20 % OTH	2,575 % oth .
	1	N_2	ГОСТ 9293-74	100	-	=	-
$C_2H_2 + N_2, (0-1)\%$	2	$C_1H_1 + N_2$	ГСО 10379-2013	0,45	100	10 % оты,	1,625 % OTE.
	3	$C_2H_2 + N_2$	ΓCO 10379-2013	0,95	398	5 % OUR.	1,479 % OTH.
	1	N ₂	ГОСТ 9293-74	100	-		(-)
$C_2H_2 + N_2$, $(0-5)\%$	2	$C_2H_2 + N_2$	ГСО 10379-2013	2,50	25	5 % ons .	1,401 % сты.
	3	$C_2H_2 + N_2$	ГСО 10379-2013	4,50	120	5 % oth.	1,316 % στκ.
	1	N ₂	ГОСТ 9293-74	100	-	-	1-1
$C_2H_2 + N_2, (0-10)\%$	2	$C_2H_2 + N_2$	ГСО 10379-2013	5	(90)	5 % oth.	1,293 % сты.
	3	$C_2H_2 + N_2$	ГСО 10379-2013	9	(2)	5 % oth	1,109% спн.
	1	N_2	ГОСТ 9293-74	100	-	9	==
$C_2H_2 + N_2, (0-20)\%$	2	$C_2H_2 + N_2$	ГСО 10379-2013	10	7002	5 % one.	1,519 % отн
	3	$C_0H_0 + N_0$	FCO 10379-2013	18	191	5% OUL	0,695 % OTH.

Анализируемый газ, диапазон измерсний	Номер ПГС	Компонент- ный состав	Номер ПГС по Госре- сстру, ГОСТ, ТУ	Номина: чение ко ции ПГС		Пределы допускаемого отклонения	Пределы допускаемой испрешности
зморсин	шс	шс	510 - 5 10 - 510	%	MIIII	пгс,+д	аттестации,±А
			$SO_2 + N_2$				
	1	N ₂	TY 2114-004- 05798345-2009	100	-	-	
$O_2 + N_2$, $(0-25)$ MITH ⁻¹	2	SO2 + N2	FCO 10342-2013	100	12,5	20 % one.	3,996% спн.
	3	$SO_{2} + N_{2}$	TCO 10342-2013	160	22	20 % стн.	3,98 % orn.
	1	N_2	TY 2114-004-	100	-	-	
O ₂ + N ₂ , (0 – 50) mme ⁻¹	2	SO2 + N2	05798345-2009 FCO 10342-2013	190	25	20 % cms.	3,977% спн.
	3	3 0 ₁ + N ₂	ГСО 10342-2013	(6)	45	20 % стн.	3,947 % cm.
	1	N ₂	TY 2114-004-	100.	-	5	==
SO ₂ + N ₂ , (0 – 100) Marie ⁻¹	2	$SO_1 + N_1$	05798345-2009 FCO 10545-2014	(0)	50	10 % сти.	1.5% one.
	3	SO ₂ + N ₂	FCO 10545-2014		95	10 % одн.	1.5% отн.
	1	N ₂	TY 2114-004-	100	-	-	-
$SO_2 + N_2$, $(0-200)$ mm ⁻¹	300	1000	05798345-2009	Section.			
50 ₂ + N ₂ , (0 - 200) Main	2	SO ₂ + N ₂	ГСО 10545-2014	100	100	10 % стн.	1,5% OIR.
	3	$SO_2 + N_2$	ГСО 10545-2014	40	180	10 % стн.	1,5% отн.
ere a ero a recon pr	1	N_2	TY 2114-004- 05798345-2009	100	1000		-
$SO_2 + N_2$, $(0 - 500)$ must ⁻¹	2	SO2 + N2	FCO 10545-2014	(80)	250	10 % стн.	1,5% our.
	3	SO2 + N2	TCO 10545-2014	151	450	10 % стн.	1,5% ons.
${ m SO}_2 + { m N}_2, (0-1000) { m mun}^{-1}$	1	N_2	TY 2114-004- 05798345-2009	100	-	2	_
	2	$SO_1 + N_2$	rco 10545-2014	101	500	10 % отн.	1,5% our.
	3	$SO_2 + N_2$	ГСО 10545-2014	160	950	10 % стн.	1,5% one.
	1	N ₂	FOCT 9293-74	100	-	=	-
SO ₂ + N ₂ , (0-0,2) %	2	SO2 + N2	ГСО 10546-2014	0,11	=	5 % OTH.	1,5 % OUR.
	3	$SO_1 + N_2$	ГСО 10546-2014	0.18	-	5% ons.	1,5% опи.
	1	N_2	FOCT 9293-74	100	-	-	-
SO ₂ + N ₂ , (0-0,5) %	2	$SO_2 + N_2$	FCO 10546-2014	0,25		5 % OTH.	1,5 % OTH.
	3	$SO_2 + N_2$	ГСО 10546-2014	0.45	120	5 % OTH.	1,5 % ons.
	1	N_2	FOCT 9293-74	100	-	2	-
$SO_2 + N_2, (0-1)\%$	2	$SO_2 + N_2$	FCO 10342-2013	0,52	-	5 % OTH.	1,499 % on
	3	30 ₂ + N ₂	FCO 10342-2013	0,95	-	5 % OTH,	1,479 % отн.
neo a no vi umas	1	N_2	FOCT 9293-74	100	=	E)	.=a
$SO_2 + N_2$, $(0-2)$ %	2	$SO_2 + N_2$	ГСО 10342-2013	1	-	5 % ODEL	1,477 % cms.
	3	SO2 + N2	rco 10342-2013	1,8	-	5 % OIH.	1,44 % om.
	1	N ₂	FOCT 9293-74	100	-	ж.	(-)
SO ₂ + N ₂ , (0-5)%	2	$SO_2 + N_2$	ГСО 10342-2013	2,5	=	5 % OTH.	1,408% стн.
	3	$SO_2 + N_2$	ГСО 10342-2013	4,5	-	5 % OTH	1,316% опн.
	1	N_2	FOCT 9293-74	100	-	-	-
SO ₂ + N ₂ , (0-10) %	2	SO2 + N2	ГСО 10546-2014	5	-	5 % OTH.	1,0 % our.
	3	SO ₂ + N ₂	ГСО 10546-2014	9	=	5 % 01H.	1,0 % онь.
out to be their exercise	1	N ₂	FOCT 9293-74	100	-	-	
SO ₂ + N ₂ , (0-20)%	2	SO ₂ + N ₂	FCO 10342-2013	10	-	5% on.	1,063 % one.
	3	SO ₂ + N ₂	FCO 10342-2013	18	-	5% OIH.	0,695% отн.
00 INT /0 F0 9/	1	N ₂	FOCT 9293-74	100		- 204	-
SO ₂ + N ₂ , (0-50) %	2	SO ₁ + N ₁	FCO 10546-2014	25		3 % OTH.	0,4 % отн.
	3	$SO_2 + N_2$	ГСО 10546-2014	45	-	3 % OTH.	0,4 % one.

Анализируемый газ, диапазон измерений	Номер ПГС	Компонент- ный состав	Номер ПГС по Госре- сстру, ГОСТ, ТУ		онцентра- С	Пределы допускаемо- го отклоно-	Пределы допускаемой испреписоти
изморения		пгс	100.5500 100.0000000	%	MIH.	вижТГС,±Д	аттестации,±А
			$NH_3 + N_2$				
	1	N ₂	TY 2114-004- 05798345-2009	100	0	0	5
$NH_3 + N_2$, $(0-100)$ must 1	2	NH ₃ + N ₂	FCO 10326-2013	6	50	20 % OHL	3,939 % опн.
	3	NH3 + N2	ГСО 10326-2013	0	95	20 % OTH.	3,871 % OTEL
	1	N ₂	TY 2114-004- 05798345-2009	100	2	ii .	н
$NH_3 + N_2$, $(0-200)$ more 1	2	NH ₃ + N ₂	FCO 10545-2014	-	110	10 % сля.	1,5 %ons.
	3	NH ₃ + N ₂	FCO 10545-2014	v	180	10 % one.	1,5 % one.
	1	N ₂	TY 2114-004- 05798345-2009	100	a	a .	-
$NH_3 + N_2$, $(0-500)$ more 1	2	NH ₃ + N ₂	FCO 10545-2014		250	10 % спн.	1,5 %ons .
	3	NH ₃ + N ₂	FCO 10545-2014		450	10 % cms.	1,5 %om .
	1	N ₂	TY 2114-004- 05798345-2009	100	н	н	2
$NH_3 + N_2, (0 - 1000)$ MITH ¹	2	NH3+ N2	FCO 10545-2014	¥	500	10 % cms.	1,5 %on L
	3	NH ₃ + N ₂	FCO 10545-2014	-	950	10 % one.	1,5 % orn .
	1	N ₂	FOCT 9293-74	100	500	50	
$NH_3 + N_2$, $(0-0.2)$ %	2	NH ₃ + N ₂	ГСО 10546-2014	0,11	=:	5 % OTH.	1,5% отн.
	3	NH3 + N2	FCO 10546-2014	0,18	-	5 % om.	1,5% om.
	1	N ₂	FOCT 9293-74	100	B		
$NH_3 + N_2$, $(0-0.5)$ %	2	$NH_3 + N_2$	ГСО 10546-2014	0,25	-	5 % OTH.	1,5 %om .
	3	NH ₃ + N ₂	FCO 10546-2014	0,45	-	5 % OTH.	1,5 % orn .
	1	N ₂	FOCT 9293-74	100	-	=	-
$NH_3 + N_2, (0-1)\%$	2	NH ₃ + N ₂	FCO 10546-2014	0,5		5 % OTH.	1,5 % ores .
	3	NH ₃ + N ₂	ГСО 10546-2014	0,9	-	5 % cm.	1,5% ones.
	1	N ₂	FOCT 9293-74	100	-	-	
$NH_3 + N_2, (0-2)\%$	2	NH ₃ + N ₂	FCO 10546-2014	1,1	=	5 % CTDE.	1,0 % onn.
	3	NH ₃ + N ₂	FCO 10546-2014	1,8		5 % OTH.	1,0 % ones.
	1	N ₂	FOCT 9293-74	100	-	==	(1-1)
$NH_3 + N_2, (0-5)\%$	2	NH3 + N2	FCO 10546-2014	2,5	-	5 % CIII.	1,0 % om.
	3	NH ₃ + N ₂	FCO 10546-2014	4,5	=	5 % CTH.	1,0 %om .
	1	N_2	FOCT 9293-74	100	=	(a)	
$NH_3 + N_2, (0-10)\%$	2	NH ₃ + N ₂	FCO 10546-2014	5	-	5 % OTH.	1,0 % ones.
	3	NH ₃ + N ₂	FCO 10546-2014	9	-	5 % CDE.	1,0 % omi.
	1	N ₂	FOCT 9293-74	100	-	701	(-)
$NH_3 + N_2$, $(0-15)$ %	2	NH ₃ + N ₂	FCO 10546-2014	7,5	-	5 %003L	1,0 % one.
	3	NH ₃ + N ₂	ГСО 10546-2014	13,5	-	3% CDEL	0,6% ones.
	1	N ₂	ГОСТ 9293-74	100	-	-	
NH ₃ + N ₂ , (0-25) %	2	NH ₃ + N ₂	ГСО 10546-2014	12,5	70	3%oni	0,6 % one.
	3	NH ₃ + N ₂	ГСО 10547-2014	22,5	20	5 %on	1,0 % oms.
	1	N ₂	ГОСТ 9293-74	100	-	-	-:
NH ₃ + N ₂ , (0 - 50) %	2	NH ₃ + N ₂	ГСО 10547-2014	25	=	5%on.	1,0 % one.
	3	NH ₃ + N ₂	ГСО 10547-2014	45	-	5% cm.	1,0% one.

Анализируемый газ, диапазон изменений	Номер	Компонентный состав ПГС	Номер ПГС по Госре- естру, ГОСТ, ТУ	Номинальное зна- чение концентра- пии ПГС		Пределы допускаемо- то откличе-	Пределы до- пускаемой погреширски	
измерении	inc	boolas III C	earpy, roci, 19	%	MITH ⁻¹	ния ПГС, ±Д	погрешности аттестации, ±/	
			$SF_6 + N_2$					
	1	N ₂	TY 2114-004- 05798345-2009	100	-	-	i	
	2	SF ₆ + N ₂	TCO 10530-2014	0,015	-	10 % отн.	1,5 % orn .	
SF ₆ + N ₂ , (0-0,2) %	3	SF ₆ + N ₂	TCO 10530-2014	0,030	TO.	10 % отн.	1,5 %om .	
	1	SF6 + N2	TCO 10530-2014	0,031	<u> </u>	10 % отн.	1,5% опц	
	2	SF ₆ + N ₂	FCO 10530-2014	0,101	-	5 %cm .	0,6 %on	
	3	SF ₆ + N ₂	TCO 10530-2014	0,18		5 % OTH.	0,6 % one.	
			NO + N ₂	_				
	1	N ₂	FOCT 9293-74	100	1-	1-	T-	
$NO + N_2$, $(0-100)$ MTH ⁻¹	2	NO + N2	TCO 10545-2014	-	50	10% ст.	1,5 %or	
	3	NO + N ₂	TCO 10545-2014	-	90	10 % OTH.	1,5% ons.	
	1	N ₂	FOCT 9293-74	100	-	-	-	
$NO + N_2$, $(0-200)$ must	2	NO + N2	ICO 10545-2014		100	10 % cm.	1,5 % orn ,	
	3	NO + N2	FCO 10545-2014	-	180	10 % сп.	1,5 % отн.	
	1	N ₂	FOCT 9293-74	100	-	-	-	
$NO + N_2$, $(0-500)$ mum ⁻¹	2	NO + N ₂	ГСО 10545-2014	50	250	10 % стн.	1,5% опн.	
	3	NO + N2	FCO 10545-2014	20	450	10 % стн.	1,5 % cms .	
	1	N ₂	FOCT 9293-74	100		-	1-1	
NO + N ₂ , (0 - 1000) must ⁻¹	2	NO + N ₂	FCO 10545-2014	0,05	-	10 % one.	1,5 % one.	
	3	NO + N ₂	PCO 10545-2014	80,0		10 % ств.	1,5 %om .	
	1	N ₂	ГОСТ 9293-74	100	8	=	-	
NO + N ₂ , (0-0,2) %	2	NO + N ₂	FCO 10546-2014	0,11	-	5 % OTH.	1,5 %orn.	
	3	NO + N ₂	PCO 10546-2014	0,16	-	5 % onn.	1,5 % orm ,	
	1	N ₂	FOCT 9293-74	100	=:	-	-	
NO + N ₂ , (0-0,5) %	2	NO + N ₂	ICO 10546-2014	0,25	Н	5 % one.	1,5% отн.	
	3	NO + N ₂	PCO 10546-2014	0,40	-	5 % OTH.	1,5 %ons .	
	1	N ₂	FOCT 9293-74	100	-	-	0 — 0	
NO + N ₂ , (0-1)%	2	NO + N2	PCO 10546-2014	0,5	H1	5 % onn.	1,5 % cm .	
	3	NO + N ₂	ГСО 10546-2014	0,9	E	5 % OTH.	1,5 % ons.	
	1	N_2	FOCT 9293-74	100		-	S—X	
NO + N _{2,} (0-2) %	2	NO + N ₂	PCO 10546-2014	1.1	-	5 % one.	1,0 % one.	
	3	NO + N2	ГСО 10546-2014	1,8	 1	5 % OTH.	1,0 % OTH.	
	1	N ₂	FOCT 9293-74	100	8	=		
$NO + N_2$, $(0-5)$ %	2	NO + N ₂	FCO 10546-2014	2,5		5 % OTH.	1,0 % ons.	
	3	NO + N2	TCO 10546-2014	4,5	-	5 % OTE.	1,0 %ore .	
	1	N ₂	ГОСТ 9293-74	100	==1	===	v=x	
NO + N ₂ , (0-10) %	2	NO + N2	FCO 10546-2014	5	#	5 % one.	1,0 % on	
	3	NO + N ₂	FCO 10546-2014	9	=:	5 % ODE.	1,0 %ore	
	1	N ₂	FOCT 9293-74	100	-	-	-	
NO + N ₂ , (0-20) %	2	NO + N2	TCO 10323-2013	10,1	=:	5 % отн.	1,0% отн.	
	3	NO + N2	TCO 10323-2013	19	8	5 % OTH.	1,0 % OTH.	

Анализируемый газ, диапазон измерений	Номер	Компонентный состав ПГС	Номер ПГС по Госре- естру, ГОСТ, ТУ	Номинальное зна- чение концентра- пии ПГС		Предолы допускаемо- го отклине-	Пределы до- пускаемой погрешности	
измереник	In C	boolas III C	earpy, roci, 13	%	MITH ⁻¹	ни ПГС,±Д	аттестации, ±2	
			$N_2O + N_2$					
	1	N ₂	FOCT 9293-74	100		-	1-1	
$N_2O + N_2$, $(0-100)$ moun ⁻¹	2	N2O + N2	FCO 10531-2014	0,0050	-	10 % отн.	2,5 % ons .	
	3	$N_2O + N_2$	FCO 10531-2014	0,0095	-	10 % отн.	2,5% отн.	
	1	N ₂	FOCT 9293-74	100	200	20	-	
$N_2O + N_2$, $(0-200)$ muth ⁻¹	2	N2O + N2	FCO 10531-2014	0,010	=	10 % отн.	2,5%он.	
	3	N2O + N2	FCO 10531-2014	0,019	-	10 % ons .	2,5 % orn .	
	1	N ₂	FOCT 9293-74	100		=	(=)	
$N_2O + N_2$, $(0-500)$ mode ⁻¹	2	N2O + N2	FCO 10531-2014	0,025	20	10 % отн.	2,5% отн.	
	3	N2O + N2	FCO 10531-2014	0,045	A01	10 % отн.	2,5% он.	
	1	N ₂	FOCT 9293-74	100	-	=		
$N_2O + N_2$, $(0-1000)$ MOTH ⁻¹	2	N2O + N2	FCO 10531-2014	0,050	==	10 %o m.	2,5 %om .	
	3	N2O + N2	FCO 10531-2014	0,095	D)	10 %orn .	2,5 % ons.	
	1	N ₂	FOCT 9293-74	100	-	-	1-2	
N ₂ O + N ₂ , (0-0,2) %	2	N2O + N2	FCO 10531-2014	0,10	-	10 % отн.	2,5%отн,	
	3	$N_2O + N_2$	FCO 10531-2014	0,18	=	5 % on.	1,5 %om .	
	1	N ₂	FOCT 9293-74	100	D)	-	100	
N ₂ O + N ₂ , (0-0,5) %	2	N2O + N2	FCO 10531-2014	0,25	-	5 % OTH.	1,5 %on .	
	3	N2O + N2	FCO 10531-2014	0,425		5 % отн.	1,5%оты,	
	1	N ₂	FOCT 9293-74	100	=		(m)	
$N_2O + N_2, (0-1)\%$	2	N2O + N2	FCO 10531-2014	0,5	<u> </u>	5 % cms.	1,5 %o n	
	3	$N_2O + N_2$	FCO 10531-2014	0,85	-	5 % cm.	1,5 %on .	
	1	N ₂	FOCT 9293-74	100	-	Her. 2	(=)	
$N_2O + N_2, (0-2)\%$	2	N2O + N2	FCO 10531-2014	1,0	201	5 % OTH.	1,5% отн.	
	3	N2O + N2	FCO 10531-2014	1,7	(2)	5 % cms.	1,0 %orn	
	1	N ₂	FOCT 9293-74	100	=	=	19-26	
N ₂ O + N ₂ , (0-5)%	2	N2O + N2	FCO 10531-2014	2,5	=:	5 % cms.	1,0%om.	
2 22 2	3	N2O + N2	FCO 10531-2014	4,25	70	5 % OTH.	1,0% onu	
	1	N ₂	FOCT 9293-74	100	2	_	_	
$N_2O + N_2$, $(0-10)$ %	2	N2O + N2	FCO 10531-2014	5	-	5 % orn.	1,0 %om .	
	3	N2O + N2	FCO 10531-2014	9	-	5 % cms.	1,0% om.	
	1	No.	FOCT 9293-74	100	-	-		
N ₂ O + N ₂ , (0 – 20) %	2	N ₂ O + N ₂	FCO 10531-2014	10	20	5 % OIR.	1,0 % onu.	
2002/0002/000	3	N:0+N:	FCO 10531-2014	19	=	3 % отн.	0.6% one.	
	1	N ₂	FOCT 9293-74	100	-			
N ₂ O + N ₂ , (0 – 50) %	2	N2O + N2	FCO 10532-2014	25	-	5 % ств.	1%ons	
	3	No+ No	FCO 10532-2014	48	20	5 % отн.	1%om.	
	1	No.	FOCT 9293-74	100	-	-	-	
N2O + N2, (0-100) %	2	N ₀ + N ₂	ГСО 10532-2014	48	-	5 % one.	1% оп.	
4 43.45	3	N ₀ + N ₂	ГСО 10532-2014	97	-	0,5 % orn.	0,2 % om.	

Анализируемый газ, диапазон измерсиий	Номер ПГС	Компонентный состав ПГС	Новер ПГС по Госре- еспру, ГОСТ, ТУ	Номинальное зна- чение концентра- пии ПГС		Пределы допускаемо- то отклоно-	Пределы допускаемой исправности
азморина		COCIABILIC		%	млн-1	нах ПГС,±Д	агтестации, ±Д
			$\mathbf{H}_2\mathbf{S} + \mathbf{N}_2$				
	1	N ₂	ГОСТ 9293-74	100	ж.	-	20 — 32
$H_2S + N_2$, $(0-1)$ %	2	$H_1S + N_2$	FOCT 10546-2014	0,5	-	5 % CIH.	1,5 %on
	3	H ₂ S + N ₂	FOCT 10546-2014	0,9	-	5% cms.	1,5 %on L
	1	N ₂	ГОСТ 9293-74	100	-	-	-
$\mathbf{H}_2 S + \mathbf{N}_2, (0-2)\%$	2	$\mathbf{H}_2S + N_2$	FOCT 10328-2013	1,0	т.	5% OTH.	1,477 % CHL
	3	$\mathbf{H}_{2}S + N_{2}$	FOCT 10328-2013	1,8	500	5 % CTH.	1,440 % онь.
	1	N ₂	ГОСТ 9293-74	100	≥	20	-
$\mathbf{H}_2 S + N_2, (0-5)\%$	2	H ₂ S + N ₂	FOCT 10328-2013	2,5		5% OTH.	1,408 % crist.
	3	$\mathbf{H}_2S + N_2$	ГОСТ 10328-2013	4,5	=	5% cm.	1,316% спы.
	1	N ₂	ГОСТ 9293-74	100	=	8	-
$\mathbf{H}_2S + N_2$, $(0-10)$ %	2	$\mathbf{H}_2\mathbb{S}+\mathbb{N}_2$	ГОСТ 10546-2014	5	-	5% cms.	1,0% OIH.
	3	$\mathbf{H}_2S + \mathbf{N}_2$	ГОСТ 10546-2014	9	-	5 % on.	1,0%он.
	1	N ₂	ГОСТ 9293-74	100	=	=	() - ((
$\mathbf{H}_2 S + N_2, (0-20)\%$	2	H ₂ S + N ₂	FOCT 10546-2014	10	=	5%стн.	1,0 % onu.
	3	$\mathbf{H}_3S + N_2$	ГОСТ 10546-2014	18	20	5 % CIR.	0,6 % oth .
	1	N ₂	ГОСТ 9293-74	100	-	-	-
$H_2S + N_2$, $(0-50)\%$	2	$\mathbf{H}_2\mathbb{S} + \mathbb{N}_2$	FOCT 10328-2013	25		5% CTH.	0,56 % отн.
	3	$\mathbf{H}_2 S + \mathbf{N}_2$	FOCT 10328-2013	45	₽	5 % cm.	0,4 % on s.
	1	N ₂	ГОСТ 9293-74	100	3	3	=
$\mathbf{H}_2 S + N_2, (0-100)\%$	2	H ₂ S + N ₂	FOCT 10328-2013	50	-	5 % cm.	0,36 % отн.
	3	$\mathbf{H}_2S + N_2$	FOCT 10328-2013	90	=	1,5% ons.	0,189 % опн.
			CH ₃ SH + N ₂				
	1	N ₂	TY 2114-004-	100	-	-	-
$CH_3SH + N_2$, $(0-2)$ %	2	CHSH + N ₂	05798345-2009 FCO 10251-2013	1	-	10 % OTEL	3 % ODE.
	3	CHSH+N2	ГСО 10251-2013	1,8	-	10 % OTE.	3% OTH
	Ĭ	N ₂	TY 2114-004-	100	-	-	-
$CH_3SH + N_2$, $(0-5)$ %	2	CHSH+N ₂	05798345-2009	2,5		10% опн.	3 % one.
Onjon - 112, (0 - 5) 70	3	CHSH+N ₂	ГСО 10251-2013	4,5	-	10 % OUR.	3% OTH.
	3	Chican + N2	FCO 10251-2013	4,5	I-	10 76 OUL	3 76 UIAL
		r	NO ₂ + N ₂ TY 2114-004-		1		Ι-
	1	N ₂	05798345-2009	100	=:		
$NO_2 + N_2$, $(0 - 100)$ mater ⁻¹	2	NO ₂ + N ₂	ГСО 10 545-2014	0,0050	ж.	15 % отн.	2 % OTH.
	3	NO ₂ + N ₂	ГСО 10545 -2014	0,0095	-	15% отн.	2 % OTH.
	1	N ₂	TY 2114-004- 05798345-2009	100		-	-
$NO_2 + N_2$, $(0 - 200)$ More ⁻¹	2	NOz+N2	FCO 10545-2014	0,011		10 % OTEL	1,5 %стн.
	3	NO ₂ + N ₂	FCO 10545-2014	0,019	=:	10 % OTH.	1,5 %cns .
	1	N ₂	TY 2114-004-	100	<u> </u>	-	_
$NO_2 + N_2$, $(0 = 250)$ mans ⁻¹	2	NO ₂ + N ₂	05798345-2009		-	****	1,5 % CDH.
	3	NO ₂ + N ₂	TCO 10545-2014	0,012	_	10 % cms.	1,5 % cms.
	-	10% 84	TY 2114-004-	0,025	1501	10 % OHL	1,3.9008
	1	N ₂	05798345-2009	100	-		0.00
$NO_2 + N_2$, $(0 - 500) \text{ MHH}^{-1}$	2	NO ₂ + N ₂	ГСО 10 545-2014	0,025	-	10 % OTH.	1,5 % cnst.
	3	NOz+ Nz	ГСО 10 545-2014	0,045		10 % OTE .	1,5 % спн.
	ĭ	N ₂	TY 2114-004- 05798345-2009	100	_	-	-
$NO_2 + N_2$, (0-1000) MIH	2	NO ₂ + N ₂	FCO 10545-2014	0,050	-	10 % OUR.	1,5%он.
	3	NOr+ No	FCO 10545-2014	0,095	-	10 % one.	1,5%on.

Перечень ПГС для газоанализаторов с термокондуктометрическим измерительным каналом приведён в таблице Б.2

Таблица Б.2

Анализируемый газ, диапазон измерений	№ III°C	Компонент- ный состав ПГС	Номер ГСО-ПГС по Госре- сстру, ГОСТ, ТУ	Номинальное значение объем- ной доли опреде- лясмого компо- нента, % (об.)	Пределы допус- касмого отвло- нении ПГС, ±Д % отн.	Пределы до- пускаемой относительной погрединости ПГС, % отн.
			$H_2 + N_2$		10.00	
	1	N ₂	TOCT 9293-74 (TY 2114-004-05798345-2009)	100	-0	-
$H_2 + N_2$, (0 - 0.5) %	2	$H_2 + N_2$	TCO 10259 2013	0,25	10	2,125
K9-2	3	H ₂ + N ₂	TCO 10259-2013	0,45	10	1,625
	1	N ₂	FOCT 9293-74	100	-,	-
$H_2 + N_2$,	2	$H_2 + N_2$	ΓCO 10259-2013	0,5	5	1,5
(0-1)%	3	$H_2 + N_2$	TCO 10259-2013	0,9	5	1,48
	1	N ₂	FOCT 9293-74	100		-
$H_2 + N_2$,	2	$H_2 + N_2$	PCO 10531-2014	1,05	5	1
(0-2) %	3	H ₂ + N ₂	FCO 10531-2014	1,8	5	1
	1	N ₂	FOCT 9293-74	100	-0.	-
$H_2 + N_2$,	2	$H_2 + N_2$	PCO 10531-2014	1,5	5	1
(0-3)%	3	$H_2 + N_2$	PCO 10531-2014	2,85	5	1
	1	N ₂	FOCT 9293-74	100	-	-
H ₂ + N ₂ ,	2	$H_2 + N_2$	ГСО 10531-2014	2,5	5	1
(0-5)%	3	$H_2 + N_2$	ГСО 10531-2014	4,9	5	1
	1	N ₂	FOCT 9293-74	100		-
H ₂ + N ₂ , (0 – 10) %	2	$H_2 + N_2$	TCO 10831-2014	5,0	5	1
	3	$H_2 + N_2$	ГСО 10531-2014	9,8	5	1
H ₂ + N ₂ ,	1	N ₂	FOCT 9293-74	100	-//	-
(0-20)%	2	$H_2 + N_2$	TCO 10531-2014	10,5	3	0,6
	3	$H_2 + N_2$	FCO 10531-2014	18	3	0,6
erioria francisco	1	N ₂	FOCT 9293-74	100		+
H ₂ + N ₂ , (0 - 40) %	2	$H_2 + N_2$	TCO 10259-2013	20.	5	0,759
(0 - 40) 70	3	$H_2 + N_2$	TCO 10259-2013	36	5	0,472
KONS MAKANA	1	N ₂	FOCT 9293-74	100	-8	=
H ₂ + N ₂ , (0 - 60) %,	2	$H_2 + N_2$	TCO 10259-2013	30	5	0,52
(0 – 00) 74,	3	$H_2 + N_2$	ГСО 10259-2013	54	5	0,328
and the second	1	N ₂	FOCT 9293-74	100	-0	=
H ₂ + N ₂ , (0 - 80) %	2	$H_2 + N_2$	TCO 10259-2013	40	5	0,44
(a adj in	3	$H_2 + N_2$	TCO 10259-2013	72	5	0,193
and the second	1	N ₂	FOCT 9293-74	100	-	9
H ₂ + N ₂ , (0 - 100) %	2	$H^{5} + M^{5}$	TCO 10259-2013	50	5	0,44
(5 200) 70	3	$H_2 + N_2$	TCO 10259-2013	90	1,5	0,193
	1	$H_2 + N_2$	FCO 10259-2013	41	5	0,432
H ₂ + N ₂ , (40 - 60) %	2	$H_2 + N_2$	TCO 10259-2013	50	5	0,36
,,	3	$H_2 + N_2$	ГСО 10259-2013	57	5	0,304
	1	$H_2 + N_2$	ГСО 10259-2013	42	5	0,424
H ₂ + N ₂ , (40 - 80) %	2	$H_3 + N_2$	I'CO 10259-2013	60	3	0,28
(10 00) 70	3	$H_2 + N_2$	TCO 10259-2013	76	1,5	0,178

Анвлизируемый газ, диапазон измерений	III.C Wa	Компонент- ный состав ПГС	Номер ГСО-ПГС по Госре- естру, ГОСТ, ТУ	Номинальное значение объем- ной доли опре- деляемого ком- понента, % (об.)	Пределы до- пускаемого сткинения ПГС, ±Д % отн.	Пределы допус- касмой относи- тельной по- грешности ПГС, % отн.
	1	$H_2 + N_2$	ΓCO 10259-2013	53	5	0,336
(50 – 80) % H ₂ + N ₂ , (60 – 80) %	2	$H_2 + N_2$	ΓCO 10259-2013	65	5	0,24
	3	$H_2 + N_2$	ГСО 10259-2013	76	1,5	0,178
	1	$H_2 + N_2$	ΓCO 10259-2013	61	5	0,272
	2	$H_2 + N_2$	ГСО 10259-2013	70	5	0,2
	3	$H_2 + N_2$	ΓCO 10259-2013	76	1,5	0,178
H ₂ + N ₂ , (50-100)%	1	$H_2 + N_2$	ГСО 10259-2013	53	5	0,336
	2	$H_2 + N_2$	ГСО 10259-2013	75	5	0,160
	3	$H_2 + N_2$	ГСО 10259-2013	95	1,5	0,1
H ₂ + N ₂ , (60-100)%	2	$H_2 + N_2$	ГСО 10259-2013	61	5	0,272
	3	$H_2 + N_2$	ГСО 10259-2013	75	1,5	0,160
	1	$H_2 + N_2$	ΓCO 10259-2013	95	1,5	0,1
	1	$H_2 + N_2$	ΓCO 10259-2013	81	1,5	0,159
H ₂ + N ₂ , (80-100)%	2	$H_2 + N_2$	ΓCO 10259-2013	90	1,5	0,126
(00-100) / 0	3	H ₂	ГСО 10259-2013	99,5	-	-
	1	$H_2 + N_2$	ΓCO 10531-2014	91	0,5	0,1
H ₂ + N ₂ , (90-100)%	2	$H_2 + N_2$	ΓCO 10259-2013	95	5	0,1
	3	H ₂	ΓCO 10259-2013	99,5	-	-
	1	$H_2 + N_2$	TCO 10530-2014	95,5	0,5	0,04
H ₀ + N ₂ ,	2	$H_2 + N_2$	ГСО 10530-2014	97,5	0,5	0,04
(95-100)%	3	H ₂	ΓCO 10259-2013	99,5	-	-
	1	$H_2 + N_2$	TCO 10530-2014	99,1	0,05	0,008
H ₂ + N ₂ ,	2	$H_2 + N_2$	TCO 10530-2014	99,5	0,05	0,008
(99-100)%	3	H ₂ + N ₂	ГСО 10530-2014	99,9	0,05	0,008

Анализируе- мый газ, див- пазон измере- ний	Æ EEC	Компонентный состав ПГС	Номер ГСО-ПГС по Госре- естру, ГОСТ, ТУ	Номинальное значение объем- ной доли опре- деляемого ком- понента, % (об.)	Пределы до- пускаемого отклюнения ПГС, +Д % отн.	Пределы допус- каемой относи- тельной по- грапичести ПГС, % отн.
		ALC.	Н ₂ + воздух			alls
H_2 + воздух,	1	H ₂ + Ar +	PCO 10531-2014	0,1 0.93	5	1,5 1,5
(0-1) %		воздух синт,	1 CO 10331-2014	остальное	0.	1,3
	2	H ₂ +	PCO 10531-2014	0,5	5	1,5
		Ar+	100 10531-2014	0,93	5	1,5
	3	воздух синт. Н ₂ +		останьное 0.9	5	1,5
	1	Ar+	ГСО 10531-2014	0,93	5	1,5
		воздух синт.		останьное		
H ₂ + воздух,	1	H ₂ + Ar +	ΓCO 10531-2014	0,2 0,93	5	1,5 1
(0-2) %		воздух синт.	100 10331 2014	остальное	-	
	2	H ₂ +	ΓCO 10531-2014	1,0	5	1
		Аг+ воздух синг.	1 CO 10531-2014	0,93 оста ньное	5	1
3	3	На +		1,8	5	1
		Ar+	ΓCO 10531-2014	0,93	5	i
		воздух синт.		останьное		
	T 1	CO:	H ₂ + CO ₂	100	_	т -
H ₂ +CO ₂ , (0-1) %	2	H ₂ + CO ₂	ΓCO 10330-2014	0,51	- 5	1,5
	3	H ₂ +CO ₂	ΓCO 10330-2014 ΓCO 10330-2014	0,95	5	1,48
	ATTENDED	H ₂ +CO ₂	ΓOCT 8050-85	0,95	2	1,48
	1 2	H ₂ +CO ₂	ΓCO 10531-2014	****	- 5	1
$H_2 + CO_2$,	3		CAST TITLE OF THE SECOND STATE OF THE SECOND S	1	5	1
(0-2) %	1000	H ₂ + CO ₂	ГСО 10531-2014	1,9		
	1	CO ₂	FOCT 8050-85	100	=	-
$H_2 + CO_2$,	2	H ₂ + CO ₂	ГСО 10531-2014	1,5	5	1
(0-3) %	3	H ₂ + CO ₂	ΓCO 10531-2014	2,9	5	1
	1	CO ₂	FOCT 8050-85	100	-	-
$\mathbf{H}_2 + \mathbf{CO}_2$	2	H ₂ + CO ₂	ΓCO 10531-2014	2,5	5	1
(0-5)%	3	H ₂ + CO ₂	ΓCO 10531-2014	4,9	5	1
	1	CO ₂	FOCT 8050-85	100	-	
H2+CO2,	2	H ₂ + CO ₂	ΓCO 10531-2014	5,0	5	1
(0-10)%	3	H ₂ + CO ₂	PCO 10531-2014	9,8	5	1
	1	CO2	FOCT 8050-85	100	_	-
$H_2 + CO_2$,	2	H ₂ + CO ₂	ΓCO 10330-2014	10	5	1,063
(0-20)%	3	H ₂ + CO ₂	ΓCO 10330-2014	18,5	5	0,672
	1	CO ₂	FOCT 8050-85	100	-	-
H ₂ + CO ₂ ,	2	H ₂ + CO ₂	ГСО 10330-2014	20	5	0,603
(0 - 40) %	3	H ₂ + CO ₂	ГСО 10330-2014	38,5	5	0,452
	1	CO2	FOCT 8050-85	100	-	-
H2 + CO2.	2	H ₂ + CO ₂	ГСО 10330-2014	30	5	0,52
(0 - 60) %	3	H2 + CO2	ΓCO 10330-2014	57	5	0.304
(- 00) is	1	CO	FOCT 8050-85	100		-
H ₂ +CO ₂ ,	2	H ₂ +CO ₂	ΓCO 10330-2014	40	5	0,44
(0 - 80) %	3	n ₂ + co ₂	1 CO 10330-2014	40	200	0,44
(5 00) 70	3	H ₂ + CO ₂	ГСО 10330-2014	75	5	0,16

Анализируе- мый газ, диапазон измерений	Me HI'C	Компонентный состав ПГС	Номер ГСО-ПГС по Госре- естру, ГОСТ, ТУ	Номинальное значение объем- ной доли опре- деляемого ком- понента, % (об.)	Пределы до- пускаемого отклонения ПГС, ±Д % отн.	Пределы допус- касмой относи- тельной по- грешности ПГС, % отн.
	1	CO ₂	ГОСТ 8050-85	100	=:	_
$H_2 + CO_2$, (0 - 100) %	2	H ₂ + CO ₂	ГСО 10330-2014	50	5	0,36
(0 - 100) 58	3	H ₂ + CO ₂	ΓCO 10330-2014	95	1,5	0,1075
	1	H ₂ + CO ₂	ΓCO 10330-2014	52	5	0,344
H ₂ + CO ₂ , (50 – 100) %	2	H ₂ + CO ₂	ΓCO 10330-2014	75	1,5	0,1815
(50-100) /6	3	H ₂ + CO ₂	ΓCO 10330-2014	99,5	0,5	0,1
	1	H ₂ + CO ₂	ΓCO 10330-2014	62	5	0,264
H ₂ + CO ₂ , (60 – 100) %	2	H ₂ + CO ₂	ГСО 10330-2014	80	1,5	0,163
(00-100) 78	3	H ₂ + CO ₂	ΓCO 10330-2014	99,5	0,5	0,1
	1	H ₂ + CO ₂	ΓCO 10330-2014	81	1,5	0,159
H ₂ + CO ₂ , (80 - 100) %	2	H ₂ + CO ₂	ГСО 10330-2014	90	1,5	0,126
(00-100) /4	3	H ₂ + CO ₂	ГСО 10330-2014	99,5	0,5	0,1
	1	H2+CO2	ГСО 10531-2014	91	0,5	0,1
H ₂ +CO ₂ , (90-100) %	2	H ₂ + CO ₂	ΓCO 10531-2014	95	0,5	0,1
(90-100) 98	3	H ₂ + CO ₂	ΓCO 10531-2014	99.5	0,05	0.02
	1	CO ₂ + H ₂	9742-2011	4.5	0,5 % a6c.	0.8
$H_2 + CO_2$,	2	CO2+ H2	9742-2011	3,0	0,2 % affc.	0,8
(95-100) %	3	H ₂	ΓCO 10259-2013	99.5	0,2 70 800.	
] 3] N2	Не + вездух	99,3		
	1	He	110 . 2004) 2	0,3	5	1,5
1 Не+возлух.	ä	Ar	PCO 10531-2014	0,93	5	1,5
		воздух синт.	TENNOCOCHO (POR DE DE CONSERIE)	OCT.		
		He	Dog cores core	2,5	5	1
(0-5) %	2	Аг воздух синт.	PCO 10531-2014	0,92 oct.	2	1,5
		He		4,7	5	1
	3	Ar	PCO 10531-2014	0,90	5	1,5
	1	воздух синт. Не		0.6	5	1,5
	1	Ar	ГСО 10531-2014	0,93	5	1,5
		воздух синт.		OCT.	(2)	
Не+воздух,	2	He Ar	ГСО 10531-2014	5,0 0,90	5 5	1 1,5
(0-10)%		воздух синт.	100 10331 2011	OCT.	(6)	35
		He	PCO 10531-2014	9,4	5	1
	3	Аг воздух синт.	10531-2014	0,87 oct.		1,5
		He		5	5	1
	1	Ar	ГСО 10531-2014	0,90	5	1,5
Не+воздух,	_	вездух синт. Не		ост. 50	3	0,2
(0-100)%	2	Ar	PCO 10531-2014	0,55	5	1,5
Marie Strong Colors		воздух синт.		OCT.	(4)	
	3	Не + воздух синт.	PCO 10531-2014	99	0,05	0,02
	_	Не + Воздух	ΓCO 10531-2014	90,4	0,5	0,10
			1 CO 10331-2014	90,4	.0,5	.0,10
	1	синтетический				
	2	Не + Воздух	ΓCO 10531-2014	95,0	0,5	0,10
	2	Не + Воздух синтетический Не + Воздух			- 10	+
	_	Не + Воздух синтетический Не + Воздух синтетический	ΓCO 10531-2014 ΓCO 10531-2014	95,0 99,9	0,5	0,10
	2	Не + Воздух синтегический Не + Воздух синтегический Не + Воздух			- 10	+
(90-100)%	3	Не + Воздух синтетический Не + Воздух синтетический Не + Воздух синтетический	ГСО 10531-2014 ГСО 10531-2014	99,9 95,2	0,05	0.02
He + nosnyx, (30 - 100) % He + nosnyx, (35 - 100) %	3	Не + Воздух синтегический Не + Воздух синтегический Не + Воздух	PCO 10531-2014	99,9	0,05	0.02

Анализируе- мый газ, диа- пазон измере- ний	№ III'C	Компонентный состав ПГС	Номер ГСО-ПГС по Госре- естру, ГОСТ, ТУ	Номинальное значение объемной доли определяемого компонента, % (об.)	Пределы до- пускаемого отклюнения ПГС, ±Д % отн.	Пределы допус- каемой относи- тепьной по- гращности ПГС, % отн.
			SO ₂ + N ₂			L
SO ₂ +N ₂	11	N ₂	TOCT 9293-74 (TY 2114-004- 05798345-2009)	100	-	-
(0-10)%	2	SO2+ N2	PCO 10545-2014	5	4	0,4
	3	$SO_2 + N_2$	ГСО 10545-2014	9,7	4	0,4
	1	N ₂	ГОСТ 9293-74 (ТУ 2114-004-	100	-	=
SO ₂ +N ₂ (0-20)%	2	SO ₁ + N ₂	05798345-2009) FCO 10342-2013	10	5	1.063
(0-20) / 8	3	SO: + N:	TCO 10342-2013	19	5	0.649
	-		SO ₂ + воздух			
		SO ₂	200 000 000	1,0	7	1
	1	Аг воздух синт.	ΓCO 10537-2014	0,93 oct.	7	1,5
SO ₂ + BORNX	_	SO ₂	700 1000	5,0	7	1
(0-10)%	2	Аг воздух синт.	TCO 10537-2014	0,88 oc r.	7	1,5
	3	SO ₁	TCO 10537-2014	9,0 0,84	7	1 1,5
	3	воздух синт.	100 10537-2014	0,84 OCT.	7	1,5
	i	SO ₂ Ar	TCO 10537-2014	1,0 0.93	7	1 1,5
SO ₂ + BORDYX (0-20)%		воздух синт.	10010337-2014	OCT.		100
	2	SO ₂ Ar	TCO 10537-2014	10,0 0,84	7	0,6 1,5
		воздух синт.	100 10337-2014	OCT.	~	
	3	SO ₂ Ar	TCO 10537-2014	18,5 0,75	5 7	0,6 1,5
		воздух синт.		OCT.		
	Ι.	T.,	CO ₂ + N ₂ FOCT 9293-74	***		T
$CO_2 + N_2$	1	N ₂	(TY 2114-004-05798345-2009)	100		_
(0-10)%	2	CO ₂ + N ₂	PCO 10241-2013	5	5	1,293
	3	CO ₂ + N ₂	PCO 10241-2013	9,5	5	1,086
$CO_2 + N_2$	1	N ₂	TOCT 9293-74 (TY 2114-004-05798345-2009)	100	=	-
(0-20)%	2	$CO_2 + N_2$	ГСО 10241-2013	10	5	0,1063
	3	CO ₂ + N ₂	PCO 10241-2013	19	5	0,649
	1	N ₂	TOCT 9293-74 (TY 2114-004-05798345-2009)	100		-
CO ₂ +N ₂ (0-30)%	2	CO ₂ + N ₂	PCO 10241-2013	15	5	0,833.
	3	CO ₂ + N ₂	PCO 10241-2013	28	5	0,536
	1	N ₂	ГОСТ 9293-74	100		
CO ₂ +N ₂	2	CO ₂ + N ₂	(TY 2114-004-05798345-2009)	20	5	0,603
(0-40)%	3	CO ₂ + N ₂	PCO 10241-2013 PCO 10241-2013	20.	5	0,003
		CO ₂ + N ₂	PCO 10241-2013	53	5	0,336
CO ₂ +N ₂	2	CO ₂ + N ₂	PCO 10241-2013	53 75	1,5	0,1815
(50-100)%	3	CO ₂ + N ₂	PCO 10241-2013	75 97	1,5	0,1615
	1	CO ₂ + N ₂	rco 10241-2013	82	1,5	0,1556
$CO_2 + N_2$	2	CO ₂ + N ₂	PCO 10241-2013	90	1,5	0,126
(80-100)%	3	CO ₂ + N ₂	PCO 10241-2013	10001	0,5	0,120
	1	CO ₂ + N ₂	PCO 10241-2013	99,5 91	1,5	0,1223
		(5.00.000.000.000.000.000.000.000.000.00				
CO ₂ +N ₂ (90-100)%	2	CO ₂ + N ₂	rco 10241-2013	95	1,5	0.1075

Анализируе- мый газ, диапазон изме- рений	Xe III°C	Компонентный состав ПГС	Номер ГСО-ПГС по Госре- естру, ГОСТ, ТУ	Номинальное значение объем- ной доли опреде- ляемого компо- нента, % (об.)	Пределы до- пускаемого отклонения ПГС, ±Д % отн.	Пределы допус- квемой относи- тельной по- гращности ПГС, % отн.
		1	CH ₄ + N ₂			dis
CH4+N2	1	N ₂	FOCT 9293-74 (TY 2114-004- 05798345-2009)	100		-
(0-100)%	2	CH ₄ + N ₂	PCO 10256-2013	50	5	0,36
	3	CH ₄ + N ₂	ГСО 10256-2013	99,5	0,5	0,1
			He + N ₂			
*******	1	N ₂	TOCT 9293-74 (TY 2114-004- 05798345-2009)	100	=	=
He+N ₂ (0-2)%	2	He + N ₁	TCO 10324-2013	1	5	1,477
(6 2)/10	3	He + N ₂	PCO 10324-2013	1.8	5	1,44
	ì	N ₂	FOCT 9293-74	100	-	_
He+N ₂	2	He + N ₁	(TY 2114-004-05798345-2009)	10.000	5	1,68
(0-5)%	3	He + No	ГСО 10324-2013 ГСО 10324-2013	2,5	5	13
	100		FOCT 9293-74	4,5		10
He+No	1	N ₂	(TY 2114-004-05798345-2009)	100	E)	
(0-10)%	1040.	He + N ₂	PCO 10531-2014	5,0	5	1
	3	He + N ₂	PCO 10531-2014	9,5	5	1
****	1	N ₂	TOCT 9293-74 (TY 2114-004-05798345-2009)	100	=:	-
He+N ₂ (0-20)%	2	He + N ₂	PCO 10324-2013	10	5	1,06
(4. 14.)	3	He + N ₂	TCO 10324-2013	18	5	0,69
	ì	N ₂	FOCT 9293-74	100	_	_
He+N ₂	2	He + N ₁	(TY 2114-004-05798345-2009)	13000	5	0,6
(0-40)%	3	He + No	PCO 10324-2013	20	5	0,472
	-	-	ГСО 10324-2013 ГОСТ 9293-74	36		-
He+N ₂	1	N ₂	TY 2114-004-05798345-2009)	100	=	_
(0-100)%	2	He + N ₂	ГСО 10324-2013	50	5	0,36
	3	He + N ₂	ГСО 10324-2013	90	1,5	0,126
TTOTAL	1	He + N ₂	PCO 10324-2013	62	5	0,264
He+N ₂ (60-100)%	2	He + N ₂	PCO 10324-2013	80	1,5	0,163
(c) 1112/11	3	He + N ₂	PCO 10324-2013	95	1,5	0,1075
	1	Hc + N ₂	PCO 10324-2013	81	1,5	0,1593
He+N ₂ (80-100)%	2	He + N ₂	ГСО 10324-2013	90	1,5	0,126
7- 200/10	3	He + N ₂	PCO 10324-2013	99,5	0,5	0,1
	ì	He + N ₂	PCO 10324-2013	90,5	0,5	0,124
He+N ₂ (90-100)%	2	He + N ₂	ГСО 10324 -2013	95,0	1,5	0,1075
Ç-200,70	3	He + N ₂	PCO 10324-2013	99,5	0,5	0,1
0925	1	He + N ₂	ГСО 10324 -2013	95,5	1,5	0,1
He+N ₂ (95-100)%	2	He + N ₂	ГСО 10324 -2013	97,5	0,5	0,1
V2 .100) 10	3	He + N ₂	TCO 10324-2013	99,5	0,5	0,1

Анализируе- мый газ, диапазон изме- рений	III.C	Компонентный состав ПГС	Номер ГСО-ПГС по Госре- естру, ГОСТ, ТУ	Номинальное значение объем- ной доле опре- деляемого ком- понента, % (об.)	Пределы до- пускаемого отклонения ПГС, ±Д % отн.	Предены допус- каемой относи- тепьной по- грешнести ПГС, % отн.
		·	$Ar + N_2$			T
$Ar + N_2$	1	N ₂	POCT 9293-74 (TY 2114-004- 05798345-2009)	100	===	100
(0-10)%	2	$Ar + N_2$	PCO 10320-2013	5	5	1,293
	3	$Ar + N_2$	PCO 10320-2013	9,5	5	1,086
Ar +N ₂	i	N ₂	TOCT 9293-74 (TY 2114-004- 05798345-2009)	100	-	=
(0-20)%	2	$Ar + N_2$	PCO 10320-2013	10	5	1,063
	3	$Ar + N_2$	PCO 10320-2013	19	5	0,649
Ar + N ₂	1	N ₂	FOCT 9293-74 (TY 2114-004- 05798345-2009)	100	-	=
(0-40)%	2	$Ar + N_2$	PCO 10320-2013	20	5	0,603
	3	$Ar + N_2$	PCO 10320-2013	36	5	0,472
Ar +N ₂	1	N ₂	FOCT 9293-74 (TY 2114-004- 05798345-2009)	100		-
(0-100)% 2	2	$Ar + N_2$	PCO 10320-2013	50	5	0,36
	3	$Ar + N_2$	PCO 10320-2013	99,5	0,5	0,1
Ar +N ₂ 2 2 3	1	$Ar + N_2$	PCO 10320-2013	65	5	0,24
	2	$Ar + N_2$	PCO 10320-2013	80	1,5	0,126
	3	$Ar + N_2$	PCO 10320-2013	99,5	0,5	0,1
	1	$Ar + N_2$	PCO 10320-2013	82	1,5	0,1556
Ar + N ₂ (80-100)%	2	Ar + N ₂	PCO 10320-2013	90	1,5	0,126
(00-100)78	3	$Ar + N_2$	PCO 10320-2013	99,5	0,5	0,1
			Ar + H ₂	7,000,000	-00M-07	
Ar +H	1	Hz+ Ar	TCO 10259-2013	3	5	1,385
(97–100)%	2	H ₂ + Ar	Γ CO 10259-2013	1,5	5	1,454
	3	Ar+H ₂	TCO 10259-2013	99,5	0.5	0.1
		La	Аг + воздух синтегичес	Kuŭ		T
Аг + воздух син-	1	Воздух синтеги- ческий	TY 2114-008-53373468-2008	100	20	=
теляческий (0 — 20) %	2	Аг + воздух син- тепический	TCO 10531-2014	10	5	1
Ç,	3	Аг + воздух син- тетический	TCO 10531-2014	18	3	0,6
Ar + вожнух ски-	1	Воздух сиптети-	TY 2114-008-53373468-2008	100	-	-
тетический (0 – 40)%	2	Аг + воздух син- тетический	TCO 10531-2014	20	3	0,6
(v=40)%	3	Аг + воздух син- тетический	TCO 10531-2014	38	3	0,4
Ar + nonevx	1	Аг + воздух син- тетический	TOO 10531-2014	62	3	0,2
синтепический	2	Аг + воздух сип-	TCO 10531-2014	80	2	0.15
(60 – 100)%	2	тетический	100 1001 2011	80		0,10

Анализируе- мый газ, диа- пазон измере- ний	№ III'C	Компонентный состав ПГС	Номер ГСО-ПГС по Госре- естру, ГОСТ, ТУ	Номинальное значение объем- ной доли опре- деляемого ком- понента, % (об.)	Предель допускаемого отклюнения ПГС, ±Д % отн.	Пределы допус- каемой относи- тепьной по- грешности ПГС, % отн.
	_	l.	Ar + O ₂			
Ar +O	1	O ₂	rco 10380-2013	99,9	-	-
(0-20)%	100.00	Ar + O ₂	ГСО 10320-2013	10.	5	1,063
	3	Ar + O ₂	PCO 10320-2013	19	5	0,649
Ar + O ₂	1	O ₂	TY 6-21-10-83	100		=
(0-40)%	2	Ar + O ₂	TCO 10320-2013	20	5	0,603
	3	Ar + O ₂	ГСО 10320-2013	38	5	0,456
Ar +O	1	Ar + O ₂	ΓCO 10531-2014	60,5	2	0,2
(60 – 100)%	2	Ar + O ₂	ΓCO 10531-2014	80	1	0,15
**************************************	3	He	ГСО 10324 -2013	99,9	_	-
	1	Le	H ₂ + O ₂			T.
H ₂ +O ₃	1	O ₂	PCO 10380-2013	99,9	_	
(0-2)%	2	H ₂ + O ₂	PCO 10380-2013	1	5	1,5
	3	H ₂ + O ₂	PCO 10380-2013	1,9	5	1,5
	Τ.	H ₂	O ₂ + H ₂ CO 10381-2013			Т
O ₂ + H ₂ (0-1)%	2	H ₂ +O ₂		99,9	10	1.5
	3	H ₂ + O ₂	rco 10381-2013	0,5	5	15
	1-	1 n ₂ + O ₂	ΓCO 10381-2013 H ₂ + Ar	0,9	,	1,0
	T ₁	Ar	Π ₂ + AΓ ΓCO 10259-2013	99,9	_	Т _
$H_2 + Ar$	2	H ₂ + Ar	TCO 10259-2013	1	5	1,477
(0-2)%	3	H ₂+ Ar	TCO 10259-2013	1,9	.5	1,4356
	1	Ar	TCO 10259-2013	99,9	_	-
$H_2 + Ar$	2	H ₂ + Ar	TCO 10259-2013	2,5	5	1,408
(0-5)%	3	H ₂ + Ar	TCO 10259-2013	4.8	5	1.302
		100-000	He+Ar	7,0		
	1	Ar	PCO 10259-2013	99,9	20	-
He+ Ar	2	He + Ar	PCO 10324-2013	15	5	0,833
(0-30)%	3	He + Ar	PCO 10324-2013	27	5	0,544
37	1	Ar	TCO 10259-2013	99,9		-
He+Ar	2	He + Ar	PCO 10324-2013	20	5	0,603
0-40)%	3	He + Ar	TCO 10324-2013	36	5	0,472
(v=-sv) ×0	1	He + Ar	30347 (SSN-1204-070)	11	5	1.017
***	2	He+Ar	ГСО 10324-2013	17	5	0.741
He+Ar	3	He+Ar	ГСО 10324-2013	0420	5	0,741
(10-25)%	,	C2400 300	PCO 10324-2013	23	15.	1000000
	1	He + Ar	PCO 10324-2013	82	1,5	0,1556
He+ Ar	2	He + Ar	PCO 10324-2013	95	1,5	0,1075
(80-100)%	3	He + Ar	PCO 10324-2013	99,5	0,5	0,1

Анализируе- мый газ, диапазон изме- рений	Xe III'C	Компонентный состав ПГС	Номер ГСО-ПГС по Госре- естру, ГОСТ, ТУ	Номинальное значение объем- ной доли опре- деляемого ком- понента, % (об.)	Пределы до- пускаемого отклонения ПГС, ±Д % отн.	Пределы допус- каемой относи- тепьной по- грешности ПГС, % отн.
			H ₂ +HCl			
	1	$\mathbf{H}_2 + \mathbf{H}Cl$	PCO 10546-2014	0,1	10	1,5
H ₂ + HCl 2 H ₂ +	$\mathbf{H}_2 + \mathbf{H}\mathbb{C}1$	ГСО 10546-2014	5	5	1	
(0 10)10	3	$\mathbf{H}_2 + \mathbf{H}Cl$	ГСО 10546-2014	9,8	5	1
			$\mathbf{H}_2 + \mathbf{NH}_3$			
	1	NH3	ГОСТ 6221-90	100	_	-
$\mathbf{H}_2 + \mathbf{N}\mathbf{H}_3$,	2	$\mathbf{H}_2 + \mathrm{NH}_3$	ГСО 10546-2014	0,5	5	1,5
(0-1)%	3	$\mathbf{H}_2 + \mathrm{NH}_3$	ГСО 10546-2014	0,9	5	1,5
			N ₂ + H e			
	1	N ₂ + H e	PCO 10254-2013	5	5	1,29
N2 + He,	2	N ₂ + He	ΓCO 10254-2013	50	5	0,36
(0-100)%		N ₂ + He	TCO 10254-2013	95	1,5	0,11

Примечание

^{1.} Воздух синтетический – это смесь 20,9% кислорода и 79,1% азота.

Перечень ПГС для газоанализаторов с термомагнитным измерительным каналом приведён в таблице Б.3 Таблица Б.3

Анализируемый газ, днапазон	Номер	Компонент-	Номер ПГС по Госресстру,	Номина значени центраг		Пределы допускае- мого от-	Пределы допускаемой погрешности	
измерений	шс	IIIC	FOCT, TY	% млн-1		клонения ПГС, ±Д % отн	аттестации, ±∆	
	1	N ₂	O ₂ + N ₂	100	Τ_			
O ₂ +N ₂ , (0 - 1) %	2	N ₂ O ₂ + N ₂	ГОСТ 9293-74	0,5	13	5	1,5 % orn.	
U 2+N2, (0 − 1) 70	3	O ₂ + N ₂	TCO 10253-2013	0,95	-	5	1,479 % one.	
	1	N ₂ + N ₂	TCO 10253-2013	100	1	5	1,479 % OTH.	
$O_0 + N_0$, $(0-2)$ %	2	O ₂ + N ₂	FOCT 9293-74	1,00,000	1=	5	1,477 % cm.	
$O_2 + N_2$, $(0 - 2)$ %	3		ГСО 10253-2013	1			0.6.000-0.000-0.000	
		O ₂ + N ₂	TCO 10253-2013	1,8	-	5	1,440 % отн.	
2 100 101 1010	1	N ₂	ГОСТ 9293-74		=:	-8	-	
O ₂ +N ₂ , (0 – 5) %	2	$O_2 + N_2$	TCO 10253-2013	2,5	-	5	1,408 % отн.	
	3	$O_2 + N_2$	TCO 10253-2013	4,8		5	1,302 % отн.	
	1	N_2	FOCT 9293 -74	100		=0	.=	
O ₂ +N ₂ , (0 – 10) %	2	$O_2 + N_2$	ΓCO 10253-2013	5		5	1,293 % отн.	
	3	$O_2 + N_2$	ГСО 10253-2013	9,8		5	1,07 % стн.	
Const. Mar. Mar.	1	N_2	ΓΟCT 9293-74	100	-	=0	_	
O ₂ +N ₂ , (0 – 20) %,	2	$O_2 + N_2$	TCO 10253-2013	10	-	5	1,06 % отн.	
	3	$O_2 + N_2$	ΓCO 10253-2013	19		5	0,649 % отн.	
	1	N_2	ГОСТ 9293-74	100	-:	:	_	
O2+N2, (0-25) %	2	$O_2 + N_2$	TCO 10253-2013	12,5	-	5	0,948 % отн.	
	3	$O_2 + N_2$	TCO 10253-2013	23		5	0,576 % отн.	
	1	N_2	ГОСТ 9293-74	100	-		(-	
O ₂ +N ₂ , (0 - 50) %	2	$O_2 + N_2$	TCO 10253-2013	25	-,	5	0,56 % сти.	
	3	$O_2 + N_2$	ГСО 10253-2013	48	-	5	0,376 % отн.	
	1	N_2	ГОСТ 9293-74	100	-	-1		
O ₂ +N ₂ , (0 – 100) %	2	$O_2 + N_2$	TCO 10253-2013	50	-,:	5	0,36 % отн.	
	3	$O_2 + N_2$	TCO 10253-2013	98	=:	0,5	0,1 % отн.	
	1	$O_2 + N_2$	TCO 10253-2013	15,5	-	5	0,81 % отн.	
O ₂ +N ₂ , (15 – 25) %	2	$O_2 + N_2$	FCO 10253-2013	20		5	0,603 % отн.	
	3	O ₂ + N ₂	PCO 10253-2013	24	-	5	0,568 % отн.	
	1	$O_2 + N_2$	TCO 10253-2013	21	-	5	0,592 % отн.	
O ₂ +N ₂ , (20 – 80) %	2	$O_2 + N_2$	TCO 10253-2013	50	-	5	0,36 % отп.	
	3	$O_2 + N_2$	FCO 10253-2013	78	-	1,5	0.17 % отн.	
	1	$O_2 + N_2$	FCO 10253-2013	52	-	5	0,344 % отн.	
O ₂ +N ₂ , (50 - 100) %	2	O ₂ + N ₂	TCO 10253-2013	75	-	1,5	0,18 % отн.	
2 10 2 1	3	$O_2 + N_2$	TCO 10253-2013	98	=	0,5	0,1 % отн.	
	1	$O_1 + N_2$	TCO 10253-2013	82	-	1,5	0,156 % отн.	
O ₂ +N ₂ , (80 – 100) %	2	O ₂ + N ₂	TCO 10253-2013	90		1.5	0.126 % отн.	
4 6 7	3	O ₂ + N ₂	TCO 10253-2013	98	-	0,5	0,1 % оти.	
	1	O ₂ + N ₂	TCO 10253-2013	91	-	1,5	0,122 % стн.	
O ₂ +N ₂ , (90 – 100) %	2	O ₂ + N ₂	TCO 10253-2013	95		0.5	0.107 % отн.	
-420-4	3	0, 11,	TY621-10-83	100		-		

Анализируемый газ, диапазон	Намер	Компонент-	Номер ПГС по Госресстру,	Номинальное значение кон- центрации ПГС		Пределы допус- каемого	Пределы до- пускаемой
измерений	шс	IIIC	гост, ту	%	MODE ⁻¹	откло- нения ПГС, ±Д	погрешности аттестации, ±Δ
	1	$O_2 + N_2$	FCO 10253-2013	96	-	1,5	0,104 % отн.
O ₂ +N ₂ , (95 - 100) %	2	$O_2 + N_2$	FCO 10253-2013	97,5	-	0,5	0,1 % отн.
	3	O ₂	TY6-21-10-83	100	-	-	-
	1	$O_2 + N_2$	TCO 10253-2013	98,5	-	0,5	0,1 % отн.
O ₂ +N ₂ , (98 – 100) %	2	$O_2 + N_2$	TCO 10253-2013	99,5	-	0,5	0,1 % отн.
	3	O ₂	TY6-21-10-83	100	-	-	-

Изготовители и поставщики стандартных образцов состава газовых смесей должны иметь прослеживаемость к государственному первичному эталону единиц молярной доли и массовой концентрации компонентов в газовых средах ГЭТ 154-2014.

приложение в

Протокол поверки газоанализатора ЕН7000								
Производитель								
Заводской номер Дата выпуска								
Дата поверки								
Поверка проведена с использованием баллонов с ПГС	с, приготовленных и аттестованных							
(когда и к	ем)							
Условия поверки:								
- температура окружающего воздуха	°C;							
атмосферное давление	кПа;							
относительная влажность	<u></u> %.							
1 Результаты внешнего осмотра								
2 Результаты проверки герметичности								
3 Проверка сопротивления изоляции								
4 Проверка основной погрешности								
5 Проверка погрешности срабатывания порогового уст	ройства							
6 Результаты опробования								
7 Идентификация ПО								
8 Заключение								

Поверитель _

грешности газоанализаторов с оптико-абсорбционным измерительным каналом, приведены в таблице Г.1.

Таблица Г.1

Анализируемый	Дианаз	он измерений		ределы допускаемой погрешности газоанализатора		
ras	% об.	млн-	Д¶А прияв.	Д, млн ⁻¹ абсол.	δ,%отн	
	5-41	0-10	±10		1 -	
	-	0-25	±7	22	-	
	-	0-50	±7	<u> </u>	-	
	·	0-100	±7	=		
		0-200	±4			
	-	0-500	±4	-	-	
	-	0-1000	±4	-		
	0-0.2	_	±4	-	<u> </u>	
Диоксид	0 - 0.5	_	±4	-	-	
углерода	0-1		±2,5	-	-	
(CO ₂)	0 – 2	=	±2		-	
	0 – 3	_	±2			
	0 - 5	-	±2		-	
	0-10	1-	±2	-	_	
	0 - 20	-	±2	-	_	
	0 - 30	1-	±2	-	T -	
	0-40	_	+2	-	_	
	0 - 50	_	±2	_	+ _	
	0 - 100	-	±2	_	-	
	1-	0-10	±12	-	-	
	3-3	0 - 25	±10	Ξ.		
	_	0 - 50	±7		_	
	_	0 - 100	±5	8	-	
	_	0-200	±4	=		
	-	0-500	±4	-	_	
	-	0-1000	±4	=	_	
	0 - 0.2	1-	±4	-	_	
Оксид	0 - 0.5	=	±4	-	_	
углерода	0-1	_	±2	-	_	
(CO)	0 - 2	-	±2	-	_	
	0 - 5		±2	-	-	
	0 - 10	1=	±2			
	0-20	-	±2		-	
	0 - 30	1-	±2	8	* =	
	0-40	1-	±2	-	1 -	
	0 - 50	_	+2	-	_	
	0-100	-	±2	-	1 -	

Анализируемый	Диаг	пазон измерений		еделы допускиемой эгрепиности газовия	
183	% o5.	млн ⁻¹	Дътран ,	Д,млн [⊣] абсол,	δ,%ση
	_	0 - 50	±10	_	-
	-	0 - 100	±10		-
	_	0 - 200	±6	-	-
	-	0 - 500	±4	-	1-1
	-	0-1000	±4	-	-
	0 - 0.15	_	±4		===
Метан	0 - 0.2	-	±2	<u></u>	
(CH ₄)	0 - 0.5	-	±2	20	H
3 3	0-1	-	±2	-	10-00
	0-2	-	±2	-	
	0-5	-	±2	-	1000
	0 - 10	_	±2	_	-
	0-20	_	±2	-	-
	0-50	-	±2	-	-
	0-100	()	±2	_	-
	-	0 - 100	±10	-	-
	201	0 - 200	±10		1940
		0 - 500	±10	-	
Апетилен	=	0 - 1000	±10	-	-
(C_2H_2)	0-1	_	±5	-	-
	0-5	(m)	±4	-	
	0-10	_	±4	-	
	0-20	_	±4	-	
	-	0 - 25	±18	_	
	_	0 - 50	±10	1-	
	-	0 - 100	±7	_	-
		0-200	±4	-	-
	-	0-500	±4	-	
20.00	-	0 - 1000	±4	-	
Диоксид	0 - 0.2	_	±4	-	-
серы	0-0,5		±4	-	
(SO ₂)	0-1	-	±4	-	
	0-2	_	±4	-	
	0-5	_	±4	_	-
	0-10		±3	_	-
	0-20		±3	-	
	0-50	-	±3	_	_
	-	0 - 100	±10	_	_
	20	0-200	±8	<u>_</u>	3-2
	-	0 - 500	±6	-	_
	_	0 - 1000	±4	-	_
	0 - 0.2	-	±4	-	-
	0 - 0.5	-	±4	-	177
Аммиак	0-1	_	±4	-	
(NH ₃)	0-2	_	±4	_	-
	0-5	_	±4	-	-
	0-10		±4	-	-
	0-15	_	±4	-	-
	0-25	_	±4	_	-
	0-50	_	±4	122	3-3

	Диапазон	измерений		еделы допускаемой прешности газоанал	
Анализирусмый газ	% об.	MJIE ⁻¹		Д,мин⁻	1
			Добрин ,	абсол.	δ,%σπ
	0-0,2				
Гексафгорид	вдишизске				
серы (SF ₆)	концентраций:			1000	
cepta (51 6)	(0-0,03 вкл)	22	_	±20	-
	(cb. 0,03 - 0,2)	120		-	±7
	_	0-100	±10	-	-
	_	0-200	±8	-	
	-	0 - 500 0 - 1000	±6	8	_
	0-0.2		±4 ±4	=	-
Оксид азота	0-0,5	-	±4	=	1 -
(NO)	0-0,3	_	±4 ±4	_	-
	0-1	-	±4 ±4	_	_
	0-2	_	±4		-
	0-3	47.5	±3		-
	0-10		±3 ±2.5	_	-
	0 - 20	0-100	±2,3 ±10	=	-
		200			
		0-200	±10	_	-
	_	0 - 500	±10		_
	-	0 - 1000	±7	_	-
	0 - 0,2	-	±7	-	-
Закись азота	0 - 0,5	-	±5	-	-
(N ₂ O)	0-1	-	±4 ±4	=	-
C 4-7	0-2	_			
	0-5	_	±4 ±3		-
	0-10	_		1901	2.2
			±2,5	-	
	0 - 50	-	±2,5	-	-
	0-100	=	±2,5	-	
	0-1	-	±4	_	_
	0 – 2	-	±4	_	
_	0-5	-	±4	-	-
Сероводород	0-10	-	±3	-	
(H ₂ S)	0-20	-	±2,5	_	-
	0 - 50	-	±2,5	_	
	0 - 100	_	±2,5	_	2-0
Y	0-100		±2,5 ±8		-
Менимериантан	0-2	-	±8 ±8	-	-
(CH₃SH)	0-5	0-100	±8 ±10	-	_
	=	0-100	±10		-
Динискид	-	0-250	±8 ±8		-
23072 (NO2)	-	0-230	±6		 -
	-	0-300	±6 ±4	_	_

Определяемые компоненты, диапазоны измерений, пределы допускаемой основной погрешности газоанализаторов с термокондуктометрическим измерительным каналом, приведены в таблице $\Gamma.2$.

Таблица Г.2

Анализируемый газ	Диапазоп измерений, % об.	Пределы допускаемой основной приведённой к разности между верхними и нажним значением диапазона измерений погрешности тазоанализатора, [[7]]
	0 - 0,5	5
	0 - 1	-4
	0 - 2	2,5
	0 - 3	2,5
	0 - 5	2,5
	0 - 10	2,5
	0 - 20	2
	0-40	2
	0-60	2
	0 - 80	2
Водород в азоте \mathbf{H}_2 + \mathbf{N}_2	0 - 100	2
n ₂ ⊤N ₂	40 - 60	2,5
	40 - 80	2
	50 - 80	2
	60 - 80	2
	50 - 100	2
	60 - 100	2
	80 - 100	2
	90 - 100	2,5
	95 - 100	3
	99 - 100	4
Водород в воздухе	0-1	4
H ₂ +воздух	0 – 2	2,5
	0-1	4
	0-2	2,5
	0 - 3	2,5
	0 - 5	2,5
	0-10	2,5
	0-20	2
	0-40	2
Водород в диоксиде углерода H ₂ +CO ₂	0-60	2
n ₂ -co ₂	0 - 80	2
	0 - 100	2
	50-100	2
	60 - 100	2
	80 - 100	2
	90 - 100	2,5
F	95 - 100	2

Анализируемый газ	Диапазон измерений, % об.	Пределы допускаемой основни приведённой к разности между верхним и нажним значением диапазона измерений погрешно сти тазоанализатора. 1779%	
	0 - 5	3	
-	0-10	3	
Гелий в воздухе Не+воздух	0 - 100	2	
петвоздух	90 - 100	2,5	
	95 - 100	5	
Диоксид серы в язоте	0-10	2	
SO_2+N_2	0-20	2	
Дноксид серы в воздухе	0 - 10	3	
SO ₂ +воздух	0-20	2	
	0-10	3	
	0-20	2	
T	0-30	2	
Диоксид углерода в азоте СО ₂ +N ₂	0-40	2	
CO2-112	50 - 100	2	
	80 - 100	2	
	90 - 100	3	
Метян в азоте СН ₄ +N ₂	0 - 100	2	
	0-2	4.	
	0 - 5	3	
	0-10	2,5	
T	0-20	2	
Гелий в азоте Не+ N ₂	0-40	2	
Her N ₂	0 - 100	2	
	60 - 100	2	
	80 - 100	2	
	90 - 100	2,5	
	95 - 100	5	
	0-10	3	
	0-20	2	
Аргон в взоте Аг+N ₂	0-40	2	
ALTI12	0 - 100	2	
	60 - 100	2	
	80 - 100	2	
Аргон в водороде Аг+H ₂	97 – 100	4	
Аргон в воздухе	0-20	2	
Аг+воздух	0-40	2	
***************************************	60 - 100	2	
	0-20	2	
Аргон в кислороде Аг+О ₂	0-40	2	
AΓ+U₂	60 - 100	2	

Анализируемый газ	Диапазон измерений, % об.	Предслы допускаемой основной при- ведённой к разности между верхним и нижним значением диапазона из- мерений погрешности газоанализато- ра. [17]76		
Водород в кислороде H ₂ +O ₂	0 - 2	4		
Кислород в водороде О2+H2	0-1	4		
Водород в аргоне	0-2	4		
H ₂ + Ar	0-5	4		
	0-30	2		
Гелий в аргоне	0-40	2		
He+Ar	10-25	2,5		
	80 - 100	2		
Водород в клористом водороде H ₂ + HCl	0-10	3		
Водород в аммиаке Н ₂ +NH ₃	0 – 1	10		
Азот в гелии N ₂ + He	0 - 100	2		

Определяемые компоненты, диапазоны измерений, пределы допускаемой основной погреппности газоанализаторов с термомагнитным измерительным каналом, приведены в таблице Γ .3.

-	-	 	-	•••	

Анализируемый газ	Диапазон измерений, % об	Пределы допускаемой основной приве- денной к разности между верхним и ниж- ним значением диапазона измерений по- грешности газоанализатора, %			
	0-1	4			
Γ	0-2	4			
Γ	0-5	3			
	0 – 10	3			
	0 – 20	2			
	0 - 25	2			
2201	0 – 50	2			
Кислород О2	0 – 100	2			
U ₂	15 – 25	4			
Г	20 - 80	2			
	50 – 100	2			
T	80 – 100	2			
1	90 – 100	3			
	95 – 100	5			
	98 – 100	12,5			

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ								
Изм.	Номера листов (страниц)			Всего	Номер	Подпись	Дата	
	изм.	зам.	новых	аннул.	листов	док-та		