

Хроматографы ионные

Dionex Aquion Методика поверки

009-11-17

Настоящая методика распространяется на хроматографы ионные Dionex Aquion, изготавливаемые Thermo Fisher Scientific Inc, США и устанавливает методику их первичной и периодической поверок.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки выполняют операции, указанные в таблице 1. Таблица 1

Наименование операции	Номер пункта методики
Внешний осмотр	4.1
Опробование:	4.2
– проверка идентификационных данных ПО	4.2.1
– определение уровня флуктуационных шумов нулевого сигнала	4.2.2-4.2.3
 – определение дрейфа нулевого сигнала 	4.2.4
Определение метрологических характеристик:	4.3
 – определение относительного среднего квадратического откло- нения выходных сигналов 	4.3.1–4.3.3
	4.3.4–4.3.5

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки применяют следующие средства поверки:
- ГСО 7793-2000 состава нитрат-иона, массовая концентрация нитрат-ионов 1,00 мг/см3, относительная погрешность ±1%;
- Γ CO 7775-2000 состава ионов натрия, массовая концентрация ионов натрия 1,00 мг/см3, относительная погрешность ±1%;
 - Вода деионизированная, ГОСТ 25661-83.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью

3 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

3.1 При проведении поверки соблюдают следующие условия:

– температура окружающего воздуха, °С	23 ± 5
– атмосферное давление, кПа	$84 \div 106,7$
– относительная влажность воздуха, %	$30 \div 90$
 напряжение переменного тока, В 	220 ± 22
– частота сети, Гц	50 ± 1

3.2 Подготовительные работы выполняют в соответствии с инструкцией по эксплуатации хроматографа.

- 3.3 Перед проведением поверки готовят контрольные растворы, назначение и содержание анализируемых компонентов в которых приведены в таблице 2.
 - 3.4 Процедура приготовления контрольных растворов приведена в приложении 1.

Таблица 2

Контрольный раствор	Массовая концентрация компонента, мг/дм ³	Объем пробы, мм ³	Элюент	Детектор
Раствор нитрат- ионов или раствор натрий-ионов	10	25	Деионизован- ная вода	Кондуктомет- рический CD

4 ПРОВЕДЕНИЕ ПОВЕРКИ

4.1 Внешний осмотр

При внешнем осмотре устанавливают:

- соответствие комплектности хроматографа паспортным данным;
- четкость маркировки;
- исправность механизмов и крепежных деталей
- отсутствие протечек жидкостного тракта хроматографа.

4.2 Опробование

4.2.1. Проверка идентификационных данных программного обеспечения хроматографов. Идентификационные данные ПО должны соответствовать Таблице 1 Описания типа.

Идентификационные сведения о программе (Номер версии (идентификационный номер)) располагаются по следующему пути:

Help -> About Chromeleon.

Рис. 1 Окно About Chromeleon

Для вычисления цифрового идентификатора программного обеспечения (хешсуммы) используют специальные программы. Одной из них является бесплатная программа Hash Tab (можно скачать с сайта http://hashtab.ru/). Она добавляет соответству-

ющие функции в меню свойств файлов. Хеш сумма вычисляется по файлу chromeleon.exe.

Порядок вычисления с использованием программы Hash Tab:

- 1. установить программу Hash Tab на компьютер, на котором установлено ПО Chromeleon (если она не была установлена ранее);
- 2. щелкнуть правой кнопкой мышки по ярлыку ПО на рабочем столе компьютера chromeleon.exe ярлык, в появившемся контекстном меню выбрать пункт «Свойства», нажать кнопку «Расположение файла». Откроется папка, где расположен файл chromeleon.exe
- 3. щелкнуть правой кнопкой мышки по файлу chromeleon.exe и в появившемся контекстном меню выбрать пункт «Свойства»;
- 4. в открывшемся окне перейти на вкладку «Хеш-суммы файлов» и подождать, пока компьютер рассчитает и отобразит хеш-суммы файла.

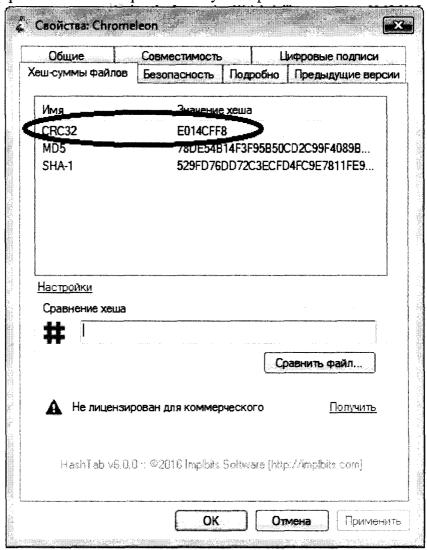


Рис. 2 Окно Свойства файла chromeleon.exe

5. Выписать хеш-сумму, рассчитанную по алгоритму CRC32 (Рис.2) и сравнить с данными Таблицы 1 Описания типа.

Функционирование программного обеспечения идентифицируется отображением на экране возможности редактирования доступных областей данных.

4.2.2 Проводят определение уровня флуктуационных шумов и дрейфа нулевого сигнала. Для сбора данных используют OQ/PQ шаблоны ПО Chromeleon или используют процедуры автоматизации отчета по Приложению 2.

Опробование производят при условиях, указанных в таблице 3, в соответствии с инструкцией по эксплуатации хроматографа. Перед процедурой периодической поверки рекомендуется провести техническое обслуживание хроматографа с заменой расходных частей насоса и системы ввода проб (крана для ввода и автосамплера (если используется)), и заменой капилляров.

Измерения проводят при отключенной колонке и подавителе. Для этого между насосом и инжектором устанавливают капилляры, соединив их адаптером: капилляр с внутренним диаметром 0.075 мм длиной около 1 м желтого цвета (служит для имитации рабочего давления хроматографа) и капилляр с внутренним диаметром 0.25 мм длиной не менее 6 м — черного цвета (есть в комплекте для установки хроматографа).

После выхода хроматографа на режим записывают в течение часа нулевой сигнал детектора.

Уровень флуктуационных шумов нулевого сигнала (Δx) принимают равным максимальному значению амплитуды повторяющихся колебаний нулевого сигнала с периодом не более 20 с.

Значения дрейфа нулевого сигнала принимают равным смещению нулевого сигнала в течение 1 часа.

Таблица 3.

	Детектор	
Условия поверки	Кондуктометрический	
Элюент	Деионизованная вода	
Скорость потока элюента	1,0 см ³ /мин	

4.2.3 Значения уровня флуктуационных шумов нулевого сигнала не должны превышать, соответственно:

Детектор	Характеристика
Кондуктометрический	0,5·10 ⁻⁹ См

4.2.4 Значения дрейфа нулевого сигнала не должны превышать, соответственно:

Детектор	Характеристика
Кондуктометрический	20·10 ⁻⁹ См/час

- 4.3 Определение метрологических характеристик
- 4.3.1 Определение относительного среднего квадратического отклонения выходного сигнала.

Измерения проводят после процедур опробования и выхода хроматографа на режим. Условия выполнения измерений должны соответствовать п.3.1.

- 4.3.2 Контрольный раствор (табл.2.) вводят в хроматограф не менее 10 раз, измеряют значения выходного сигнала (времени удерживания и площади пика) вычисляют среднее арифметическое значение выходного сигнала (\overline{X}).
- 4.3.3 Относительное среднее квадратическое отклонение выходного сигнала рассчитывают по формуле:

$$S = \frac{100}{\overline{X}} \sqrt{\frac{\sum_{i} \left(X_{i} - \overline{X}\right)^{2}}{n - 1}},$$

где X_i – i—ое значение параметра выходного сигнала (площади пика, времени удерживания).

Значения относительного среднего квадратического отклонения выходного сигнала не должны превышать норм, приведенных в таблице 4.

4.3.4 Определение относительного изменения выходного сигнала за 8 часов непрерывной работы.

Условия измерений аналогичны, описанным в п.3.1. Проводят повторно операции, по п.4.3.2.

Относительное изменение выходного сигнала за 8 часов непрерывной работы хроматографа рассчитывают по формуле:

$$\delta_t = \frac{\overline{X}_t - \overline{X}}{\overline{X}} \cdot 100$$

где $\overline{X_t}$ — среднее арифметическое значение выходного сигнала через 8 часов непрерывной работы.

4.3.5 Значения относительного изменения выходного сигнала не должны превышать норм, приведенных в таблице 4.

Таблица 4

Детектор	Относительное средн отклонение выходн		Относительное изменение выходного сигнала площади
	Время удерживания	Площадь пика	пика за 8 часов непрерывной работы (%)
CD	0,1	0,5	3,0

4.4 Возможные причины несоответствия вычисленных характеристик требуемым и пути их преодоления.

Характеристика	Причина	Решение
Дрейф нулевого сиг- нала	Система не уравновешена	Повторите процедуру по п.4.2.
пала	Температура в помещении не	Отрегулируйте условия (устра-
	стабильна	ните сквозняк, убедитесь, что
		капилляры помещены внутрь
		хроматографа (если установлен
		термостат – внутрь термостата
		и дверка хроматографа плотно закрыта)
	Флуктуации давления на насосе	Удалите пузыри из насоса,
	(пузырь воздуха в головке насо-	включите дегазатор хромато-
	ca)	графа в режим "Always On".
	Насос требует обслуживания	Проведите регулярное обслуживание насоса (рекомендовано 1 раз в год)
Шум нулевого сигнала	Качество воды не отвечает тре-	Проверьте электропроводность
	бованиям	(не менее 18 мОм). При несо-
		ответствии замените картри-
		джи очистки воды в деиониза-
		торе.
	Воздух в ячейке детектора	Удалите воздух промывкой
	Температурный контроль ячейки не работает	Замените ячейку
СКО по времени удер-	Качество приготовления раство-	Приготовьте свежий стандарт,
живания и площади	ра стандарта	тщательно перемешайте. Про-
		мойте шприц для ввода (если
		используете автосампплер —
		виалу) раствором стандарта.
	Утечка в жидкостном тракте хро-	Найдите и устраните утечку.
	матографа	
	Объем ввода не постоянен (пу-	Промойте кран-дозатор не ме-
	зырек воздуха в тракте ввода	нее 4-х раз раствором стандар-
	проб)	та с поворотом крана в поло-
		жение Inject и обратно. Исполь-
		зуйте для ввода шприц объе-
		мом 10 мл для вколов всей
		серии, не вынимая его из порта ввода.

5 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 5.1 Результаты поверки хроматографов заносят в протокол (пример протокола приведен в приложении 3).
- 5.2 Положительные результаты поверки хроматографов оформляют выдачей свидетельства в соответствии с приказом Минпромторга РФ № 1815 от 02.07.2015.
- 5.3 Хроматографы, не удовлетворяющие требованиям настоящих рекомендаций, к эксплуатации не допускаются. Хроматографы изымаются из обращения. Свидетельство о поверке изымают и выдают извещение о непригодности с указанием причин в соответствии с приказом Минпромторга РФ № 1815 от 02.07.2015.

5.4 После ремонта хроматографы подвергают поверке.

Начальник лаборатории 009 Дуу Е.В. Кулябина Ведущий инженер ФГУП «ВНИИМС» ДЬ О.Н. Мелкова

МЕТОДИКА ПРИГОТОВЛЕНИЯ АТТЕСТОВАННЫХ РАСТВОРОВ

Методика предназначена для приготовления аттестованных водных растворов кофеина, нитрат-иона, натрий-иона, раствора глюкозы.

1 СРЕДСТВА ИЗМЕРЕНИЙ, ПОСУДА, РЕАКТИВЫ

- 1.1 ГСО 7793-2000 состава нитрат-иона, массовая концентрация нитрат-ионов 1,00 мг/см3, относительная погрешность $\pm 1\%$;
- 1.2 ГСО 7775-2000 состава ионов натрия, массовая концентрация ионов натрия 1,00 мг/см3, относительная погрешность $\pm 1\%$;
- 1.3 Весы лабораторные по ГОСТ 24104-01, с верхним пределом взвешивания 200 г.
 - 1.4 Мера массы (гири), 2-01 класс точности, ГОСТ 7328.
 - 1.5 Колбы мерные наливные 2–100–2 по ГОСТ 1770-74
 - 1.6 Пипетки градуированные 1-2-2-0,5по ГОСТ 29227 (I)
 - 1.7 Стаканы В-1-50ТС по ГОСТ 25336
 - 1.8 Вода деионизированная, ГОСТ 25661-83.

2 ПРОЦЕДУРА ПРИГОТОВЛЕНИЯ

2.1 Приготовление раствора нитрат-ионов с массовой концентрацией 10 мг/дм³ 1 см³ раствора ГСО с массовой концентрацией нитрат-ионов 1 мг/дм³ пипеткой, вместимостью 1 см³ вносят в мерную колбу вместимостью 100 см³ и доводят содержимое колбы до метки деионизированной водой.

Относительная погрешность аттестованного значения массовой концентрации нитрат-ионов в растворе не более 1,2%.

Контрольный раствор используют для определения метрологических характеристик кондуктометрических детекторов.

- 2.2 Приготовление раствора натрий-ионов с массовой концентрацией $10~{\rm Mr/дm^3}$
- $1~{\rm cm}^3$ раствора с массовой концентрацией натрий-ионов $1~{\rm mr/дm}^3$ пипеткой, вместимостью $1~{\rm cm}^3$ вносят в мерную колбу вместимостью $100~{\rm cm}^3$ и доводят содержимое колбы до метки деионизированной водой.

Относительная погрешность аттестованного значения массовой концентрации натрий-ионов в растворе не более 1,2%.

Контрольный раствор используют для определения метрологических характеристик кондуктометрических детекторов, в случае, если нет ГСО нитрат-иона.

ПРИМЕР ОБРАБОТКИ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК В ПО CHROMELEON

Данное приложение предназначено для упрощения и автоматизации процедуры расчета метрологических характеристик.

- для расчета шума и дрейфа:

- 1 Для сбора данных для расчета шума и дрейфа создают последовательность (sequence) с одной пробой в списке образцов. Хроматографирование производят без инжекции, для этого в программе Chromelon в последовательности устанавливают тип образца Blank (Бланк). В программе управления прибором устанавливают соответствующую скорость потока элюента и длительность сбора данных сигнала детектора—60 мин, прочие установки соответственно конфигурации.
 - 2. Запускают последовательность
- 2.1 После окончания работы последовательности, двойным кликом по хроматограмме, по которой ведется расчет шума и дрейфа, открывается отчет. Выбирают вкладку Summary и добавляют новую колонку, нажав правую кнопку мыши и выбрав Append Column (Рис. 3).

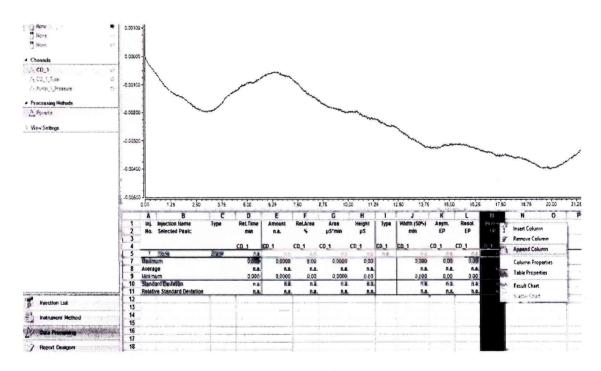


Рис. 3 Окно Summary

2.2 Добавляют характеристики для расчета дрейфа согласно рис. 4. Кликните на кнопку в строке Formula. Выберите категорию (Category) – Chromatogram, и переменную (Variables) – Signal Drift. Кликните на кнопку Parameters. Укажите диапазон сбора данных от 0 до 60 мин. Нажмите ОК Добавьте в формулу (Formula) множитель *60000. Удалите значение в графе Unit. Нажмите Close. В новой колонке отобразится значение дрейфа (Drift)в нСм/ч (10-9)

См/час).

Noise. Кликните на кнопку Parameters. Укажите диапазон сбора данных, например, от Выберите категорию (Category) – Chromatogram, и переменную (Variables) – Signal 2.3 Аналогично п.2.1. добавляют колонку для расчета шума с окном 20 секунд.

Добавьте в формулу (Formula) множитель *1000. Удалите значение в графе Unit 10 до 10,33 мин. Нажмите ОК.

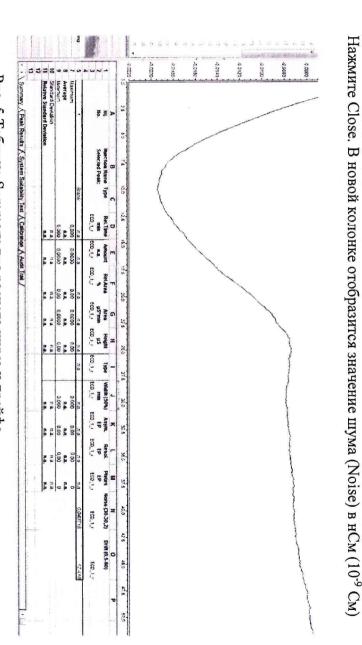
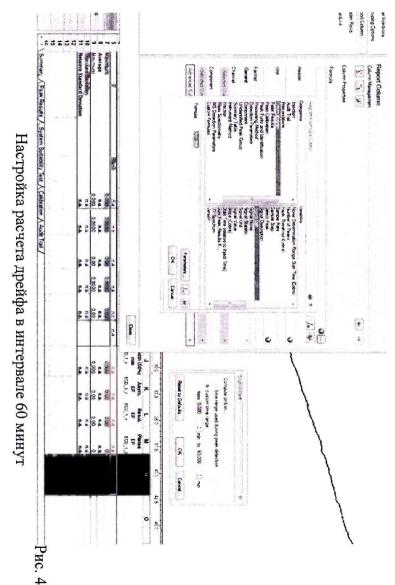



Рис. 5 Таблица Summary для расчета шума и дрейфа.

в методике поверки. Полученные данные можно распечатать или сохранить в формате Excel. Цля других детекторов значения шума и дрейфа приводят в единицах, указанных

Настройка расчета дрейфа в интервале 60 минут

- для расчета относительного СКО выходного сигнала:

- 1 Для сбора данных для расчета СКО выходного сигнала создают последовательность (sequence) с не менее 10-ю пробами в списке образцов. В последовательности устанавливают тип образца unknown (неизвестная проба). В программе управления прибором устанавливают соответствующую скорость потока элюента, длительность сбора данных сигнала детектора— обычно 1,5 2 мин, прочие установки по таблице 3.
 - 2. Запускают последовательность
- 3. После окончания работы последовательности, сочетанием клавиш Ctrl и левой клавишей мыши выделяют хроматограммы, по которым ведется расчет СКО, нажимаем правую клавишу мыши, открывается меню, выбираем Compare (сравнить), канал детектора (например, CD_1). Открывается отчет. Кликаем мышью на пик. Во вкладке Summary отображаются данные СКО (Rel.Std.Dev) по времени (Ret.time) и по площади (Area) пика (Puc.6).

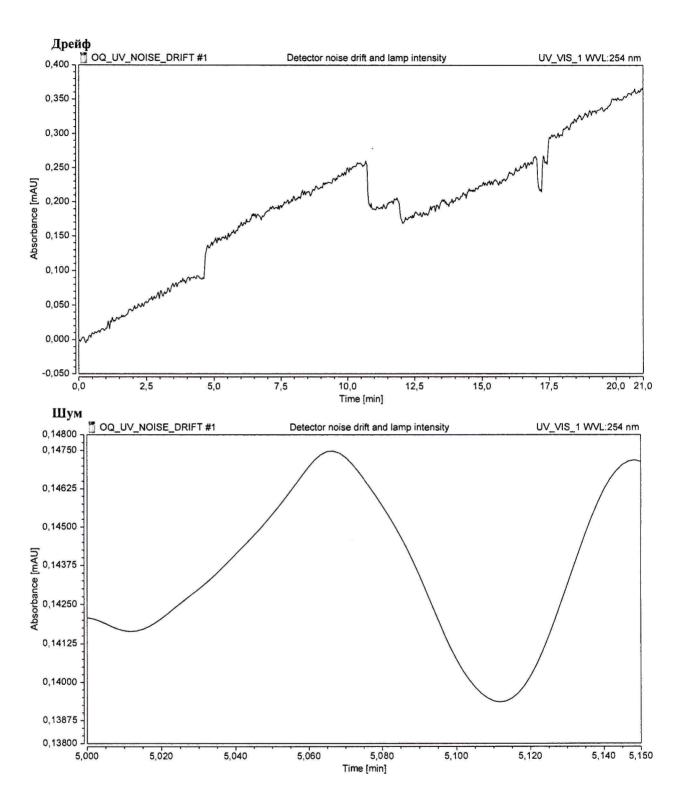
0.00	0.05	0,10	0,15	0,20	0,25	5,30 0.3	55	0.40	0.45
Α		В	С	D	E	F	***********	G	Н
Sample No.	Samp	le Name	Ret.Time min Coffeine UV_VIS_1	Area mAU*min Coffeine UV_VIS_1	Height mAU Coffeine UV_VIS_1	Amoun Coffein UV_VIS	e	Type Coffeine UV_VIS_1	Plates (EP) Coffeine UV_VIS_1
1	std		0,047	6,0487	157,3050	h	n.a.	BMB	10
2	std		0,047	6,0243	157,8189		n.a.	BMB	10
3	std		0,047	6,0357	157,3759	F	n.a.	BMB	10
4	std		0,047	6,0202	157,7896		n.a.	BMB	10
6	std		0,047	6,0385	157,5628		n.a.	BMB	10
7	std		0,047	6,0319	157,3754		n.a.	BMB	10
8	std		0,047	6,0354	157,6499	i i	n.a.	BMB	10
9	std		0,047	6,0443	157,8775		n.a.	BMB	10
10	std		0,047	6,0727	158,3634		n.a.	ВМВ	10
11	std		0,047	6,0459	157,6513	×	n.a.	BMB	10
Average:			0.047	6,0308	157,6770		n.a.		10
el.Std.Dev	:		(0,000 %)	0,243 %	0,198 9	%	n.a.		0,000 %

Рис. 6 Таблица Summary для СКО выходных сигналов

4. Полученные данные можно распечатать или сохранить в формате Excel.

Желательно сохранить созданные последовательности (sequence) со всеми настройками для расчётов шума, дрейфа и СКО выходных сигналов для последующего использования в качестве шаблонов для периодических поверок.

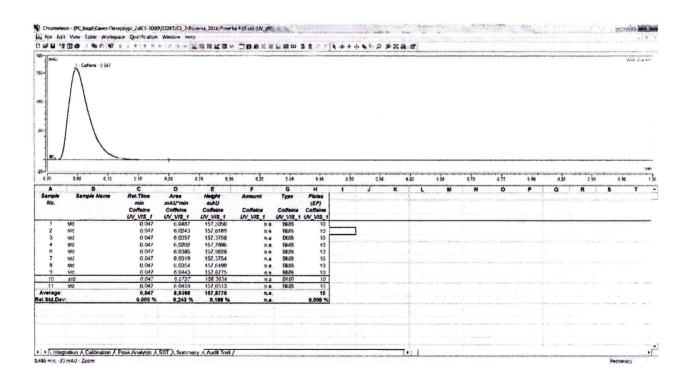
Приложение 3


ПРИМЕР ПРОТОКОЛА ПОВЕРКИ

Организация собственник прибора ООО «ААА»				
ИНН Организации	0000000000			
Прибор	Хроматограф Dione	ex Aquion		
Версия ПО Chromeleon	Chromeleon 7.2 SR4	4		
Цифровой идентификатор ПО	E014CFF8			
Серийный номер прибора	0000000000			
Серийный номер детектора	000000			
Детектор	УФ-детектор VWD			
Условия	254 нм, элюент – вода, 1 мл/мин, постоян			
	ная времени 2 с			
Средство поверки	Кофеин 10 мг/л			
	Полученное зна-	Допустимое зна-		
	чение	чение		
Воспроизводимость по времени	0.0014% CKO	1.5% CKO		
Воспроизводимость по площади	0.0061% CKO	3% CKO		
Шум с окном 20 секунд, е.о.п.	8*10 ⁻⁹	40*10 ⁻⁶		
Дрейф, е.о.п./час	э.п./час 3*10 ⁻⁸ 200*10 ⁻⁶			
Воспроизводимость по площади че-	0.006% CKO	5% CKO		
рез 8 часов				

Определение среднеквадратического отклонения выходного сигнала

1 серия


No.	Name	Time	Area	Height
1	Caffeine	0,0469	0,3877	3,87
2	Caffeine	0,0469	0,3922	3,9
3	Caffeine	0,0468	0,3944	3,91
4	Caffeine	0,0468	0,3912	3,9
5	Caffeine	0,0469	0,3949	3,92
6	Caffeine	0,0468	0,3941	3,9
7	Caffeine	0,0468	0,395	3,93
8	Caffeine	0,0468	0,3948	3,93
9	Caffeine	0,0468	0,3939	3,92
10	Caffeine	0,0469	0,3955	3,94
	Sum:	0,5155	4,33	43,076
	Average:	0,0469	0,394	3,916
	Rel.Std.Dev:	0,00141	0,00609	0,00575

Определение среднеквадратического отклонения выходного сигнала

2 серия

	PMA		r	
No.	Name	Time	Area	Height
	l Caffeine	0,047	0,388	3,89
	2 Caffeine	0,047	0,392	3,9
	3 Caffeine	0,047	0,394	3,9
	4 Caffeine	0,047	0,391	3,9
,	5 Caffeine	0,047	0,395	3,92
	Caffeine	0,047	0,394	3,9
,	7 Caffeine	0,047	0,395	3,93
	8 Caffeine	0,047	0,395	3,93
	Gaffeine Caffeine	0,047	0,3939	3,92
10	Caffeine	0,047	0,395	3,91
1	1 Caffeine	0,047	0,396	3,91
	Sum:	0,5117	4,3289	43,01
	Average:	0,047	0,39	3,91
	Rel.Std.Dev:	0,00	0,006	0,005

