ФГУП «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» ФГУП «ВНИИМС»

УТВЕРЖДАЮ Заместитель директора фгуп «ВНИИМС» ФГУП «ВНИИМС» «07» августа 2017 г.

Машина координатная измерительная ROYAL 152512

МЕТОДИКА ПОВЕРКИ

MII №203-59-2017

Настоящая рекомендация распространяется на машину координатную измерительную ROYAL 152512 (зав. № 1506280) (далее по тексту КИМ) с системой ЧПУ и устанавливает методику ее первичной и периодической поверок.

Основной целью поверки КИМ является определение соответствия КИМ параметрам, перечисленным в таблице 1.

Интервал между поверками -1 год.

1. ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

1.1. При проведении поверки должны быть выполнены операции и применены средства поверки, указанные в таблице 1.

Таблица 1

таолица т		,		
Наименование	Номер	Средства поверки	Проведение операции при	
операции	пункта			
	методики		первичной	периодическ
	поверки		поверке	ой поверке
Внешний осмотр	6.1	Визуально	Да	Да
Опробование	6.2	Визуально	Да	Да
Идентификация	6.3		Да	Да
программного				
обеспечения				
Проверка	6.4	Керамическая сфера из	Да	Да
допускаемой		комплекта мер для поверки		
абсолютной		систем томографических		
погрешности		General Electric диаметр 20-30		
измерительной		мм, (регистрационный номер в		
головки, мкм МРЕР		Федеральном информационном		
		фонде № 54705-13)		
Проверка допускаемой	6.5	Плоскопараллельные концевые	Да	Да
абсолютной объемной		меры длины, аттестованные по		
погрешности (L=длина в мм), мкм МРЕ _Е		3-му разряду по ГОСТ Р 8.763-		
B MMJ, MKM MI CE		2011		

Примечание: Допускается применение средств, не приведенных в перечне, но обеспечивающих определение (контроль) метрологических характеристик поверяемых средств измерений с требуемой точностью.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки соблюдают следующие требования безопасности, а также требования, изложенные в документации на поверяемые КИМ.

- 2.1. Электронная аппаратура в части требований безопасности должна соответствовать ГОСТ 22261-94 и ГОСТ 12.2.0070-75.
- 2.2. Электронная аппаратура КИМ и поверочного оборудования должны быть заземлены и перед ними на полу должны лежать резиновые коврики, во время поверки кожухи электронной аппаратуры должны быть закрыты.
- 2.3. До включения в сеть электронной аппаратуры должны быть подключены необходимые электрические кабели. Запрещается во время поверки отсоединять их, а также производить замену предохранителей.
 - 2.4. Установленные предохранители должны соответствовать маркировке на панелях.
- 2.5. Запрещается вскрывать и переставлять составные части КИМ и поверочного оборудования при включенных в сеть кабелях питания.

3. УСЛОВИЯ ПОВЕРКИ

При проведении поверки КИМ соблюдают следующие условия:

• - температура окружающей среды 0 С.

 20 ± 2

• - допускаемое изменение температуры во время измерений ⁰С/час.

± 1 °C/ч; 2 °C/л; 1 °C/м

• относительная влажность воздуха %, не более от 40 до 70 без конденсата не допускается прямое попадание солнца, близкое расположение источников тепла, внешние вибрации в соответствии с требованиями к условиям эксплуатации КИМ.

4. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки КИМ допускаются лица, изучившие эксплуатационные документы на них, имеющие достаточные знания и опыт работы с ними и аттестованные в качестве поверителя органом Государственной метрологической службы.

5. ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие подготовительные работы:

- КИМ подготавливают к работе в соответствии с требованиями эксплуатационной документации,
- измерительные поверхности средств поверки: измерительных щупов, концевых мер длины, калибровочной сферы очищают от смазки, промывают авиационным бензином марки Б-70 по ГОСТ 1012-72 и спиртом ректификатом по ГОСТ 18300-72 и протирают чистой салфеткой,

средства поверки выдерживают до начала измерений в помещении, где проводят поверку КИМ в течение 24 часов и 1 час в рабочем (измерительном) объеме КИМ.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре по п. 6.1. (далее нумерация согласно таблице 1) устанавливают соответствие КИМ следующим требованиям:

- наружные поверхности КИМ не должны иметь дефектов, влияющих на ее эксплуатационные характеристики;
- на рабочих поверхностях КИМ не должно быть царапин, забоин и других дефектов, влияющих на плавность перемещений подвижных узлов КИМ;
 - наконечники щупов не должны иметь сколов, царапин и других дефектов;
- маркировка и комплектность должны соответствовать требованиям технической документации.

6.2 Опробование

Сначала проверяют взаимодействие частей на холостом ходу перемещением подвижных узлов на полные диапазоны. Перемещения должны плавными, без посторонних звуков, заеданий, рывков и скачков.

6.3 Идентификация программного обеспечения

Проверить идентификацию программного обеспечения (ПО) по следующей методике:

- произвести запуск ПО;
- -проверить наименование программного обеспечения и определить его версию после загрузки ПО. Сведения о наименовании программного обеспечения и номере версии ПО представлены на экране в течение одной секунды после нажатия иконки программы на рабочем столе компьютера.

Приборы считаются поверенными, если их ПО «Modus» версия 1.7 и выше.

6.4 Проверка допускаемой абсолютной погрешности измерительной головки, МРЕ_Р

Сфера устанавливается на плите КИМ с помощью стойки. Проводятся 10 циклов измерений в автоматическом режиме. В каждом цикле производятся измерения поверхности сферы в 25 дискретных точках равномерно размещенных по полусфере на испытуемой сфере.

Рекомендуемая модель измерений включает:

- одну точку на вершине испытуемой сферы;
- четыре точки, (равномерно распределенных) на 22° ниже вершины (рис. 1);
- восемь точек (равномерно распределенных) на 45° ниже вершины и повернутых на 22,5° относительно предыдущей группы;
- четыре точки (равномерно расположенных) на 68° ниже вершины и повернутых на 22,5° относительно предшествующей группы.
- восемь точек (равномерно расположенных) на 90° ниже вершины, т.е. на диаметре и повернутых относительно предыдущей группы на 22,5°.

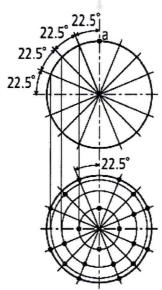


Рисунок 1 - Точки касания на сфере для определения допускаемой абсолютной погрешности измерительной головки, MPE_P

Погрешность определяется как сумма максимальных отклонений измеренного профиля в положительную и отрицательную области от средней сферы, рассчитанной по методу наименьших квадратов:

$$\Delta_{0r} = \max(D_{i+}) + \max(D_{i-}), \tag{1}$$

где D_{i+} - отклонение точки і от средней сферы в положительную область, мм

D_{i-} - отклонение точки і от средней сферы в отрицательную область, мм.

Погрешность ощупывающей головки не должна превышать значения, указанного в таблице 2.

Таблица 2

Пределы головки М	* * *	абсолютной	погрешности	измерительной		
±5,5						

6.5 Проверка допускаемой абсолютной объемной погрешности (L=длина в мм), мкм MPE_E

При поверке используют меры длины концевые плоскопараллельные 3-го разряда по ГОСТ Р 8.763-2011 номиналом 20, 50, 100, 200, 300, 400, 500 мм.

Концевые меры устанавливают в пространстве измерений КИМ вдоль линии измерений. При установке мер необходимо применять теплоизолирующие перчатки. Обязательно осуществляется компенсация погрешностей, связанных с отклонениями параметров окружающей среды отличающихся от нормальных. Производится сбор точек с измерительных поверхностей концевых мер и определяется их длина. Измерения проводят в семи различных положениях (рис.2), каждое измерение повторяется 3 раза — общее число измерений составляет не менее 105. Для диапазона измерений свыше 2000 мм рекомендуется проводить измерения вдоль осей в нескольких местах равномерно расположенных по длине оси, а для пространственных диагоналей рекомендуется проводить измерения впереди и сзади рабочего объема КИМ справа и слева в четырех угловых положениях. Измерения должны проводиться в автоматическом режиме.

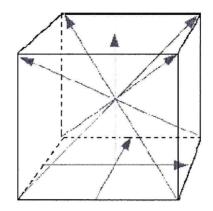


Рисунок 2 - Типичные положения, в которых производят измерения в пределах объема КИМ

Для меры номер j определяется действительное значение длины измеряемой меры, L_{Liki} по формуле:

 $L_{\mathcal{J}jki} = L_{oj} \left(1 + K_t \left(t_{\mathcal{J}jki} - t_0 \right) \right), \tag{2}$

где L_{oj} – номинальная длина меры при температуре t_o =20,5°C, мм

 $t_{\text{Дјki}}$ – температура меры при проведении измерения номер і меры ј в положении k, t_0 - температура, при которой аттестована КМД,

K_t- интегральный коэффициент теплового расширения КМД.

Далее для каждого измеряемого отрезка ј в положении k вычисляется погрешность измерения длины, ΔL_{jk} , по формуле:

$$\Delta L_{jk} = \frac{\sum_{i=1}^{n} \left(L_{jki} - L_{IJjki} \right)}{n},\tag{3}$$

где L_{jk} - погрешность измерения меры номер j в положении k,

 L_{jki} - измеренная на КИМ длина меры номер j в мм,

 $L_{\text{Дјкi}}$ - действительная длина меры номер ј с учетом температурной погрешности,

і – номер измерения,

ј – номер меры,

n – число измерений в положении k,

k – номер положения.

По результатам измерений с использованием мер строится график пространственной погрешности измерений ΔL_{jk} :

по оси абсцисс откладывается значение L_{oj} в мм, по оси ординат — погрешность $\Delta L_{jk}.$

Строятся графики пространственной погрешности измерений КИМ, представляющие собой прямые линии, построенные по формуле:

$$\Delta L = \left(A + \frac{L}{B}\right),\tag{4}$$

где A и B- заявленные значения составляющих пространственной погрешности измерений; мкм

L – измеряемая длина, мм

Значения абсолютной погрешности объемных измерений не должны превышать значений, указанных в таблице 3.

Таблица 3

Пределы допускаемой абсолютной объемной погрешности MPE_E (L-измеряемая длина в мм), мкм

 $\pm (5,5+L/300)$

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1. При положительных результатах поверки оформляется свидетельство о поверке по форме приложения 1 Приказа Минпромторга России № 1815 от 02.07.15г.
- 7.2. При отрицательных результатах поверки оформляется извещение о непригодности по форме приложения 2 Приказа Минпромторга России № 1815 от 02.07.2015г.

Знак поверки в виде оттиска клейма поверителя наносится на свидетельство о поверке. Знак в виде голографической наклейки наносится на прибор или свидетельство о поверке.

Начальник отдела ФГУП «ВНИИМС»

В.Г. Лысенко