УТВЕРЖДАЮ Первый заместитель генерального директора заместитель по научной работе ФГУП «ВНИИФТРИ» А.Н. Щипунов AP " 01 2018 г.

Инструкция Установки для тестирования средств беспроводной связи E7515A

Методика поверки 651-18-001 МП

1 Основные положения

1.1 Настоящая методика предназначена для проведения поверки установки для тестирования средств беспроводной связи E7515A (тестеров протоколов сигнализации), изготовленного компанией «Keysight Technologies Malaysia Sdn. Bhd.», Малайзия (далее – E7515A).

1.2 Интервал между поверками – 1 год.

1.3 Периодическая поверка средств измерений в случае их использования для измерений меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» Описания типа, допускается на основании письменного заявления их владельца, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке средства измерений

2 Операции поверки

При проведении поверки должны производиться операции, указанные в таблице 1.

	Номер пункта	Проведени	е операций при
Наименование операции	методики	первичной	периодической
		поверке	поверке
Внешний осмотр	7.1	да	да
Опробование	7.2	да	да
Идентификация программного обеспечения	7.3	да	да
Определение диапазона и относительной погрешности	7.4	да	да
установки и измерения уровня выходного сигнала			
Определение среднеквадратического значения величи-	7.5	да	да
ны модуля вектора ошибки (EVM) и фазовой ошибки			

Таблица 1 – Операции поверки

2.2 При получении отрицательных результатов в процессе выполнения операций по любому из пунктов таблицы 1 Е7515А признается непригодным и к эксплуатации не допускается.

3 Средства поверки

3.1 Основные средства поверки приведены в таблице 2.

Таблица 2 - Основные средства поверки

	Наименование рабочих эталонов или вспомогательных средств поверки; номер документа,
Пункт	регламентирующего технические требования к рабочим эталонам или вспомогательным
МΠ	средствам; разряд по государственной поверочной схеме и (или) метрологические и основ-
	ные технические характеристики средства поверки
	Блок измерительный ваттметра Е1914А (рег.№ 57386-41) с преобразователями из-
	мерительными N8482A (рег.№ 58375-14) диапазон частот до 6 ГГц, динамический
7.4	диапазон от минус 35 до 20 дБ/мВт, погрешность до ±1,81% и 8481D (рег.№ 58320-
	14) диапазон частот до 18 ГГц, динамический диапазон от минус 70 до минус 20
	дБ/мВт, погрешность до ±1,7%.
	Генератор сигналов E8257D (рег. №53941-13): диапазон частот от 250 кГц до 20
74	ГГц, пределы допускаемой относительной погрешности установки частоты ± 7,5•10 ⁻
/.4	⁸ ; максимальный уровень выходной мощности не менее 10 дБ/мВт, пределы допус-
	каемой относительной погрешности установки уровня мощности не более ± 1,2 дБ.
	Анализатор сигналов № 9030А (рег. № 69527-17): диапазон частот от 3 Гц до 50 ГГц,
7.4, 7.5	абсолютная погрешность измерения уровня ±0,19 дБ/мВт, EVM: MSK, MSK2: 0,5-
	1,4(скз), BPSK, QPSK: 0,5-1,0(скз)

3.2 Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характери-

стик с требуемой точностью.3.3 Применяемые при поверке средства измерений и рабочие эталоны должны быть поверены и иметь свидетельства о поверке с неистекшим сроком действия на время проведения поверки или оттиск поверительного клейма на приборе или в документации.

4 Требования безопасности при поверке

4.1 При проведении операций поверки должны быть соблюдены меры безопасности, указанные в соответствующих разделах эксплуатационной документации на средства измерений, используемых при поверке.

4.2 К проведению поверки E7515A допускается инженерно-технический персонал со среднетехническим или высшим радиотехническим образованием, имеющим опыт работы с радиотехническими установками, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке и имеющий право на поверку (аттестованными в качестве поверителей).

5 Условия поверки

5.1. При проведении поверки должны соблюдаться нормальные условия по ГОСТ 22261-94:

 - температура окружающего воздуха
 (25±5) °C;

 - относительная влажность воздуха
 от 30 до 80 %;

 - атмосферное давление
 от 84,0 до 106,7 кПа;

 - напряжение питающей сети
 (220±20) В;

 - частота питающей сети
 (50±0,5) Гц.

6 Подготовка к поверке

6.1 Поверитель должен изучить руководство по эксплуатации или техническое описание поверяемого E7515A и используемых средств поверки.

6.2 Поверяемая Е7515А должна быть выдержана в помещении в расположении средств поверки не менее 2-х часов.

6.3 E7515A и средства поверки должны быть подготовлены к работе в соответствии с РЭ.

7 Методы (методики) поверки

7.1 Внешний осмотр

7.1.1При внешнем осмотре проверить:

- отсутствие механических повреждений и ослабление элементов, чёткость фиксации их положения;

- чёткость обозначений, чистоту и исправность разъёмов и гнёзд, наличие и целостность пломб;

- комплектность согласно требованиям эксплуатационной документации;

- наличие маркировки согласно требованиям эксплуатационной документации.

7.1.2 Установка, не удовлетворяющая данным требованиям, бракуется и направляется в ремонт.

7.2 Опробование Е7515А

7.2.1 Включить Е7515А и дать прогреться в течение 30 минут.

7.2.2 Проверить загрузку ОС Windows.

7.2.3 В случае успешной загрузки выбрать и запустить режим полной калибровки.

7.2.4 Результаты поверки считать положительными, если загрузка OC Windows и полная калибровка завершились успешно.

7.3 Идентификация программного обеспечения

7.3.1 Для проверки установленного на Е7515А программного обеспечения использовать следующий порядок действий

- проверить номера версий ПО;

- проверить работоспособность системы.

7.3.2 Результаты поверки считать положительными, если процедура самопроверки завершается успешно.

7.4 Определение диапазона и относительной погрешности установки и измерения уровня выходного сигнала

7.4.1 Соединить оборудование в соответствии с рисунком 1. При измерениях использовать измерительные преобразователи мощности N8482A.

Рисунок 1.

7.4.2 Запустить программу Keysight Control Panel и нажать кнопку Application Manager (рисунок 2).

Рисунок 2.

7.4.3 Выбрать режим, соответствующий двум независимым сотам (второй сверху на рисунке 2), сконфигурированным для формата LTE, и запустить конфигурирование, нажав кнопку Start (рисунок 3), после чего будет запущено два окна с установками формируемого сигнала для приемопередатчиков А и В (рисунок 4).

Рисунок 3.

🖕 Keysight E7530A LTE/LTE-A Test Ap	plication	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.							a construction in the second	Co 🛛 🖬
	ower	-85.00 dBar1944z	PCC	/ FDD	2 (()))) Pones	-85.00 dB 915	H2	SCC/FDD	Main
	DARFON LARFON LLL BARFON	300 18300	Di GW Band	10 мн. 1		JARFO LARFO	n 300 n 18300		East 1	Cell Or
Conlig Identifies C	artier Aggreg	gation Message :	3ບຄາກາສາ ງ	د Keysight Con	troi Pane				_ ×	Connec
BSE Mode Selection	Stack		•	Application Manager			Stand-al	one	Array	
Cell Power	85 00	dBm/15kHz 57.22	dBm/1	yaan m		Applicat	on Manager		œ۲.	
Frequency / Duplex Mode				1.77					tor diany:	
Duplex Mode / Band	FDD	♥ 1	ſ		E					addver
Downlink Bandwidth:	10 MHz		•		Update			E75	30A	
Downlink EARFCN	300		Minzi Minzi		Stop			LTE/LT Test A	E-Advanced	ion Test
Simulated Path Loss			dB St	atus I (onfejazation)			1.7.1.9		
Reference Signal Power (SIB2):	18		dBm			A				
TDD Specific Configuration					1.0E-				- The second sec	I. Ix
Frame Configuration					Auto-Start	Lar J	Rad A			rements
	in sta	ע צ ע ג ע ע	Т.		Auto Start	x :		DOWNLD	AD YOUR NEXT & INSIGHT	Rx
						Determining o Instalking excit Accessing to Ohecking for Initialization o Rebooting L2	configuration information, eption handlers, infiguration settings, duplicate processes, omplete,			Ulikty
Cell Rovier Control PHY	- School ala			System	UE info 3	Careel	ninaa moastes 204-2017			
	Anterio Galini Anterio Galini								Local	

.

Рисунок 4.

.

7.4.4 Выбрать режим Non Signaling в поле BSE Mode Selection (рисунок 5).

Keysight E/530A LTE/LTE-A Test App	plication					Carol and Sec.
	Power -85.00 dBa/1944; DL EARFON 300 (I) EARFON 18300	PCC / FDD UL BW: 10 MHz Band 1		Power -85.00 dBm/15k C1 EAERCN 300 C1 EAERCN 18300	Hz SCC/FDD DL EW 10 MHz Band 1	Main Cell On
Config Identifies Ca	amer Aggregation Message Su				ang na sana ang ang ang ang ang ang ang ang ang	Connecti
BSE Mode Selection	Stack 🔻	Test Mode				
Cell Power	Stack New Segredup	dBm/10MHz				
Duplex Mode / Band	Scenano CW		Frequency Setting Method	EARFON		Handoven
Downlink Bandwidth	10 MHz ▼		Uplink Bandwidth:	10 MHz	tana ang tang tang tang tang tang tang t	
Downlink EARFCN	300 - 2465 (3006)	50H: #	Uplink EARECN:	18300	1050000 NH:: ▼	Function Test
Simulated Path Loss		dB				
Reference Signal Power (SIB2)	, , , , , , , , , , , , , , , , , , ,	d₿m	Cyclic Prefix	Normal		
TDD Specific Configuration						Тx
Frame Configuration			Special Subframe Configur	ation: 6		Measurements
	1. s u u o s u o s				3 Symbols	Rx
						Measurements
						Utility
Cell Power Control PFY	Scheduling MAC/RLC/PDCP	RRC/NAS System	u UE Info IVS BL	ER/Tput CSI Tx Meas	Assisted Tx Meas	
					Local .	

Рисунок 5.

7.4.5 Выбрать частотный диапазон сети LTE, содержащий требуемый для анализа сигнал 0 дБ/мВт, 300 МГц, и в ячейке Band установит диапазон в соответствии с РЭ на установку E7515A (рисунок 6).

Keysight E7530A LTE/LTE-A Test App	lication							1997 - Sec. 199	d ^{\$} 1	
	Power.	-85.0	00 dBm/15kHz	PCC/	FDD		Power	-85.00 dBm/ 19kHz	SCC/FDD	Main
	EL LARFON	30	00	EW	0 MHz	A	di Earicn	300	BW: 10 MHz	Coll On
	ul. Earfon	1830)0	6and	1	08-F	UL EARFON	18300	Band 1	-
Conlig Identities Ca	utier Aggre	gation	Message Si	ummary		e unit i fra fride basista fraffi a er forfak fak		an ann an tha sao an tha an		Connect
BSE Mode Selection	Non Sign	aling	· · · · · · · · · · · · · · · · · · ·	Test M	ode					
Cell Power	-85.00	dBm/1	5kHz -57.22	dBm/10MHz						
Frequency / Duplex Mode										
Duplex Mode / Band	FDD	•	6		Freque	ncy Setting Metho	d E	ARFCN	• Symple	
Downlink Bandwidth	10 MHz			7	8		Step 1	MHz		
Downlink EARFCN	300		2140.000000				66	00 COORD 1 CO	illa 🕈	Function Test
				4	5	6				
Simulated Path Loss										
Reference Signal Power (SIB2)	18			1	2	3	965 C.9	na	•	
TDD Specific Configuration				0	1000					Τx
Frame Configuration						and the second second	б _{аст} .			Measurements
	o s i	P U (D3.8.4.	BkSp	•	-			Symbols	Rx Measurements
				· · · · · · · · · · · · · · · · · · ·						
				Cut	сору	Paste	1			Utility
	Caine) A Paris			Clear	F	nter	* *			
Cell Power Control PPY	Schedul	ing M	ACREÓPUOP				Na ku shi	CSI Tx Meas		

7.4.6 Нажать кнопку Cell On и запустить формирование/анализ сигнала по порту ТХRХ1 приемопередатчика В (рисунок 7).

	Power fu	-85.00 dBm+16kHz	PCC/F	DD [2]	(((*)))	Power UL	-85.00 dBm/15kHz	SCC/FD	D	Main
	EARFON UI EARFON	2700 20700	Ew 10) мнг б		EARFON UL EARFON	300 18300	BW 10 M	112	Cell Off
Conig Identifies C	arrier Aggreg	ation Message Si	ummary		- 165 v.a. (1889). 1865 v.a. (1889).	sigen (1861) in 1.180 (1716-1716-17	te se og ser en fredstate skeld ak en er stander ak er talende skelde som	ana an an ann ddon y brond ac di sais	~*************************************	Connect►
BSE Mode Selection:	Non Signa	ling	• Katiya							
Cell Power	85.00	dBnv15kHz 57,22	dBnv10MHz							
Frequency / Duplex Mode Duplex Mode / Band				Frequency	Setting Methor	t EAI	RECH	•		
Downlink Bandwidth	form.		*	Uplink Ba	ndwidth			*		
Downlink EARFCN.	2700		Mer 💌	Uplink EA	RFCN:	207	00 000000000000000000000000000000000000	iMHr ▼		Function Test►
Simulated Path Loss			dÐ							
Reference Signal Power (SIB2)			d8m	Cyclic Pret	fix:			* · · · · · · · · · · · · · · · · · · ·		
TDD Specific Configuration										Tx.
Frame Configuration				Special S	ubframe Config	uration. 6				Measurements
		u d t a u u						Symbols		Rx Measurements
										Utinty►
Cal Power Control PHY	Schedulin	g MAC/REC/PDCP	RECINAS	System UE in	10 IVS	ILER/Tpul	CSI Tx Meas		•	

Рисунок 7.

7.4.7 Определить входной порт Cell A TXRX1 во вкладке System (рисунок 8).

ITE-ATEAN ITE-ATEAN POWER -85.00 dBm/15kHz PCC / FDD Main Image: Second
Image: Second Application 2700 Ew 10 MHz Image: Second Application Exact 1 20700 Ewd 6 Cel Cel Exact 1 20700 Ewd 6 Cel Cel Cel Exact 1 20700 Ewd 6 Cel Cel Cel Cel Cel Exact 1 20700 Ewd 6 Cel Cel Cel Cel Exact 1 20700 Ewd 6 Cel Cel Cel Cel Cel Exact 1 20700 Ewd 6 Cel Cel Cel Cel Exact 1 20700 Ewd 6 Cel Cel Cel Cel Cel Exact 1 Periodic Ingger Type (A) Frame Cel Con
Per Coming App Info Impairments Fader Config Error Log RUI Log Cable Loss Correction DL Antenna Configuration: 1 x 1 V Periodic Ingger Type (A) Frame Timing Configuration Expected Power Control RF Output Config Transceiver A Transceiver B DL Timing Offset: 0 Ts 0.00 µs Expected Input Power: Auto V Periodic Ingger Type (A) Frame UL Timing Offset: 0 Ts 0.00 ps Expected Input Power: 0.00 dBm V = -RF Output 1 = TXRX1 V UL Timing Offset: 0 Ts 0.00 ps Function Cell 1 Channel Emulator UXM Transceiver A Transceiver B Function VXM Define Digrama Digrama Digrama Digrama Digrama
Cable Loss Correction DL Antenna Configuration: 1 x 1 Penodic Ingger Type (A) Frame Timing Configuration: Expected Power Control Expected Input Power: Auto Image: Configuration of the second seco
Training Configuration Expected Power Control RF Output Config DL Timing Offset 0 Ts U.0 µs Expected Input Power: Auto Image: Control input Power: Im
DL Tining 0 Ts U.0 µs Expected Input Power: Auto V Transceiver A Transceiver B Manual Input Power: 3.) dBm V - RF Output 1 - TXRX1 V UL Timing 0 Ts C.c µs V - RF Output 2 - TXRX2 V Cell 1 V - RF Output 2 - TXRX2 V Cell 1 V Cell 1 V Ant. 15 Dypass - V Dypass - V Comment Emulator
Manual Input Power: D) dBm - RF Output 1 - TXRX1 UL Timing 0 Ts C. µs Cell 1 Channel Emulator UXM Cell 1 Channel Emulator Transceiver A Mat. 15 Dypass
Cell 1 Cell 1 Charnel Emulator Ant, 15 Dypass
Cel 1 Channel Emulator Transceiver A Transceiver B
Ant 16
DaRt
Cel Posser Control PE ^V 3cheduling MAC/RLC/PDOP RRC/AAS System LE rifo IV/S BLER/Tput C.SI Tx Meas

ł

Рисунок 8.

7.4.8 Запустить режим измерений, для чего нажать кнопку ТХ Measurements в правой части экрана и выбрать режим Monitor Spectrum (рисунок 9).

Рисунок 9.

7.4.9 Установить вручную частоту сигнала и запустить поиск пика по маркеру в открывшемся измерительном окне приложений Х-серии (рисунок 10).

Рисунок 10.

7.4.10 Установить на генераторе частоту сигнала 300 МГц, выходную мощность 6 дБ/мВт.

7.4.11 Измерить уровень мощности сигнала ваттметром, отрегулировать уровень мощности на генераторе таким образом, чтобы измеренное ваттметром значение мощности было 0 (± 0.05) дБ/мВт.

7.4.12 Нажать кнопку маркер дельта на установке Е7515А.

7.4.13 На генераторе установить уровень выходной мощности 9.5 дБ/мВт и измерить значение мощности ваттметром.

7.4.14 Отрегулировать уровень мощности Uycт на выходе генераторе таким образом, чтобы измеренное ваттметром значение мощности было 3.5 (±0.05) дБ/мВт.

7.4.15 Записать значение дельта маркера – Uизм.

7.4.16 Вычислить относительную погрешность установки и измерения уровня выходного сигнала измерения как Uизм-Uуст. Полученное значение погрешности измерения не должно превышать значение, указанное в таблице 1.

7.4.17 Провести измерения всех уровней мощности и частот, указанных в таблице 3. При измерении уровня мощности меньше 20 дБ/мВт использовать преобразователь 8481D.

7.4.18 Повторить все измерения для Cell Rx A TxRx2/R2, Cell B Rx TxRx1/R1, Cell Rx B TxRx2/R2.

Γ	аблица	3.	

Частота установлен-	Уровень мощности	Погрешность изме-	Предел допустимых
ного сигнала на гене-	сигнала, дБ/мВт	рения приемника, дБ	погрешностей изме-
раторе, МГц			рения уровня, ± дБ
	3,5		1
300	-10		1
	-20		1
	-30		1
	-40		1
	-53		1
1000	3,5		1

Частота установлен-	Уровень мощности	Погрешность изме-	Предел допустимых
ного сигнала на гене-	сигнала, дБ/мВт	рения приемника, дБ	погрешностей изме-
раторе, МГц			рения уровня, ± дБ
	-10		1
	-20		1
	-30		1
	-40		1
	-53		1
	3,5		
	-10		<u> </u>
1500	-20		1
	-30		
	-40		
	-53		l
	3,5		<u> </u>
	-10		
2000	-20		1
2000	-30		l
	-40		1
	-53		1
	3,5		1
	-10		1
2500	-20		1
	-30		1
	-40		<u> </u>
	-53		
	3,5		
	-10		
3000	-20		
	-30		1
	-40		1
	-53		1
	3,5		1
	-10		<u> </u> 1
3500	-20		1
	-30		<u> </u>
	-40		1
	-53		1
	3,5		I
	-10		1
4000	-20		1
	-30		<u> </u>
	-40		
	-33		
	5,5		
	-10		<u> </u>
4500	-20	· · · · · · · · · · · · · · · · · · ·	<u>l</u> 1
	-50		1
	-40		<u>l</u> 1
5000	-33		<u>l</u> 1
5000	3,5		

`

.

,

Частота установлен-	Уровень мощности	Погрешность изме-	Предел допустимых
ного сигнала на гене-	сигнала, дБ/мВт	рения приемника, дБ	погрешностей изме-
раторе, МГц			рения уровня, ± дБ
	-10		1
	-20		1
	-30		1
	-40		1
	-53		1
	3,5		1
	-10		1
5500	-20		1
5500	-30		1
	-40		1
	-53		1
	3,5		1
	-10		1
(000	-20		1
6000	-30		1
	-40		1
	-53		1

.

7.4.19 Определение диапазона и относительной погрешности установки уровня выходного сигнала

7.4.20 Выбирать тип выходного сигнала CW на вкладке Cell в поле BSE Mode Selection установки E7515A (рисунок 11), после чего можно одновременно задавать значения уровней и частоты выходного сигнала для двух пар выходов (TX1 и TXRX1, TX2 и TXRX2). При этом для второй пары частота задаётся в виде смещения (Δ F) и не может превышать допустимой полосы частот приемопередатчика (±50 МГц) (рисунок 12).

	Fund -57.22 dBa Fill EAPEN 300 UI EAPECH 18300	РСС / FDD DV Bvv 10 мн Band 1		Powe: -85.00 dbm/13kHz fu EARICI3 300 RE EARFLN 18300	SCC/FDD BL BW 10 MHZ Eard 1	Main Cell On
Config Identifies C. DSE Mode Selection Cell Power.	amer Aggregation Message Stack Stack Non Ognering	▼ Test Mode. dBm/10MH2				Conrect
Duplex Mode / Band Downlink Bandwidth	55 елано 18 МНz	uidi ▼	Frequency Setting Method Up ink Bandwidth	EARECN 13 MHz		Handover
Downlink EARFCN	0001123 frat< C0C		Upink EARFCN.	* 8300 ***********************************	61. B412 * 1	Function Test
Simulated Path Loss. Reference Signal Power (SB2)	112.00 113.00 118.00	dB dBm	Cyclic Prefix:	n en		
TDD Specific Configuration Frame Configuration			Special Subframe Configu	ration:		Tx Measurements
	18. K 4 G 2 D 2 D U				Symbols	Ro Measurements
						Utiëty
Power Control PHY		P PRC/NAS System	en UEIrfo INS	LER(Tput CSI Triffees ,	ussisted Tri Vézis	

Рисунок 11.

	Output 1 tower •85.00 dtm Yrog 1000.0000 MHz	Ouput? Pawa -85.00 Atrep 0.0000) dBn) Mr.7		Nelf 2 s natazer 1956 Mada 5 1816 Nada 5 1819 N	table when electrat W.
BSF Morte Salection RF Output1 (A)	CW		RF Output2 (A)		
CW Power	-85 00	dBm	CWP	17 191	-85 50	diBro
CW Frequency	1000.050000	MHz 🔻	CW Fn	equency Offset	0 000000	MHz 🔻

Рисунок 12.

7.4.21 Выбрать необходимый порт, перейдя во вкладку System (рисунок 13).

	Gutput 1 Output 2	Cell 2 is no available when	Main
	Power -85.00 dEm Power -85.00 dEm freq 1000.0000 MHz Afreq 0.0000 MHz	55C Mide Salertani E Kiseto (W	
RF Carlig App Info	Impairments Fader Config Error Log RUI Lo		
Cable Loss Correction	Di. Antenna Configuration 1 x 1		
Timing Configuration	Expected Power Control	FCF Cutput Config	
DL Taning g. Ts	Expected Input Power Auto	Transceiver A Transceiver B	
	Manual Input Power: 0	dBm TXRX1 ▼ RF Output 1	
UL Timing 0 Ts Offset:	(244 - 63)	TXRX2 T RF Output 2 *	
Cul I			
Cel 1	Channel Croulator	Transcenera A	
(Ant 1	Bypass		
	an Bara san ang Bara sa		Tx Noncursmonts
n se			nicasurentents
		e oc	
			Utility
Ce: System Tr Meas			
SYSTem[INSTrument0] PORT[TRXA) OUTPut2	Local	

Рисунок 13.

7.4.22 На установке Е7515А установить значение уровня сигнала 0 дБ/мВт (Uycr), частоту 300 МГц.

7.4.23 Измерить уровень мощности Uим ваттметром и занести измеренное значение в таблицу 2.

7.4.24 Подать тот же сигнал на анализатор спектра N9030A.

7.4.25 На анализаторе установить центральную частоту 300 МГц, полоса обзора 0 Гц, RBW 10 Гц, нажать Peak Search, Marker -> Delta. После этого с шагом 10 дБ/мВт уменьшать сигнал, измеряя на анализаторе спектра уровень мощности сигнала (Uизм).

7.4.26 Рассчитать погрешность измерения по формуле Иизм-Иуст-Иим.

7.4.27 Полученные значение занести в таблицу 4.

7.4.28 Повторить измерения для всех частот, указанных в таблице 4. Повторить измерения для Cell A Tx1Rx1, Cell A Tx1Rx2, Cell A Tx2, Cell B Tx1, Cell B Tx1Rx1, Cell B Tx1Rx2, Cell B Tx2. При уровнях ниже -70 дБ/мВт на анализаторе спектра необходимо включить предусилитель сигнала.

Таблица 4.				
Частота установлен-	VPORCHL MOUTHOCTH		Предел допустимых	
ного сигнала на гене- раторе, МГц	го сигнала на гене- раторе, МГц сигнала, дБ/мВт		погрешностей, ± дБ	
	CellA	Tx1		
300	0		1	

Частота установлен- ного сигнала на гене-	Уровень мощности сигнала, дБ/мВт	Погрешность изме- рения приемника, дБ	Предел допустимых погрешностей, ± дБ
раторе, мп ц	-10		1
	-20		1
	-30		1
	-40		1
	-50		1
	-60		1
	-70		1
	-80		1
	-90		1
	-100		1
	-110		1
	0		1
	-10		1
	-20		1
	-30		1
	-40		1
1000	-50		1
1000	-60		1
	-70		1
	-80		1
	-90		1
	-100		1
	-110		1
······································	0		1
	-10		1
	-20		1
	-30		1
	-40		1
2000	-50		1
	-60		1
	-70		1
	-80		1
	-90		1
	-100		1
	0		1
	-10		1
	-20		1
	-30		1
	-40		1
3000	-50		1
	-60		
	-70		
	-80		
	-90		<u>l</u>
	-100		
4000	0		
4000	-10		<u> </u>
	-20		1

• •

Частота установлен- ного сигнала на гене-	Уровень мощности сигнала, дБ/мВт	Погрешность изме- рения приемника, дБ	Предел допустимых погрешностей, ± дБ
раторе, ин ц	-30		1
	-40		1
	-50		1
	-60		1
	-70		1
	-80		1
	-90		1
	-100	······································	1
	0		1
	-10		1
	-20		1
	-30		1
	-40		1
5000	-50		1
	-60		1
	-70		1
	-80		1
	-90	· · · · · · · · · · · · · · · · · · ·	1
	-100		1
	0		1
	-10		1
	-20		1
	-30		1
	-40		1
6000	-50		1
	-60		1
	-70		1
	-80	······································	1
	-90		1
	-100		1
	CellA 7	x1Rx11	
·····	0		1
	-10		1
	-20		1
	-30		1
	-40		1
500	-50		1
500	-60		1
	-70	· · · · · · · · · · · · · · · · · · ·	1
	-80		1
	-90		1
	-100		1
	-110		1
	0		1
	-10		1
1500	-20	······································	1
	-30		1
	-40		1

د •

Частота установлен- ного сигнала на гене- раторе МГи	Уровень мощности сигнала, дБ/мВт	Погрешность изме- рения приемника, дБ	Предел допустимых погрешностей, ± дБ
parope, mi q	-50		1
	-60		1
	-70		1
	-80		1
	-90	· · · · · · · · · · · · · · · · · · ·	1
	-100		1
	-110	· · · · · · · · · · · · · · · · · · ·	1
	0		1
	-10		1
	-20		1
	-30		1
	-40		1
2500	-50		1
	-60		1
	-70		1
	-80		1
	-90		1
	-100		1
	0		1
	-10		1
	-20		1
	-30		1
	-40		1
3500	-50		1
	-60		1
	-70		1
	-80		1
	-90		1
	-100		1
	0		1
	-10		1
	-20		1
	-30		1
	-40		1
4500	-50		1
	-60	· · · · · · · · · · · · · · · · · · ·	1
	-70		<u>l</u>
	-80		
	-90		
	-100		<u> </u>
	0		<u> </u>
	-10		
	-20		
5500	-30		
	-40		
	-50		
	-00		 1
	-/0		1

· ,

Частота установлен- ного сигнала на гене- раторе, МГц	Уровень мощности сигнала, дБ/мВт	Погрешность изме- рения приемника, дБ	Предел допустимых погрешностей, ± дБ	
	-80		1	
	-90		1	
	-100		1	

Результаты поверки считать положительными, если значения погрешности измерения приемника не превышают допустимых значений, указанных в графе 4.

7.5 Определение среднеквадратического значения величины модуля вектора ошибки (EVM) и фазовой ошибки

7.5.1 Соединить E7515A и анализатор сигналов N9030A в соответствии со схемой, представленной на рисунке 14.

Рисунок 14.

7.5.2 Выбрать режим выхода TXRX1 приемопередатчика А. Активировать режим для двух независимых LTE-сот по приемопередатчикам А и В (см. описание выше). После этого в поле BSE Mode Selection для приемопередатчика А выбрать режим Non Signaling и запустить непрерывное формирование сигнала LTE в диапазоне частот (рисунок 15).

	Power -37.78 dBacTKHz B1 EARECN 2700 IN EARECN 20700	РСС / FDD DL BW 10 мен- ∧ 6		Power -85.00 dBm/ 5kHz GL EARFEN 300 H EARFEN 18300	SCC / FDD OL EW 10 Milz Eans 1	Main Cell Off
Config Identities Ca	amer Aggregation Message Su	mmary				Connect
BSE Mode Selection:	Non Signaling •	last Mode				
Cell Power	37.78 dBm/15kHz 10.00	dBn/10MHz				
Frequency / Duplex Mode						
Duplex Mode / Bard		É.	requency Setting Method	EARFCN	•	
Downlink Bandwidth	10 NH 2	L.	plink Bandwidth:		*	
Downlink EARECN	2700	i internet in the second se	Iplink EARFCN	20700 335. 500		Function Tes
Simulated Path Loss		dB and the second se				
Reference Signal Power (SID2)		đBm €	yclic Prefix:			
TDD Specific Configuration						T
Frame Configuration:		1	Special Subframe Config	uration.		Measurements
					Symbols	R
						procession address and an address
						Utilit
C.L. Power Control PHM	Scheduling WAC/RLC/PDCP	RRC/NAS	UE infe	NER/Tput CSI TX Meas		
SSECONSIDISFLected ACTive	STATE				local	

Рисунок 15.

7.5.3 Выбрать поле BSE Mode Selection для приемопередатчика В в режиме CW (чтобы исключить формирование дополнительного сигнала downlink) (рисунок 16).

Keysight E7530A LTE/LTE-A Test A	pplication		CALL STREET	I THE REAL PROPERTY			0 9 43
LTE / LTE A	Output 1 Power -85.00 Freq 800.0000	Output 2 d Ban Power -85 MHz & Freq 0.00	.00 dBm 000 MHz	Get 2 is not av BSE Mode is set to	ailable when Selection I CW		Main
ESE Mode Selection	cw						
RF Output1 (A):			RF Output2 (Ay				
CW Power	-85.00	dîm	CW Power	85.00		dÐm	
CW Frequency:	800.00000	MHz +	CW Frequency Offset	0 000000	MH2. •		
		States and the					
							Tx Measurements
							Utility
Ort System Tubers				University of			
Hand Hand						Local	

Рисунок 16.

7.5.4 Устанавливать на выходе тестера сигнал с частотой 750, 2150 и 3550 МГц с заданными параметрами модуляции (WCDMA: Modulation Format QPSK, Symbol Rate 3,84 МГц, Span 5 МГц, Res BW 150,888 кГц).

7.5.5 На анализаторе сигналов N9030A устанавливать последовательно центральную частоту в соответствии с частотой выходного сигнала тестера 750, 2150 и 3550 МГц. Запустить на анализаторе сигналов режим цифровой демодуляции сигналов. Выбрать предварительные настройки для стандарта WCDMA: Modulation Format QPSK, Symbol Rate 3,84 МГц, Span 5 МГц, Res BW 150,888 кГц

7.5.6 Измерить и записать значение EVM.

7.5.7 Остановить вывод сигнала на Е7515А.

7.5.8 Выбрать в параметрах соответсвующий выход Cell A Tx1, Cell A Tx1Rx1, Cell A Tx1Rx1, Cell A Tx1Rx2, Cell B Tx2, Cell B Tx1, Cell B Tx1Rx1, Cell B Tx1Rx2, Cell B Tx2.

7.5.9 Измерить и записать значение Phase Err.

7.5.10 Остановить вывод сигнала на Е7515А.

Результаты поверки считать положительными, если значение модуля EVM при воспроизведении сигнала стандарта WCDMA не превышает 3,5 % rms.

8 Оформление результатов поверки

8.1 При положительных результатах поверки на установку Е7515А выдают свидетельство установленной формы.

8.2 На оборотной стороне свидетельства о поверке записывают результаты поверки.

8.3 В случае отрицательных результатов поверки применение установки E7515A запрещается, на нее выдаётся извещение о непригодности к применению с указанием причин непригодности.

Начальник НИО-1

Cumumby

О.В. Каминский