

ООО Центр Метрологии «СТП»

Регистрационный номер записи в реестре аккредитованных лиц RA.RU.311229

Государственная система обеспечения единства измерений

Система измерительная массового расхода и массы бензина газового стабильного (БГС) цеха № 07 3Б ОАО «ТАИФ-НК»

МЕТОДИКА ПОВЕРКИ

МП 1201/1-311229-2018

СОДЕРЖАНИЕ

1 Programme	3
1 Введение	ر
2 Операции поверки	3
3 Средства поверки	3
4 Требования техники безопасности и требования к квалификации поверителей	3
5 Условия поверки	4
6 Подготовка к поверке	4
7 Проведение поверки	4
8 Оформление результатов поверки	6

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на систему измерительную массового расхода и массы бензина газового стабильного (БГС) цеха № 07 3Б ОАО «ТАИФ-НК» (далее ИС), изготовленную и принадлежащую ОАО «ТАИФ-НК», г. Нижнекамск и устанавливает методику первичной поверки до ввода в эксплуатацию и после ремонта, а также методику периодической поверки в процессе эксплуатации.
- 1.2 Допускается проводить поверку ИС в меньшем диапазоне измерений на основании письменного заявления владельца ИС с соответствующим занесением диапазонов измерений в свидетельство о поверке.
 - 1.3 Интервал между поверками ИС 2 года.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены следующие операции:

- проверка технической документации (пункт 7.1);
- внешний осмотр (пункт 7.2);
- опробование (пункт 7.3);
- определение метрологических характеристик (пункт 7.4);
- оформление результатов поверки (пункт 8).

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки ИС применяют эталоны и средств измерений (далее – СИ), приведенные в таблице 3.1.

T	1	1	^	OTT
Гаолица	3.	. 1	 Основные эталоны и 	СИ

Номер пункта методики	Наименование и тип основного и вспомогательного средства поверки и метрологические и основные технические характеристики средства поверки
5	Барометр-анероид М-67 с пределами измерений от 610 до 790 мм рт.ст., погрешность измерений ± 0.8 мм рт.ст., по ТУ 2504 $-1797-75$
5	Психрометр аспирационный M34, пределы измерений влажности от 10 до 100 %, погрешность измерений ±5 %
5	Термометр ртутный стеклянный ТЛ-4 (№ 2) с пределами измерений от 0 до плюс 55 °C по ГОСТ 28498–90. Цена деления шкалы 0,1 °C
7.4	Калибратор многофункциональный MC5-R-IS (далее – калибратор): диапазон воспроизведения силы постоянного тока от 0 до 25 мА, пределы допускаемой основной погрешности воспроизведения $\pm (0.02 \%$ показания $\pm 1 \text{ мкA}$)

- 3.2 Допускается использование других эталонов и СИ с характеристиками, не уступающими характеристикам, указанным в таблице 3.1.
- 3.3 Все применяемые эталоны должны быть аттестованы; СИ должны иметь действующий знак поверки и (или) свидетельство о поверке, и (или) запись в паспорте (формуляре) СИ, заверенной подписью поверителя и знаком поверки.

4 ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 При проведении поверки должны соблюдаться следующие требования:
- корпуса применяемых СИ должны быть заземлены в соответствии с их эксплуатационной документацией;
- ко всем используемым СИ должен быть обеспечен свободный доступ для заземления, настройки и измерений;

- работы по соединению вспомогательных устройств должны выполняться до подключения к сети питания;
- обеспечивающие безопасность труда, производственную санитарию и охрану окружающей среды;
- предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и эксплуатационной документацией оборудования, его компонентов и применяемых средств поверки.
 - 4.2 К работе по поверке должны допускаться лица:
 - достигшие 21-летнего возраста;
 - прошедшие инструктаж по технике безопасности в установленном порядке;
- изучившие эксплуатационную документацию на ИС, СИ, входящие в состав ИС, и средства поверки.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °C 20±5

относительная влажность, %
 от 30 до 80

– атмосферное давление, кПа от 84 до 106

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие подготовительные операции:

- проверяют заземление СИ, работающих под напряжением;
- эталонные СИ и вторичные измерительные преобразователи ИС устанавливают в рабочее положение с соблюдением указаний эксплуатационной документации;
- эталонные СИ и вторичные измерительные преобразователи ИС выдерживают при температуре, указанной в разделе 5, не менее трех часов, если время их выдержки не указано в эксплуатационной документации;
- осуществляют соединение и подготовку к проведению измерений эталонных СИ и вторичных измерительных преобразователей ИС в соответствии с требованиями эксплуатационной документации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Проверка технической документации

- 7.1.1 При проведении проверки технической документации проверяют наличие:
- руководства по эксплуатации на ИС;
- паспорта на ИС;
- паспортов (формуляров) СИ, входящих в состав ИС;
- действующего знака поверки и (или) свидетельства о поверке, и (или) записи в паспорте (формуляре) СИ, заверенной подписью поверителя и знаком поверки у СИ, входящих в состав ИС, кроме барьеров искрозащиты;
 - свидетельства о предыдущей поверке ИС (при периодической поверке);
 - методики поверки на ИС.

 Π р имечание — Π ри наличии действующих свидетельств о поверке на барьеры искрозащиты процедуры по пункту 7.4.1 допускается не проводить.

7.1.2 Результаты проверки считают положительными при наличии всей технической документации по пункту 7.1.1.

7.2 Внешний осмотр

- 7.2.1 При проведении внешнего осмотра ИС контролируют выполнение требований технической документации к монтажу СИ, измерительно-вычислительных и связующих компонентов ИС, проверяют отсутствие механических повреждений СИ, четкость надписей и обозначений.
- 7.2.2 При проведении внешнего осмотра ИС устанавливают состав и комплектность ИС. Проверку выполняют на основании сведений, содержащихся в паспорте на ИС. При этом контролируют соответствие типа СИ, указанного в паспортах на СИ, записям в паспорте на ИС.
- 7.2.3 Результаты проверки считают положительными, если монтаж СИ, измерительновычислительных и связующих компонентов ИС, внешний вид и комплектность ИС соответствуют требованиям технической документации, отсутствуют механические повреждения СИ, надписи и обозначения четкие.

7.3 Опробование

7.3.1 Проверка идентификационных данных программного обеспечения

- 7.3.1.1 Подлинность программного обеспечения (далее ПО) ИС проверяют сравнением идентификационных данных ПО ИС с соответствующими идентификационными данными, зафиксированными при испытаниях в целях утверждения типа и отраженными в описании типа ИС. Проверку идентификационных данных ПО ИС проводят в соответствии с эксплуатационной документацией на ИС.
- 7.3.1.2 Проверяют возможность несанкционированного доступа к ПО ИС и наличие авторизации (введение пароля), возможность обхода авторизации, проверка реакции ПО ИС на неоднократный ввод неправильного пароля.
- 7.3.1.3 Результаты опробования считают положительными, если идентификационные данные ПО (номер версии) ИС совпадают с исходными, указанными в описании типа на ИС, исключается возможность несанкционированного доступа к ПО ИС, обеспечивается авторизация.

7.3.2 Проверка работоспособности

- 7.3.2.1 Приводят ИС в рабочее состояние в соответствии с эксплуатационной документацией. Проверяют прохождение сигналов калибратора, имитирующих входные сигналы ИС. Проверяют на мониторе операторской станции управления ИС показания по регистрируемым в соответствии с конфигурацией ИС параметрам технологического процесса.
- 7.3.2.2 Результаты опробования считают положительными, если при увеличении и уменьшении значения входного сигнала ИС соответствующим образом изменяются значения измеряемой величины на мониторе операторской станции управления.

Примечание – Допускается проводить проверку работоспособности ИС одновременно с определением метрологических характеристик по пункту 7.4 данной методики поверки.

7.4 Определение метрологических характеристик

7.4.1 Определение приведенной погрешности преобразования входного аналогового сигнала силы постоянного тока (от 4 до 20 мА) в значение измеряемого параметра

- 7.4.1.1 Отключают первичный измерительный преобразователь измерительного канала и к соответствующему каналу подключают калибратор, установленный в режим имитации сигналов силы постоянного тока (от 4 до 20 мА), в соответствии с инструкцией по эксплуатации.
- 7.4.1.2 С помощью калибратора устанавливают электрический сигнал силы постоянного тока. В качестве реперных точек принимают точки 4; 8; 12; 16; 20 мА.
- 7.4.1.3 Считывают значения входного сигнала с монитора операторской станции и в каждой реперной точке рассчитывают приведенную погрешность $\gamma_{\rm I}$, мA, по формуле

$$\gamma_{\rm I} = \frac{{\rm I}_{_{\rm H3M}} - {\rm I}_{_{\rm 9T}}}{16} \cdot 100 \,, \tag{1}$$

где $I_{\text{изм}}$ — значение тока, соответствующее показанию измеряемого параметра ИС в *i*-ой реперной точке, мА;

 I_{31} — показание калибратора в *i*-ой реперной точке, мА.

7.4.1.4 Если показания ИС можно просмотреть только в единицах измеряемой величины, то при линейной функции преобразования значение тока $I_{\nu\nu}$, мA, рассчитывают по формуле

$$I_{\text{\tiny M3M}} = \frac{16}{X_{\text{\tiny max}} - X_{\text{\tiny min}}} \cdot (X_{\text{\tiny M3M}} - X_{\text{\tiny min}}) + 4, \qquad (2)$$

где X_{max} – значение измеряемого параметра, соответствующее максимальному значению диапазона аналогового сигнала силы постоянного тока (от 4 до 20 мA), в абсолютных единицах измерений;

X_{min} – значение измеряемого параметра, соответствующее минимальному значению диапазона аналогового сигнала силы постоянного тока (от 4 до 20 мА), в абсолютных единицах измерений;

X_{изм} – значение измеряемого параметра, соответствующее задаваемому аналоговому сигналу силы постоянного тока (от 4 до 20 мА), в абсолютных единицах измерений. Считывают с монитора операторской станции.

7.4.1.5 Результаты поверки считают положительными, если рассчитанная приведенная погрешность преобразования входного аналогового сигнала силы постоянного тока (от 4 до 20 мA) в значение измеряемого параметра не выходит за пределы $\pm 0.15 \%$.

7.4.2 Определение пределов относительной погрешности измерений массового расхода (массы) бензина газового стабильного

7.4.2.1 Пределы относительной погрешности измерений массового расхода (массы) бензина газового стабильного $\delta_{\scriptscriptstyle M}$, %, рассчитывают по формуле

$$\delta_{M} = \pm \sqrt{\delta_{o}^{2} + \left(\delta_{\partial M_{p}} \cdot \Delta p \cdot 10\right)^{2}}, \qquad (3)$$

где δ_o — пределы допускаемой основной относительной погрешности измерений счетчика-расходомера массового кориолисового ROTAMASS модели RCCT 39, %;

 $\mathcal{S}_{_{\partial M_{_{P}}}}$ — дополнительная погрешность измерений счетчика-расходомера массового кориолисового ROTAMASS модели RCCT 39, вызванная изменением давления рабочей среды на 0,1 МПа, %;

 Δp — изменение давления рабочей среды, МПа.

7.4.2.2 Результаты поверки считают положительными, если рассчитанные пределы относительной погрешности измерений массового расхода (массы) бензина газового стабильного не выходят за пределы ± 0.25 %.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки оформляют свидетельство о поверке ИС в соответствии с приказом Министерства промышленности и торговли Российской Федерации от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
- 8.2 Отрицательные результаты поверки ИС оформляют в соответствии с приказом Министерства промышленности и торговли Российской Федерации от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке». При этом выписывается извещение о непригодности к применению ИС с указанием причин непригодности.