УТВЕРЖДАЮ

Технический директор ООО «ИЦРМ»

м. С. Казаков мислытательный центр разработок в области метрологии» м. П.

Системы испытаний вторичных цепей тока 100ADM mk4 и 200ADM-Р Методика поверки

ИЦРМ-МП-033-18

Содержание

1 Вводная часть	3
2 Операции поверки	4
3 Средства поверки	4
4 Требования к квалификации поверителей	5
5 Требования безопасности	6
6 Условия поверки	6
7 Подготовка к поверке	6
8 Проведение поверки	6
9 Оформление результатов поверки	13

1 ВВОДНАЯ ЧАСТЬ

- 1.1 Настоящая методика поверки распространяется на системы испытаний вторичных цепей тока 100ADM mk4 и 200ADM-Р (далее системы), и устанавливает методы, а также средства их первичной и периодической поверок.
 - 1.2 Интервал между поверками 2 года.
 - 1.3 Основные метрологические характеристики приведены в таблицах 1-3.

Таблица 1 – Воспроизведение среднеквадратического значения силы переменного

тока частотой 50 Гц (модификации 100ADM mk4 и 200ADM-P)

Тока частотой 50 г ц (модификации тобАБМ пк- и 200АБМ-г)					
Верхний предел воспроизведе- ний, А	Разреше- ние, А	Значение то- ка срабаты- вания защи- ты, А	Пределы допускаемой абсолютной погрешности воспроизведений среднеквадратического значения силы переменного тока, мА	Время воспро- изведения, мс	
модификация 100ADM mk4					
2,000	0,001	2,2		20	
10,00	0,01	11	$\pm 0,005 \cdot I_{\text{B}}^{1)} +$	20	
20,00	0,01	22	+ 5 е.м.р. ²⁾	20	
100,0	0,1	110		20	
модификация 200ADM-P					
5,000	0,001	5,5		20	
20,00	0,01	22	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	
50,00	0,01	55	+ 5 e.м.p. ²⁾	20	
200,0	0,1	220		20	

Примечания:

²⁾ е.м.р. – единица младшего разряда.

Таблица 2 – Измерение временных интервалов (модификации 100ADM mk4 и 200ADM-P)

Наименование характеристики	Значение	
Диапазоны измерений временных интервалов, с	от 0 до 999,999 от 0 до 9999,99 от 0 до 99999,9	
Разрешение, мс: - для диапазона от 0 до 999,999 с - для диапазона от 0 до 9999,99 с - для диапазона от 0 до 99999,9 с	1 10 100	
Пределы допускаемой абсолютной погрешности измерений временных интервалов, с	$\pm 0,0001 \cdot t_{\text{изм}}^{1)} + 2^{2)} \text{ e.m.p.}^{3)}$	

Примечания:

 I_{B} — воспроизведенное среднеквадратическое значение силы переменного тока, A;

 $^{^{1)}}$ $t_{\text{изм}}$ — измеренное значение времени;

²⁾ для режима работы по току: 4 е.м.р.;

³⁾ е.м.р. – единица младшего разряда.

Таблица 3 – Метрологические характеристики модификации 200АDM-Р

Наименование параметра	Диапазон измерений	Разре- шение	Пределы допускаемой аб- солютной погрешности
Среднеквадратическое значение напряжения переменного тока	от 0 до 300 В	0,1 B	$\pm 0,007 \cdot U_{\text{изм}}^{1)} + 5 \text{ e.m.p.}^{2)} \text{ B}$
Напряжение постоянного тока	от 0 до 300 В	0,1 B	$\pm 0,007 \cdot U_{\text{изм}}^{1)} + 5 \text{ e.м.p}^{2)} \text{ B}$
Среднеквадратическое значение силы переменного тока	от 0 до 5 А включ. (CF ³⁾ <3) св. 5,000 до 9,999 А (CF ³⁾ <1,5)	0,001 A	$\pm 0,007 \cdot I_{\text{изм}}^{1)} + 5 \text{ e.м.р.}^{2)} \text{ A}$
Сила постоянного тока	от 0 до 9,999 А	0,001 A	$\pm 0.007 \cdot I_{\text{изм}}^{1} + 5 \text{ e.m.p.}^{2} \text{ A}$
Угол фазового сдвига	от -179,9 до +180,0°	0,1°	±3°
Частота переменного тока	от 45 до 100 Гц	0,01 Гц	±0,0002·f _{изм} 1) + + 1 е.м.р. ²⁾ Гц

Примечания:

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки выполняют операции, указанные в таблице 4.

Таблица 4

Наименование операции поверки	Номер пункта методики поверки	Необходимость выполнения	
		при первичной поверке	при периодической поверке
Внешний осмотр	8.1	Да	Да
Опробование и подтверждение соответствия программного обеспечения	8.2	Да	Да
Проверка электрического сопротивления изоляции	8.3	Да	Да
Проверка электрической прочности изоляции	8.4	Да	Нет
Определение метрологических характеристик	8.5	Да	Да

^{2.2} Последовательность проведения операций поверки обязательна.

3 СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки рекомендуется применять средства поверки, приведённые в таблице 5.
- 3.2 Применяемые средства поверки должны быть исправны, средства измерений поверены и иметь действующие документы о поверке. Испытательное оборудование должно быть аттестовано.
 - 3.3 Допускается применение аналогичных средств поверки, обеспечивающих

 $^{^{1)}}$ $U_{\text{изм}}$, $I_{\text{изм}}$, $f_{\text{изм}}$ — измеренные значения параметров напряжения электрического тока, силы электрического тока, частоты переменного тока соответственно;

²⁾ е.м.р. – единица младшего разряда;

³⁾ CF – коэффициент амплитуды.

^{2.3} При получении отрицательного результата в процессе выполнения любой из операций поверки системы бракуют и его поверку прекращают.

определение метрологических характеристик, поверяемых средств измерений с требуемой точностью.

Таблица 5

	лици э				
№	Наименование средства поверки	Номер пункта Методики	Рекомендуемый тип средства поверки и его регистрационный номер в Федеральном информационном фонде или метрологические характеристики		
	Основные средства поверки				
1	Калибратор	8.5.3-8.5.7	Калибратор универсальный 9100, рег. № 25985-09		
2	Трансформатор	8.5.1	Трансформатор тока измерительный переносной ТТИП, рег. № 39854-08		
3	Установка поверочная универсальная	8.5.1, 8.5.8	Установка поверочная универсальная УППУ-МЭ 3.1К, рег. № 39138-08		
4	Генератор сигналов	8.5.2	Генератор сигналов произвольной формы 33521B, рег. № 53565-13		
	Вспомогательные средства поверки (оборудование)				
5	Установка для проверки параметров электрической безопасности	8.3, 8.4	Установка для проверки параметров электрической безопасности GPT-79803, рег. № 50682-12		
6	ЛАТР однофазный	8.2-8.5	ЛАТР однофазный TSGC2-3B, диапазон напряжений вторичной обмотки от 0 до 230 B, мощность $2,5$ кВ·А		
7	Термогигрометр электронный	8.1-8.5	Термогигрометр электронный «CENTER» модель 313, рег. № 22129-09		

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К проведению поверки допускают лица, имеющие документ о повышении квалификации в области поверки средств измерений электрических величин.
- 4.2 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением до 1000 В с квалификационной группой по электробезопасности не ниже III.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.
- 5.2 Во избежание несчастного случая и для предупреждения повреждения поверяемой системы необходимо обеспечить выполнение следующих требований:
- подсоединение оборудования к сети должно производиться с помощью кабеля или адаптера и сетевых кабелей, предназначенных для данного оборудования;
- заземление должно производиться посредством заземляющего провода или сетевого адаптера, предназначенного для данного оборудования;
- присоединения поверяемой системы и оборудования следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах);
 - запрещается работать с оборудованием при снятых крышках или панелях;
 - запрещается работать с поверяемой системой в условиях температуры и

влажности, выходящих за допустимые значения, а также при наличии в воздухе взрывоопасных веществ;

- запрещается работать с поверяемой системой в случае обнаружения его повреждения.

6 УСЛОВИЯ ПОВЕРКИ

- 6.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха от +15 до +25 °C;
- относительная влажность воздуха от 30 до 80 %.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- изучить эксплуатационные документы на поверяемые системы, а также руководства по эксплуатации на применяемые средства поверки;
- выдержать системы в условиях окружающей среды, указанных в п. 6.1, не менее 1 ч, если они находились в климатических условиях, отличающихся от указанных в п. 6.1;
- подготовить к работе средства поверки и выдержать во включенном состоянии в соответствии с указаниями руководств по эксплуатации.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

При проведении внешнего осмотра систем проверяют:

- соответствие комплектности перечню, указанному в руководстве по эксплуатации;
 - соответствие серийного номера указанному в руководстве по эксплуатации;
 - чистоту и исправность разъемов;
 - маркировку и наличие необходимых надписей на системе;
- отсутствие механических повреждений и ослабление крепления элементов конструкции (повреждение корпуса, разъёма);
 - сохранность органов управления, четкость фиксаций их положений.

Результат внешнего осмотра считают положительным, если выполняются все вышеуказанные требования.

- 8.2 Опробование и подтверждение соответствия программного обеспечения.
- 8.2.1 Опробование проводят в следующей последовательности:
- 1) Подают напряжение питания на систему в соответствии с руководством по эксплуатации.
 - 2) При подаче напряжения питания происходит включение встроенного экрана.
- 3) Проверить функционирование встроенного экрана в соответствии с руководством по эксплуатации.

Результаты считают положительными, если при подаче питания на систему происходит включение встроенного экрана и функционирование встроенного экрана осуществляется в соответствии с руководством по эксплуатации.

8.2.2 Подтверждение соответствия программного обеспечения

Подтверждение соответствия программного обеспечения осуществляется в следующей последовательности:

1) Повторяют п. 8.2.1.

- 2) Для определения номера версии программного обеспечения (далее по тексту ПО) на дисплее системы при включении отображается наименование и номер версии ПО.
- 3) Сравнить номер версии ПО считанного с дисплея системы и указанного в описании типа.

Результаты считают положительными, если наименование и номер версии ПО совпадают с данными представленными в описании типа.

- 8.3 Проверку электрического сопротивления изоляции выполнять в следующем порядке:
- 1) Подготовить установку для проверки параметров электрической безопасности GPT-79803 (далее GPT-79803) в соответствии с руководством по эксплуатации.
- 2) Измерить поочередно электрическое сопротивление изоляции путем приложения напряжения постоянного тока равного 500 В в течение 1 мин между следующим цепями:
- между корпусом системы и каждым из контактов кабеля сетевого питания, соединяемых непосредственно с внешней сетью питания;
 - между силовыми и измерительными цепями системы;
 - между измерительными цепями и корпусом системы.
- 3) при необходимости восстановить соединения между системой и сетью питания.

Результаты проверки считать положительными, если все измеренные значения сопротивления изоляции не менее 20 МОм.

- 8.4 Проверку электрической прочности изоляции выполнять в следующем порядке:
- 1) подготовить GPT-79803 в соответствии с руководством по эксплуатации для проведения испытания электрической прочности изоляции со следующими параметрами: время выдержки выходного напряжения 60 секунд, скорость увеличения выходного напряжения не более 500 В за 1 с со значением выходного напряжения 1500 В между цепями, указанными в п. 8.3;
 - 2) провести испытание электрической прочности изоляции;
- 3) по окончании испытания при необходимости восстановить соединения между системой и сетью питания.

Результаты проверки считать положительными, если при проведении проверки не произошло пробоя электрической изоляции.

- 8.5 Определение метрологических характеристик
- 8.5.1 Определение абсолютной погрешности воспроизведения среднеквадратического значения силы переменного тока частотой 50 Гц
- 8.5.1.1 Определение абсолютной погрешности воспроизведения среднеквадратического значения силы переменного тока частотой 50 Гц для диапазона от 0 до 100 А для модификации 100ADM mk4) проводить при помощи прибора электроизмерительного эталонного многофункционального «Энергомонитор-3.1К» (далее Энергомонитор) из состава установки поверочной универсальной УППУ-МЭ 3.1К (далее установка) в следующей последовательности:
- 1) подготовить систему и Энергомонитор в соответствии с их руководствами по эксплуатации;
- 2) собрать схему, представленную на рисунке 1 (контакты для подключения указаны в руководстве по эксплуатации);
- 3) включить систему и Энергомонитор в соответствии с их руководствами по эксплуатации;

Рисунок 1 — Структурная схема определения абсолютной погрешности воспроизведения среднеквадратического значения силы переменного тока частотой 50 Гц для диапазона от 0 до 100 A, абсолютной погрешности измерений угла фазового сдвига

- 4) при помощи системы поочередно воспроизвести пять испытательных сигналов среднеквадратического значения силы переменного тока частотой 50 Гц: 0,001; 2; 10; 20; 100 А.
- 5) при помощи Энергомонитора зафиксировать среднеквадратические значения силы переменного тока;
- 6) рассчитать значение абсолютной погрешности измерений среднеквадратического значения силы переменного тока ΔI , мА, по формуле (1):

$$\Delta I = I_{s} - I_{am} \tag{1}$$

где I_s — среднеквадратическое значение силы переменного тока, воспроизведенное системой, A;

 $I_{\it 9m}$ — среднеквадратическое значение силы переменного тока, измеренное при помощи Энергомонитора, А.

- 8.5.1.2 Определение абсолютной погрешности воспроизведения среднеквадратического значения силы переменного тока частотой 50 Гц для диапазона от 0 до 200 А (для модификации 200ADM-Р) проводить при помощи прибора электроизмерительного эталонного многофункционального «Энергомонитор-3.1К» (далее Энергомонитор) из состава установки поверочной универсальной УППУ-МЭ 3.1К (далее установка) и трансформатора тока измерительного переносного ТТИП 5000/5 (далее ТТИП) в следующей последовательности:
- 1) подготовить систему, ТТИП и Энергомонитор в соответствии с их руководствами по эксплуатации;
- 2) собрать схему, представленную на рисунке 2 (контакты для подключения указаны в руководстве по эксплуатации);
- 3) включить систему, ТТИП и Энергомонитор в соответствии с их руководствами по эксплуатации;

Рисунок 2 — Структурная схема определения абсолютной погрешности воспроизведения среднеквадратического значения силы переменного тока частотой 50 Гц для диапазона от 100 до 200 А

- 4) при помощи системы поочередно воспроизвести пять испытательных сигналов среднеквадратического значения силы переменного тока частотой 50 Гц: 0,001; 5; 20; 50; 200 А.
- 5) при помощи Энергомонитора зафиксировать среднеквадратические значения силы переменного тока;
- $\stackrel{-}{}$ 6) рассчитать значение абсолютной погрешности измерений среднеквадратического значения силы переменного тока ΔI , мА, по формуле (2):

$$\Delta I = I_a - K_m \cdot I_{am} \tag{2}$$

где $I_{\rm g}$ – среднеквадратическое значение силы переменного тока, воспроизведенное системой, A;

 I_{3m} — среднеквадратическое значение силы переменного тока, A, измеренное при помощи Энергомонитора, A;

 K_m – коэффициент трансформации ТТИП ($K_m = 200/5$).

Результаты считать положительными, если полученные значения абсолютной погрешности воспроизведения среднеквадратического значения силы переменного тока частотой 50 Гц не превышают пределов, представленных в таблице 1.

8.5.2 Определение абсолютной погрешности измерений временных интервалов

Определение абсолютной погрешности измерений временных интервалов проводить при помощи генератора сигналов произвольной формы 33521B (далее – 33521B) в следующей последовательности:

- 1) подготовить систему и 33521В в соответствии с их руководствами по эксплуатации;
- 2) собрать схему, представленную на рисунке 3 (контакты для подключения указаны в руководстве по эксплуатации);
- 3) включить систему и 33521В в соответствии с их руководствами по эксплуатации;

Рисунок 3 — Структурная схема определения абсолютной погрешности измерений временных интервалов

- 4) подать с 33521B на систему сигнал импульсной формы с длительностью 1 мс;
 - 5) при помощи системы зафиксировать значения временного интервала;
- 6) рассчитать значение абсолютной погрешности измерений временных интервалов Δt , с, по формуле (3):

$$\Delta t = t_{u_{3M}} - t_{_{3M}} \tag{3}$$

где $t_{uзм}$ — значение временного интервала, измеренное системой, с;

 t_{3m} — значение временного интервала (длительность периода), заданное 33521B, с.

7) повторить п. 4 - 6 при следующих значения длительности: 500 с, 999,999 с для диапазона от 0 до 999,999 с; 10 мс; 5000 с; 9999,99 с для диапазона от 0 до 9999,99 с; 100 мс; 50000 с; 99999,9 с для диапазона от 0 до 99999,9 с.

Результаты считать положительными, если полученные значения абсолютной погрешности измерений временных интервалов не превышают пределов, представленных в таблице 2.

8.5.3 Определение абсолютной погрешности измерений среднеквадратического значения напряжения переменного тока (только для модификации 200ADM-P)

Определение абсолютной погрешности измерений среднеквадратического значения напряжения переменного тока проводить при помощи калибратора универсального 9100 (далее – 9100) в следующей последовательности:

- 1) подготовить систему и 9100 в соответствии с их руководствами по эксплуатации;
- 2) собрать схему, представленную на рисунке 4 (контакты для подключения указаны в руководстве по эксплуатации);
 - 3) включить систему и 9100 в соответствии с их руководствами по эксплуатации;

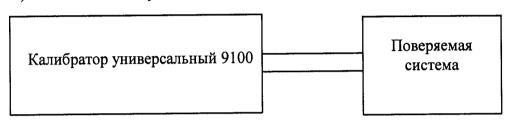


Рисунок 4 — Структурная схема определения абсолютной погрешности измерений среднеквадратического значения напряжения и силы переменного тока, напряжения и силы постоянного тока, частоты переменного тока

- 4) при помощи 9100 поочередно воспроизвести пять испытательных сигналов среднеквадратического значения напряжения переменного тока частотой 50 Гц: 0,1; 75; 150; 225; 300 В;
- 5) при помощи системы зафиксировать среднеквадратические значения напряжения переменного тока;
- 6) рассчитать значение абсолютной погрешности измерений среднеквадратического значения напряжения переменного тока ΔU , B, по формуле (4):

$$\Delta U = U_{u_{3M}} - U_{_{3M}} \tag{4}$$

где $U_{uзм}$ – среднеквадратическое значение напряжения переменного тока, измеренное системой, B;

 $U_{^{9m}}$ — среднеквадратическое значение напряжения переменного тока, воспроизведенное 9100, В.

Результаты считать положительными, если полученные значения абсолютной погрешности измерений среднеквадратического значения напряжения переменного тока не превышают пределов, представленных в таблице 3.

8.5.4 Определение абсолютной погрешности измерений среднеквадратического значения силы переменного тока (только для модификации 200ADM-P)

Определение абсолютной погрешности измерений среднеквадратического значения силы переменного тока проводить при помощи калибратора универсального 9100 (далее – 9100) в следующей последовательности:

- 1) подготовить систему и 9100 в соответствии с их руководствами по эксплуатации;
- 2) собрать схему, представленную на рисунке 4 (контакты для подключения указаны в руководстве по эксплуатации);
 - 3) включить систему и 9100 в соответствии с их руководствами по эксплуатации;
- 4) при помощи 9100 поочередно воспроизвести пять испытательных сигналов среднеквадратического значения силы переменного тока частотой 50 Гц: 0,001; 2,500; 5,000; 7,500; 9,999 А;

- 5) при помощи системы зафиксировать среднеквадратические значения силы переменного тока;
- 6) рассчитать значение абсолютной погрешности измерений среднеквадратического значения силы переменного тока ΔI , A, по формуле (5):

$$\Delta I = I_{u_{3M}} - I_{3m} \tag{5}$$

где $I_{uзм}$ — среднеквадратическое значение силы переменного тока, измеренное системой, A;

 $I_{\it эm}$ — среднеквадратическое значение силы переменного тока, воспроизведенное 9100, A.

Результаты считать положительными, если полученные значения абсолютной погрешности измерений среднеквадратического значения силы переменного тока не превышают пределов, представленных в таблице 3.

8.5.5 Определение абсолютной погрешности измерений силы постоянного тока (только для модификации 200ADM-P)

Определение абсолютной погрешности измерений силы постоянного тока проводить при помощи калибратора универсального 9100 (далее – 9100) в следующей последовательности:

- 1) подготовить систему и 9100 в соответствии с их руководствами по эксплуатации;
- 2) собрать схему, представленную на рисунке 4 (контакты для подключения указаны в руководстве по эксплуатации);
 - 3) включить систему и 9100 в соответствии с их руководствами по эксплуатации;
- 4) при помощи 9100 поочередно воспроизвести пять испытательных сигналов силы постоянного тока: 0,001; 2,500; 5,000; 7,500; 9,999 А;
 - 5) при помощи системы зафиксировать значения силы постоянного тока;
- 6) рассчитать значение абсолютной погрешности измерений силы постоянного тока ΔI , A, по формуле (6):

$$\Delta I = I_{u_{3M}} - I_{_{3M}} \tag{6}$$

где $I_{u_{3M}}$ –значение силы постоянного тока, измеренное системой, A;

 I_{2m} —значение силы постоянного тока, воспроизведенное 9100, А.

Результаты считать положительными, если полученные значения абсолютной погрешности измерений силы постоянного тока не превышают пределов, представленных в таблице 3.

8.5.6 Определение абсолютной погрешности измерений напряжения постоянного тока (только для модификации 200ADM-P)

Определение абсолютной погрешности измерений напряжения постоянного тока проводить при помощи калибратора универсального 9100 (далее – 9100) в следующей последовательности:

- 1) подготовить систему и 9100 в соответствии с их руководствами по эксплуатации;
- 2) собрать схему, представленную на рисунке 4 (контакты для подключения указаны в руководстве по эксплуатации);
 - 3) включить систему и 9100 в соответствии с их руководствами по эксплуатации;
- 4) при помощи 9100 поочередно воспроизвести пять испытательных сигналов напряжения постоянного тока: 0,1; 75; 150; 225; 300 В;
 - 5) при помощи системы зафиксировать значения напряжения постоянного тока;
- 6) рассчитать значение абсолютной погрешности измерений напряжения постоянного тока ΔU , B, по формуле (7):

$$\Delta U = U_{usm} - U_{sm} \tag{7}$$

где $U_{u_{3M}}$ —значение напряжения постоянного тока, измеренное системой, B; U_{3m} —значение напряжения постоянного тока, воспроизведенное 9100, B.

Результаты считать положительными, если полученные значения абсолютной погрешности измерений напряжения постоянного тока не превышают пределов, представленных в таблице 3.

8.5.7 Определение абсолютной погрешности измерений частоты переменного тока (только для модификации 200ADM-P)

Определение абсолютной погрешности измерений частоты переменного тока проводить при помощи калибратора универсального 9100 (далее – 9100) в следующей последовательности:

- 1) подготовить систему и 9100 в соответствии с их руководствами по эксплуатации;
- 2) собрать схему, представленную на рисунке 4 (контакты для подключения указаны в руководстве по эксплуатации);
 - 3) включить систему и 9100 в соответствии с их руководствами по эксплуатации;
- 4) при помощи 9100 поочередно воспроизвести пять испытательных сигналов частоты переменного тока: 45; 58,75; 72,5; 86,25; 100 Гц;
 - 5) при помощи системы зафиксировать значения частоты переменного тока;
- 6) рассчитать значение абсолютной погрешности измерений частоты переменного тока Δf , Γ ц, по формуле (8):

$$\Delta f = f_{u_{3M}} - f_{_{3M}} \tag{8}$$

где $f_{u_{3M}}$ —значение частоты переменного тока, измеренное системой, Γ ц; f_{-9m} —значение частоты переменного тока, воспроизведенное 9100, Γ ц.

Результаты считать положительными, если полученные значения абсолютной погрешности измерений частоты переменного тока не превышают пределов, представленных в таблице 3.

8.5.8 Определение абсолютной погрешности измерений угла фазового сдвига (только для модификации 200ADM-P)

Определение абсолютной погрешности измерений угла фазового сдвига проводить при помощи прибора электроизмерительного эталонного многофункционального «Энергомонитор-3.1К» (далее — Энергомонитор) из состава установки поверочной универсальной УППУ-МЭ 3.1К в следующей последовательности:

- 1) подготовить систему и Энергомонитор в соответствии с их руководствами по эксплуатации;
- 2) собрать схему, представленную на рисунке 1 (контакты для подключения указаны в руководстве по эксплуатации);
- 3) включить систему и Энергомонитор в соответствии с их руководствами по эксплуатации;
- 4) при помощи системы задать значения напряжения переменного тока 100 В и силы переменного тока 1 А;
- 5) поочередно воспроизвести пять испытательных сигналов угла фазового сдвига: -179,9; -90; 0; +90; +180 °;
 - 6) при помощи Энергомонитора зафиксировать значения угла фазового сдвига;
- 7) рассчитать значение абсолютной погрешности измерений угла фазового сдвига ΔX , градус, по формуле (9):

$$\Delta X = X_{u_{3M}} - X_{_{9m}} \tag{9}$$

где $X_{uзм}$ —значение угла фазового сдвига, воспроизведенное системой, градус; $X_{эм}$ —значение угла фазового сдвига, измеренное Энергомонитором, градус.

Результаты считать положительными, если полученные значения абсолютной погрешности измерений угла фазового сдвига не превышают пределов, представленных в таблице 3.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:
 - полное наименование аккредитованной на право поверки организации;
 - номер и дата протокола поверки;
 - наименование и обозначение поверенного средства измерений;
 - заводской (серийный) номер;
 - обозначение документа, по которому выполнена поверка;
- наименования, обозначения и заводские (серийные) номера использованных при поверке средств поверки (со сведениями о поверке последних);
 - температура и влажность в помещении;
 - фамилия лица, проводившего поверку;
 - результаты каждой из операций поверки согласно таблице 4.

Допускается не оформлять протокол поверки отдельным документом, а результаты операций поверки указывать на оборотной стороне свидетельства о поверке.

9.2 При положительном результате поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. № 1815.

9.3 При отрицательном результате поверки, выявленных при любой из операций поверки, описанных в таблице 4, выдается извещение о непригодности в соответствии с Приказом Министерства промышленности и торговли РФ от 02.07.2015 г. № 1815.

Инженер отдела испытаний ООО «ИЦРМ»

2 Fennage

Е.С. Устинова