Федеральное государственное унитарное предприятие Всероссийский научно-исследовательский институт метрологической службы (ФГУП «ВНИИМС»)

УТВЕРЖДАЮ

Заместитель директора

по производственной метрологии

ФГУП «ВНИИМС»

Н.В. Иванникова

<u>го» 01</u> 2018 г.

Анализаторы качества электроэнергии CW500

Методика поверки

МП 209-3-2017

1 ВВЕДЕНИЕ

Настоящая методика распространяется на анализаторы качества электроэнергии CW500 (далее — анализаторы), изготавливаемые Yokogawa Test & Measurement Corporation, Япония, завод изготовитель Yokogawa Manufacturing Corporation Kofu Factory, Япония, и устанавливает требования к методике их первичной и периодической поверке.

Интервал между поверками – 5 лет.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении первичной поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 - Операции поверки

	Номер пункта	Проведение	операции при:
Наименование операции	документа по	первичной	периодической
	поверке	поверке	поверке
1 Внешний осмотр	8.1	да	да
2 Опробование	8.2	да	да
3 Проверка метрологических характеристик	8.3	да ¹	да ¹
4 Подтверждение соответствия программного обеспечения	9	да	да
5 Оформление результатов поверки	10	да	да

¹ Примечание - Допускается проведение поверки отдельных измерительных каналов и (или) в ограниченных диапазонах измеряемых величин по требованию заказчика.

3 СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки используются средства измерений (далее СИ), указанные в таблице 2.
- 3.2 Поверка осуществляется с комплектом кабелей и разъемов, входящих в состав применяемых СИ и поверяемых СИ.
- 3.3 Средства измерений, используемые при проведении поверки, должны быть исправны и поверены.
- 3.4 Работа со средствами измерений должна проводиться в соответствии с требованиями их эксплуатационной документации.
- 3.5 Допускается применение средств поверки, не приведенных в таблице 2, но обеспечивающих определение метрологических характеристик поверяемых анализаторов с требуемой точностью.

Таблина 2 - Средства поверки

	- Средства поверки
№ п/п	Наименование
1	Калибратор электрической мощности Fluke 6100A, регистрационный номер в Федеральном информационном фонде № 33864-07. Пределы допускаемой абсолютной погрешности воспроизведения напряжения $\pm (2*U*10^{-4}+26)$ мВ в диапазоне от 70 до 1008 В. Пределы допускаемой абсолютной погрешности воспроизведения силы тока $\pm (3*1*10^{-4}+26)$ мкА в диапазоне от 8 до 80 А. Пределы допускаемой относительной погрешности воспроизведения активной мощности $\pm (200800)*10^{-6}$ % при коэффициенте мощности 0,25-1. Пределы допускаемой относительной погрешности установки частоты $\pm 50*10^{-6}$ % в диапазоне 16-850 Гц. Пределы абсолютной погрешности установки фликера $\pm 0,025$ в диапазоне ± 30 % от установленного значения напряжения. Пределы абсолютной погрешности установки коэффициента гармоник $\pm 0,025$ % в диапазоне 0-100 % от установленного напряжения гармоники. Пределы допускаемой относительной погрешности установки уровня провала(перенапряжения) $\pm 0,25$ % в диапазоне от 0 до 140 % от выходного напряжения.

№ п/п	Наименование
2	Катушка для калибровки бесконтактных измерителей тока 5500A/CO1L, изготовитель «Fluke Corporation», регистрационный номер в Федеральном информационном фонде № 61596-15, или аналогичная. Погрешность коэффициента трансформации не более 0,65 %.
3	Термогигрометр ИВА-6А, регистрационный номер в Федеральном информационном фонде 46434-11. Пределы допускаемой абсолютной погрешности при измерении температуры ±0,3 °C в диапазоне от -20 до +60 °C; пределы допускаемой абсолютной погрешности при измерении влажности ±2 % в диапазоне от 0 до 90 %.
4	Барометр-анероид метеорологический БАММ-1, регистрационный номер в Федеральном информационном фонде 5738-76. Пределы допускаемой основной абсолютной погрешности измерений атмосферного давления ±0,2 кПа в диапазоне от 80 до 106 кПа.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 Поверку могут проводить лица, аттестованные в качестве поверителей и имеющие практический опыт в области радиотехнических или электрических измерений.
- 4.2 К поверке допускаются лица, прошедшие инструктаж по технике безопасности при работе на электроустановках. Все работающие должны иметь квалификационную группу по электробезопасности не ниже третьей.
- 4.3 К работе допускаются лица, предварительно изучившие руководство по эксплуатации поверяемого СИ, а также правила пользования испытательной аппаратурой.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При поверке необходимо соблюдать требования действующих «Правил технической эксплуатации электроустановок потребителей» и «Правил безопасной эксплуатации электроустановок потребителей» ДНАОП 0.00-1.21-98.
- 5.2 Следует проверить надежность защитного заземления. Заземление необходимо производить раньше других присоединений, отсоединение заземления - после всех отсоединений в соответствии с ГОСТ 12.1.030-81.
- 5.3 Сборку рабочего места, подключение к цепи питания, производить только исправными кабелями, не имеющими повреждения изоляции. Все контактные соединения должны быть надёжно затянуты. При подключении оборудования к цепи питания должно быть выполнено защитное зануление приборного стола.
- 5.4 При работе, после подачи тока, запрещается производить стыковку или расстыковку соединителей.
- 5.5 Категорически запрещается применение нестандартных предохранителей, самодельных кабелей без соединителей и соединительных проводов без наконечников.
- 5.6 Запрещается пользование неисправными приспособлениями, инструментами, а также СИ, срок поверки которых истёк.

6 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться нормальные условия, указанные в таблице 3.

Таблица 3 - Условия проведения поверки

Влияющая величина	Значение
1 Температура окружающего воздуха, °С	от +18 до +28
2 Относительная влажность воздуха не более, %	80 (без конденсации)
3 Атмосферное давление, кПа (мм рт. ст.)	от 84 до 106 (от 630 до 795)

Контроль климатических условий проводится непосредственно перед проведением и в процессе выполнения экспериментальных работ средствами измерений приведенными в таблице 2.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки следует изучить технические описания и руководства по эксплуатации на поверяемые СИ и средства поверки.
- 7.2 Перед проведением поверки средства поверки должны быть заземлены и выдержаны во включенном состоянии в течение времени, указанного в нормативно-технической документации на поверяемые СИ и применяемые СИ.
- 7.3 Контроль условий проведения поверки (таблица 3) должен быть проведён перед началом поверки, а затем периодически, но не реже одного раза в час.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

- 8.1 Внешний осмотр
- 8.1.1 Комплектность поверяемых СИ должна соответствовать комплектации, указанной в их технической или эксплуатационной документации.
 - 8.1.2 При проведении внешнего осмотра должны быть проверены:
- отсутствие видимых механических повреждений на анализаторе и токоизмерительных клещах, все надписи должны быть четкими и ясными;
- все разъемы, клеммы и измерительные провода не должны иметь повреждений и каких-либо загрязнений.

Приборы, имеющие дефекты, бракуются и направляются в ремонт.

- 8.2 Опробование
- 8.2.1 Опробование и проверку работоспособности проводят в соответствии с руководством пользователя.
 - 8.3 Проверка метрологических характеристик
 - 8.3.1 Проверка погрешности измерений напряжения и частоты переменного тока
- 8.3.1.1 Подать напряжение переменного тока частотой 50 Гц от калибратора в соответствии с таблицей 4 на все измерительные каналы напряжения одновременно и убедиться, что результаты измерений напряжения и частоты отображаются на дисплее. Последовательно произвести измерения в диапазонах и при значениях напряжения, перечисленных в таблице 4. При значении заданного напряжения 100 В дополнительно произвести измерения частоты, задавая частоты 40, 50, 60 и 70 Гц. Результаты измерений занести в протокол.

Таблица 4 - Характеристики сигналов для измерений переменного напряжения

Верхнее значение диапазона измерений напряжения, В	Заданное значение, В	Пределы допускаемой абсолютной погрешно- сти, В	Частота, Гц
	100	±0,5	40, 50, 60, 70
600	300	±1,5	50
	600	±3,0	50
	170	±2,34	50
1000	500	±3,0	50
	1000	±4,0	50

- 8.3.1.2 Результаты поверки считаются положительными, если погрешность измерений напряжения находится в пределах, указанных в таблице 4, а погрешность измерений частоты находится в пределах ± 0.05 Γ ц.
 - 8.3.2 Проверка погрешности измерений силы переменного тока
- 8.3.2.1 Подключить к входам всех измерительных каналов анализатора токоизмерительные клещи из поверяемого комплекта анализатора. Если количество клещей меньше четырех, то поверку следует производить, подключая клещи поочередно к входам каналов, так, чтобы все каналы были поверены.

Пропустить последовательно через все используемые токовые клещи провод, подключенный к токовому выходу калибратора (для задаваемых токов до 21 A) или надеть клещи на Катушку для калибровки 5500/COIL (не более двух одновременно) для создания эквивалентов больших токов. Входные клеммы катушки соединить с токовым выходом калибратора.

Последовательно произвести измерения силы тока на частоте 50 Гц при значениях силы тока, указанных в таблице 5 для используемой модели клещей.

Таблица 5 - Характеристики сигналов для измерений силы тока при по поверке для разных моделей клещей

Модели используемых токовых клещей	Верхнее значение диапазона измерений силы тока, А	Значения силы тока, А	Пределы допускаемой абсолютной погрешности, А
		0,02	$\pm 0,008$
06060	2	0,5	±0,019
96060	2	1	±0,030
		2,2	±0,056
		0,05	±0,031
	5	1,25	±0,043
96061		2,5	±0,055
		5,5	±0,085
	50	0,5	±0,13
		12,5	±0,25
		25	±0,37
		55	±0,67
		0,1	±0,06
	10	2,5	±0,09
96062	10	5	±0,12
		11	±0,19
		1	±0,25
	100	25	±0,54
	100	50	±0,84
		110	±1,56

Продолжение таблицы	5		
Модели используемых токовых клещей	Верхнее значение диапазона измерений силы тока, А	Значения силы тока, А	Пределы допускаемой абсолют- ной погрешности, А
		0,2 5	±0,12
	20	5	±0,17
96063	20	10	±0,22
		22	±0,34
		2	±0,50
	200	50	±0,98
	200	100	±1,5
		220	±2,7
		0,5	±0,3
	50	12,5	±0,5
96064	50	25	±0,6
		55	±1,0
	500	5	±1,3
		125	±2,7
		250	±4,2
		550	±7,8
**************************************		1	±1,0
96065	100	25	±1,4
		50	±1,9
		110	±2,9
	1000	10	±2,9
		250	±5,8
	1000	500	±8,8
		1100	±16,0
		3	±0,6
	200	75	±1,5
96066	300	150	±2,4
		330	±4,6
		10	±2,1
	1000	250	±5,0
	1000	500	± 8 ,0
		1050	±14,6
		30	±6,4
	3000	750	±15,0
		1050	±18,60

- 8.3.2.2 Результаты поверки считаются положительными, если погрешность измерений силы тока находится в пределах, указанных в правом столбце таблицы 5 для соответствующих условий измерений.
 - 8.3.3 Проверка погрешности измерений мощности переменного тока
- 8.3.3.1 Подключить входы напряжения и тока анализатора одновременно к калибратору, как это указано в пп. 8.3.1.1 и 8.3.2.1. Установить разность фаз между током и напряжением калибратора равной нулю. Последовательно произвести измерения при значениях напряжения и тока, указанных в таблице 6 для используемого типа клещей. Результаты измерений занести в протокол.

Таблица 6 - Характеристики сигналов для измерений мощности на частоте $50~\Gamma$ ц при коэффициенте мощности $\cos \phi = 1$

чение диапа- зона измере- ний мощно- сти, кВт Модель гоковых клещей значение диль токовых клещей значение диль токовых клещей значение силы токовых клещей значение диль токовых клещей значение силы токовых клещей значение силы токовых клещей значение силы токовых клещей значение силы токовых клещей значение силы токовых клещей доло можения клещей значение силы токовых клещей значение клещей доло можения клещей значение силы токовых клещей доло можения клещей значение клещей доло можения клещей значение клещей доло можения клещей значение клещей доло можения клещей зачение клещей доло можения клещей зачение клещей доло можения клещей зачение клещей зачение клещей	циенте мощнос	сти cosφ=1					I
зона измерений мощно- сти, кВт токовых клешей диапазона силь тока, A напряжения, В силы тока, A мощности, кВт абсолютной грешности прешности Вт 3 Верхнее значение диапазона напряжения 600 В 100 0,3 0,03 ±7,5 300 1 0,3 0,03 ±10,5 300 2 0,6 ±13,8 300 5 1,5 ±23,7 600 0,05 0,03 ±7,5 660 6 3,96 ±51 300 10 3 ±105 300 20 6 ±138 300 20 6 ±138 300 50 15 ±237 600 0,5 0,3 ±75 660 60 39,6 ±518 300 20 6 ±138 300 20 6 ±138 300 20 6 ±15 300 4 1,2 ±30 3	Верхнее зна-		Верхнее	_	_		Пределы
вий мощности, кВт Верхнее значение диапазона напряжения 600 В 30 Верхнее значение диапазона напряжения 600 В 300 1 00 0,3 0,03 ±7,5 300 2 0,6 ±13,8 300 5 1,5 ±23,7 600 0,05 0,03 ±7,5 660 600 0,05 0,03 ±7,5 660 6 60 6 3,96 ±51 100 3 0,3 ±75 300 10 3 0,3 ±75 300 20 6 ±138 300 20 6 ±138 300 50 15 ±237 660 0,5 0,3 ±75 660 60 39,6 ±508 100 3,0 50 15 ±237 100 6,6 422 300 20 6 ±158 300 2 0,6 ±22 40 300 4 1,2 ±30 300 ±15 ±30 40	1 ' '						
Сти, кВт Верхнее значение диапазона напряжения 600 В 3 100 0,3 0,03 ±7,5 300 1 0,3 ±10,5 300 2 0,6 ±13,8 300 5 1,5 ±23,7 600 0,05 0,03 ±7,5 660 6 3,96 ±51 300 10 3 ±105 300 20 6 ±138 300 20 6 ±138 300 20 6 ±138 300 20 6 ±138 300 50 15 ±237 600 0,5 0,3 ±75 660 60 39,6 ±508 100 30 50 15 ±237 600 0,5 0,3 ±75 660 6 0,6 ±15 300 2 0,6 ±22 300			I	_		1	
Верхнее значение диапазона напряжения 600 В 100 0,3 0,03 ±7,5 300 1 0,3 ±10,5 300 2 0,6 ±13,8 300 5 1,5 ±23,7 600 0,05 0,03 ±7,5 660 6 3,96 ±51 100 3 0,3 ±75 300 10 3 ±105 300 20 6 ±138 300 50 15 ±237 600 0,5 0,3 ±75 660 60 39,6 ±508 100 0,6 0,06 ±15 300 2 0,6 ±22 300 4 1,2 ±30 300 10 3 ±53 40 10 6 0,6 ±152 300 20 6 ±222 300 40 12 ±30 <td></td> <td>клещеи</td> <td></td> <td>В</td> <td>тока, А</td> <td>KDT</td> <td>1 -</td>		клещеи		В	тока, А	KDT	1 -
3 100 0,3 0,03 ±7,5 300 1 0,3 ±10,5 300 2 0,6 ±13,8 300 5 1,5 ±23,7 600 0,05 0,03 ±7,5 660 6 3,96 ±51 100 3 0,3 ±75 300 10 3 ±105 300 20 6 ±138 300 50 15 ±237 600 0,5 0,3 ±75 660 60 39,6 ±508 100 0,6 0,06 ±15 300 2 0,6 ±22 300 2 0,6 ±22 300 4 1,2 ±30 300 10 3 ±53 600 0,1 0,06 ±15 660 12 7,92 ±117 100 6 0,6 ±152 300 20 6 ±222 300 40 12 ±300 300 40 12 ±30 300 40 1,2 ±42 300 4 1,2 </td <td>Сти, кът</td> <td>R</td> <td></td> <td> ние лиапазона і</td> <td><u> </u> напряжения</td> <td>600 B</td> <td><u> </u></td>	Сти, кът	R		 ние лиапазона і	<u> </u> напряжения	600 B	<u> </u>
300							±7.5
3 96061 96061 96061 96061 50 300 5 1,5 ±23,7 600 0,05 0,03 ±7,5 660 660 6 3,96 ±51 300 10 3 ±105 300 20 6 ±138 300 50 15 ±237 6600 0,5 0,03 ±75 660 600 0,5 0,03 ±75 660 0,5 0,03 ±75 660 0,5 0,03 ±75 660 0,5 0,06 ±138 100 0,6 0,06 ±15 300 2 0,6 ±22 300 4 1,2 ±30 300 10 3 ±53 660 0,1 0,06 ±15 660 12 7,92 ±117 100 6 60,6 12 7,92 ±117 100 6 600 1 0,06 ±152 300 20 6 ±152 300 20 6 ±152 400 300 10 30 ±534 600 10 300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300 40 12 ±300					· · · · · · · · · · · · · · · · · · ·		
96061 96061 96061 50 300 5 1,5 423,7 600 0,05 0,03 47,5 660 660 6 3,96 451 300 10 3 4105 300 50 15 4237 600 300 20 6 4138 300 50 15 4237 600 0,5 0,3 475 660 0,5 0,3 475 660 600 0,5 0,3 475 660 600 0,5 0,3 475 660 600 0,5 0,3 475 660 600 0,6 300 2 0,6 422 300 2 0,6 422 300 4 1,2 430 300 20 6 41,2 430 300 10 3 41,2 430 300 20 6 4222 300 40 12 4300 300 300 100 300 40 12 4300 300 100 300 40 12 4300 300 40 12 4300 300 40 12 4300 300 40 12 4300 300 40 12 430 300 40 12 430 300 40 12 430 300 40 12 430 300 40 12 430 300 40 12 430 300 40 12 430 300 40 12 430 300 40 12 430 300 40 12 430 300 40 12 430 300 40 12 430 300 40 12 442 300 660 24 15,84 420 300 40 12 430 300 40 12 442 300 40 12 430 442 420 300 40 12 430 442 420 300 40 12 4420 300 40 12 4420 300 40 12 4420 300 80 24 4552							
96061 96061	3		5	···			
96061 100							
30 100 3 0,3 ±75 300 10 3 ±105 300 20 6 ±138 300 50 15 ±237 600 0,5 0,3 ±75 660 60 39,6 ±508 100 0,6 0,06 ±15 300 2 0,6 ±22 300 4 1,2 ±30 300 10 3 ±53 600 0,1 0,06 ±15 660 12 7,92 ±117 100 6 0,6 ±152 300 20 6 ±222 300 40 12 ±300 300 100 30 ±534 600 1 0,6 ±152 660 120 79,2 ±1174 100 1,2 0,12 ±30 300 4 1,2 ±42 300 4 1,2 ±42 300 4 1,2 ±42 300 4 1,2 ±42 300 4 1,2 ±42 300 8 2,4							
300 10 3 ±105 300 20 6 ±138 300 50 15 ±237 600 0,5 0,3 ±75 660 60 39,6 ±508 100 0,6 0,06 ±15 300 2 0,6 ±22 300 4 1,2 ±30 300 10 3 ±53 600 0,1 0,06 ±15 660 12 7,92 ±117 100 6 0,6 ±152 300 20 6 ±222 300 40 12 ±300 300 40 12 ±300 300 100 30 ±534 600 1 0,6 ±152 660 120 79,2 ±1174 100 1,2 0,12 ±30 300 4 1,2 ±42 300 4 1,2 ±42 300 4 1,2 ±42 300 4 1,2 ±30 300 4 1,2 ±42 300 8 2,4 ±55		96061		100	3		±75
60 300 50 15 ±237 600 0,5 0,3 ±75 660 660 39,6 ±508 100 0,6 0,06 ±15 300 2 0,6 ±22 300 4 1,2 ±30 600 0,1 0,06 ±15 600 0,1 0,06 ±152 300 20 6 ±152 300 20 6 ±222 300 40 12 ±300 300 40 12 ±300 300 40 12 ±30 660 1 0,6 ±152 660 120 79,2 ±1174 100 1,2 0,12 ±30 300 4 1,2 ±42 300 4 1,2 ±42 300 8 2,4 ±55 300 20 6 ±95 600 0,2 0,12 ±30 660 24 15,84 ±203 300 40 12 ±420 300 40 12 ±301 300 40				300	10		±105
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				300	20	6	±138
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30		50	300	50	15	±237
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				600	0,5	0,3	±75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				660	60	39,6	±508
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	0,6	0,06	±15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		96062	10	300	2	0,6	±22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				300	4	1,2	±30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6			300	10	3	±53
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				600	0,1	0,06	±15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				660	12	7,92	±117
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			100	100	6	0,6	±152
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				300	20	6	±222
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60			300	40	12	±300
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60			300	100	30	±534
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				600	1	0,6	±152
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				660	120	79,2	±1174
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	1,2	0,12	±30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				300	4	1,2	±42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			20	300	8	2,4	±55
96063 660 24 15,84 ±203 100 12 1,2 ±301 300 40 12 ±420 300 80 24 ±552			20	300	20	6	±95
96063 100 12 1,2 ±301 300 40 12 ±420 300 80 24 ±552				600	0,2	0,12	±30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		06062		660	24	15,84	±203
300 80 24 ±552		96063		100	12	1,2	±301
120 200				300	40	12	±420
120 200 200 200 200			200	300	80	24	±552
300 200 60 ±948	120		200	300	200	60	±948
600 2 1,2 ±301				600	2	1,2	±301
660 240 158,4 ±2030				660	240	158,4	±2030

Продолжение	гаолицы о			1		T ==
Верхнее зна-		Верхнее	_	_	_	Пределы
чение диапа-	Модель	значение	Значение	Значение	Значение	допускаемой
зона измере-	токовых	диапазона	напряжения,	силы тока,	мощности,	абсолютной по-
ний мощно-	клещей	силы тока,	В	A	кВт	грешности,
сти, кВт		A				Вт
			100	3	0,3	±76
			300	10	3	±111
30		50	300	20	6	±150
30		30	300	50	15	±267
			600	0,5	0,3	±76
	96064		660	60	39,6	±587
· 	90004		100	30	3	±759
			300	100	30	±1110
200		500	300	200	60	±1500
300		500	300	500	150	±2670
			600	5	3	±759
			660	600	396	±5868
***************************************			100	6	0,6	±179
			300	20	6	±276
			300	40	12	±384
60	96065	100	300	100	30	±708
			600	1	0,6	±179
			660	120	79,2	±1594
			100	60	6	±1788
			300	200	60	±2760
			300	400	120	±3840
600		1000	300	1000	300	±7080
			600	10	6	±1788
			660	1050	693	±14154
			100	18	1,8	±383
			300	60	18	±594
	:		300	120	36	±828
180		300	300	300	90	±1530
				300	ļ	±383
			600		1,8	
			660	360	237,6	±3449
			100	60	6	±1278
	0000		300	200	60	±1980
600	96066	1000	300	400	120	±2760
			300	1000	300	±5100
			600	10	6	±1278
			660	1050	693	±10209
			100	180	18	±3834
			300	600	180	±5940
1800		3000	300	1050	315	±7695
			660	1050	693	±12609
			600	30	18	±3834

Продолжение	габлицы 6				P	
Верхнее зна-		Верхнее				Пределы
чение диапа-	Модель	значение	Значение	Значение	Значение	допускаемой
зона измере-	токовых	диапазона	напряжения,	силы тока,	мощности,	абсолютной по-
ний мощно-	клещей	силы тока,	В	A	кВт	грешности,
сти, кВт		A			<u> </u>	Вт
	Ве	рхнее значен	ние диапазона н			
			100	0,5	0,05	±12,6
			500	1	0,5	±17,5
5		5	500	2	1	±23,0
3			500	5	2,5	±39,5
			1000	0,05	0,05	±12,6
	96061		1100	6	6,6	±84,6
	90001		100	5	0,5	±126
			500	10	5	±175
50		50	500	20	10	±230
50		30	500	50	25	±395
			1000	0,5	0,5	±126
			1100	60	66	±846
			100	1	0,1	±25
			500	2	1	±37
10		10	500	4	2	±50
10		10	500	10	5	±89
			1000	0,1	0,1	±25
	0.60.60		1100	12	13,2	±196
	96062		100	6	0,6	±248
			500	20	10	±370
100		100	500	40	20	±500
100		100	500	100	50	±890
			1000	1	1	±253
			1100	120	132	±1956
			100	1,2	0,12	±49
			500	4	2	±70
			500	8	4	±92
20		20	500	20	10	±158
F			1000	0,2	0,2	±50
		:	1100	24	26,4	±338
	96063		100	12	1,2	±493
			500	40	20	±700
			500	80	40	±920
200		200	500	200	100	±1580
			1000	2	2	±502
			1100	240	264	±3384
			100	3	0,3	±124
			500	10	5	±124 ±185
			500	20	10	±250
50	96064	50			25	±230 ±445
			500	50		±443 ±127
			1000	0,5	0,5 66	±127 ±978
		J	1100	60	1 00	<u> </u>

Продолжение	таолицы о	Dominion			<u></u>	Пиототт
Верхнее зна-) (Верхнее	7	2	7	Пределы
чение диапа-	Модель	значение	Значение	Значение	Значение	допускаемой
зона измере-	токовых	диапазона	напряжения,	силы тока,	мощности,	абсолютной по-
ний мощно-	клещей	силы тока,	В	A	кВт	грешности, Вт
сти, кВт		A	100	30	3	±1239
			500	100	50	
						±1850
500	96064	500	500	200	100	±2500
			500	500	250	±4450
			1000	5	5	±1265
			1100	600	660	±9780
			100	6	0,6	±291
			500	20	10	±460
100		100	500	40	20	±640
			500	100	50	±1180
			1000	1	1	±298
	96065	***************************************	1100	120	132	±2656
	70005	1000	100	60	6	±2908
			500	200	100	±4600
1000			500	400	200	±6400
1000			500	1000	500	±11800
			1000	10	10	±2980
			1100	1050	1155	±23590
		300	100	18	1,8	±623
			500	60	30	±990
200			500	120	60	±1380
300			500	300	150	±2550
			1000	3	3	±639
			1100	360	396	±5748
		,	100	60	6	±2078
			500	200	100	±3300
1000	96066	1000	500	400	200	±4600
	70000	1000	500	1000	500	±8500
			1000	10	10	±2130
			1100	1050	1155	±17015
1			100	180	18	±6234
			500	600	300	±9900
3000		3000	500	1050	525	±12825
			1100	1050	1155	±21015
			1000	30	30	±6390

8.3.3.2 Результаты поверки считаются положительными, если погрешность измерений мощности находятся в пределах, указанных в правом столбце таблицы 6 для соответствующих условий измерений.

- 8.3.4 Проверка погрешности измерений мощности переменного тока при коэффициенте мощности $\cos\phi$ =0,5
- 8.3.4.1 Подключить входы напряжения и тока анализатора одновременно к калибратору, как это указано в пп. 8.3.1.1 и 8.3.2.1. Установить разность фаз между током и напряжением калибратора равной 60°. Последовательно произвести измерения при значениях напряжения и тока, указанных в таблице 7 для используемого типа клещей. Результаты измерений занести в протокол.

Таблица 7 - Характеристики сигналов для измерений мощности на частоте 50 Гц при коэффи-

циенте мощности соѕф=0,5

Верхнее зна-	τη το δψ=0,.	Верхнее				Пределы
чение диапа-	Модель	значение	Значение	Значение	Значение	допускаемой
зона измере-	токовых	диапазона	напряжения,	силы тока,	мощности,	абсолютной
ний мощно-	клещей	силы тока,	В	A	кВт	погрешности,
сти, кВт		Α				Вт
	В	ерхнее значе	ние диапазона	напряжения	600 B	
			300	1	0,15	±40,5
3		5	300	2	0,3	±43,8
3)	300	5	0,75	±53,7
	96061		660	6	1,98	±80,76
	90001		300	10	1,5	±405
30		50	300	20	3	±438
30		30	300	50	7,5	±537
			660	60	19,8	±807,6
			300	2	0,3	±82,2
	6	10	300	4	0,6	±90
6			300	10	1,5	±113,4
			660	12	3,96	±177,36
	96062		300	20	3	±822
(0)		100	300	40	6	±900
60		100	300	100	15	±1134
			660	120	39,6	±1773,6
			300	4	0,6	±162
10		20	300	8	1,2	±175,2
12		20	300	20	3	±214,8
	0.60.60		660	24	7,92	±323,04
	96063		300	40	6	±1620
120		200	300	80	12	±1752
120		200	300	200	30	±2148
			660	240	79,2	±3230,4

Продолжение та	аблицы 7					
Верхнее зна-		Верхнее				Пределы
чение диапа-	Модель	значение	Значение	Значение	Значение	допускаемой
зона измере-	токовых	диапазона	напряжения,	силы	мощности,	абсолютной
ний мощности,	клещей	силы тока,	В	тока, А	кВт	погрешности,
кВт		A				Вт
			300	10	1,5	±411
30		50	300	20	3	±450
		50	300	50	7,5	±567
	96064		660	60	19,8	±886,8
	70004	500	300	100	15	±4110
300			300	200	30	±4500
300		300	300	500	75	±5670
			660	600	198	±8868
			300	20	3	±876
60		100	300	40	6	±984
		100	300	100	15	±1308
	96065		660	120	39,6	±2193,6
	90003		300	200	30	±8760
600		1000	300	400	60	±9840
000		1000	300	1000	150	±13080
			660	1050	346,5	±20154
			300	60	9	±2394
100		200	300	120	18	±2628
180		300	300	300	45	±3330
			660	360	118,8	±5248,8
		1000	300	200	30	±7980
(00	96066		300	400	60	±8760
600			300	1000	150	±11100
			660	1050	346,5	±16209
			300	600	90	±23940
1800		3000	300	1050	157,5	±25695
			660	1050	346,5	±30609
1	Be	рхнее значен	ие диапазона н	апряжения		
			500	1	0,25	±67,5
_		_	500	2	0,5	±73
5		5	500	5	1,25	±89,5
	0.40.44		1100	6	3,3	±134,6
	96061		500	10	2,5	±675
50			500	20	5	±730
		50	500	50	12,5	±895
			1100	60	33	±1346
			500	2	0,5	±137
		10	500	4	1	±150
10			500	10	2,5	±189
10			1000	0,1	0,05	±125,3
	96062		1100	12	6,6	±295,6
	, 5002	100	500	20	5	±1370
			500	40	10	±1500
100			500	100	25	±1890
			1100	120	66	±2956
		L	1	127		

Продолжение т	аолицы /		T			
Верхнее зна-		Верхнее				Пределы
чение диапа-	Модель	значение	Значение	Значение	Значение	допускаемой
зона измере-	токовых	диапазона	напряжения,	силы тока,	мощности,	абсолютной
ний мощности,	клещей	силы тока,	В	A	кВт	погрешности,
кВт		A				Вт
			500	2	0,5	±137
		10	500	4	1	±150
10			500	10	2,5	±189
			1000	0,1	0,05	±125,3
	96062		1100	12	6,6	±295,6
			500	20	5	±1370
100		100	500	40	10	±1500
100		100	500	100	25	±1890
			1100	120	66	±2956
			500	4	1	±270
20		20	500	8	2	±292
20			500	20	5	±358
	0.00.0		1100	24	13,2	±538,4
	96063		500	40	10	±2700
200		200	500	80	20	±2920
200			500	200	50	±3580
			1100	240	132	±5384
	96064	50	500	10	2,5	±685
50			500	20	5	±750
			500	50	12,5	±945
			1100	60	33	±1478
500			500	100	25	±6850
			500	200	50	±7500
		500	500	500	125	±9450
			1100	600	330	±14780
			500	20	5	±1460
		100	500	40	10	±1640
100	96065		500	100	25	±2180
			1100	120	66	±3656
			500	200	50	±14600
1000		1000	500	400	100	±16400
1000					······································	
			500	1000	250	±21800 ±3990
			500	120	15	
300		300	500	120	30	±4380
			500	300	75	±5550
			100	60	3	±3639
1000	96066	1000	500	200	50	±13300
			500	400	100	±14600
			500	1000	250	±18500
			1100	1050	577,5	±27015
		3000	500	600	150	±37950
3000			500	1050	262,5	±39412,5
	Р озуну тоту		1100	1050	577,5	±43507,5

8.3.4.2 Результаты поверки считаются положительными, если погрешность измерений мощности находится в пределах, указанных в правом столбце таблицы 7 для соответствующих условий измерений.

- 8.3.5 Проверка погрешности измерений кратковременной дозы фликера P_{St} и измерений длительной дозы фликера Р д.
- 8.3.5.1 Измерения выполняются в соответствии с ГОСТ Р 8.656-2009. Результаты поверки считаются положительными, если погрешность измерений находится в пределах $\pm 0,1$.
- 8.3.5.2 Так как доза фликера является результатом расчета по результатам измерений напряжения, то допускается не проводить процедуру проверки дозы фликера при положительных результатах проверки по п.8.3.1 «Проверка погрешности измерений напряжения и частоты переменного тока» и п.9 «Подтверждение соответствия программного обеспечения».
- 8.3.6 Проверка погрешности измерений провалов напряжения и перенапряжения, прерывания напряжения

Измерения выполняются в соответствии с ГОСТ Р 8.656-2009. Измерение характеристик провалов напряжения проводится при Udin=60 В и f_{ном}=50 Гц. Значения испытательных сигналов для каждой фазы последовательно установить в соответствии с данными приведенными в таблице 8.

Таблица 8 - Характеристики сигналов для измерений провалов напряжения и перенапряжения,

прерывания напряжения

3a	дано	Результат			
U, B	t, c	U, B	Погрешность, % Udin		
48	60				
48	10				
48	1				
48	0,1				
48	0,03				

Результаты поверки считаются положительными, если погрешность измерений находится в пределах ± 1 %.

8.3.7 Проверка погрешности измерений коэффициента n-ой гармонической составляющей напряжения $K_{U(n)}$

Поочередно устанавливая на выходе калибратора испытательные сигналы в соответствии с таблицей 10, зафиксировать результаты измерений.

Результаты поверки считаются положительными, если погрешность измерений находится в пределах ± 10 % (для $K_{U(n)} \ge 3$ %) и ± 0.3 % (для $K_{U(n)} < 3$ %).

8.3.8 Проверка погрешности измерений коэффициента n-ой гармонической составляющей тока $K_{I(n)}$

Поочередно устанавливая на выходе калибратора испытательные сигналы в соответствии с таблицей 10, зафиксировать результаты измерений.

Результаты поверки считаются положительными, если погрешность измерений находится в пределах ± 10 % (для $K_{I(n)} \ge 3$ %) и ± 0.3 % (для $K_{I(n)} < 3$ %).

8.3.9 Определение погрешности измерений коэффициента несимметрии напряжения по обратной последовательности

Измерения выполняются в соответствии с ГОСТ Р 8.656-2009. Значения испытательных сигналов для каждой фазы последовательно установить в соответствии с данными приведенными в таблице 9.

Таблица 9 - Характеристики сигналов для измерений коэффициента несимметрии напряжения

по обратной последовательности

	Напряжение пе	рвой гармон	Результат		
Фаза №1	Фаза №2	Фаза №3	Коэффициент, %	Коэффициент, %	Погрешность, %
100	100,000002	73,3	9,80		
100	100,000002	93,3	2,30		
100	100,000002	100,0	0,00	,	
100	100,000002	113,3	4,30		
100	100,000002	133,3	10,00		

Результаты поверки считаются положительными, если погрешность измерений находится в пределах $\pm 0,3$ %.

Таблица 10 - Значения коэффициентов n-х гармонических составляющих напряжений и тока

	Тип 1 Тип 2		Тип 3			Тип 4		Тип 5		
П	f = 50 Γ _Ц		f = 4		f = 51 Γц		f = 45 Гц		f = 55 Гц	
	KU(n),	$\varphi U(n)$,	KU(n),	φU(n),	KU(n),	$\phi U(n)$,	KU(n),	$\phi U(n)$,	KU(n),	φU(n),
	KI(n), %						KI(n), %		KI(n), %	
2	0	0	0	0	4	0	2	0	3	0
3	0	0	30	0	4	0	5	0	7,5	30°
4	0	0	0	0	4	0	1	0	1,5	0
5	0	0	0	0	4	0	6	0	9	60°
6	0	0	0	0	4	0	0,5	0	0,75	0
7	0	0	0	0	4	0	5	0	7,5	90°
8	0	0	0	0	4	0	0,5	0	0,75	0
9	0	0	0	0	4	0	1,5	0	2,25	120°
10	0	0	20	0	4	0	0,5	0	0,75	0
11	0	0	0	0	4	0	3,5	0	5,25	150°
12	0	0	0	0	4	0	0,2	0	0,3	0
13	0	0	0	0	4	0	3,0	0	4,5	180°
14	0	0	0	0	4	0	0,2	0	0,3	0
15	0	0	0	0	4	0	0,3	0	0,45	-150°
16	0	0	0	0	4	0	0,2	0	0,3	0
17	0	0	0	0	4	0	2,0	0	3	-120°
18	0	0	0	0	4	0	0,2	0	0,3	0
19	0	0	0	0	4	0	1,5	0	2,25	-90°
20	0	0	20	0	4	0	0,2	0	0,3	0
21	0	0	0	0	4	0	0,2	0	0,3	-60°
22	0	0	0	0	4	0	0,2	0	0,3	0
23	0	0	0	0	4	0	1,5	0	2,25	-30°
24	0	0	0	0	4	0	0,2	0	0,3	0
25	0	0	0	0	4	0	1,5	0	2,25	0
26	0	0	0	0	4	0	0,2	0	0,3	0
27	0	0	0	0	4	0	0,2	0	0,3	30° 0
28	0	0	0	0	4	0	0,2	0	0,3	60°
29	0	0	0	0	4	0	1,32	0	1,92	0
30	0	0	10	0	4	0	0,2 1,25	0	1,86	90°
31	0	0	0	0	4	0	0,2	0	0,3	0
32	0	0	0	0	4	0	0,2	0	0,3	120°
33	0	0	0	0	4	0	0,2	0	0,3	0
35	0	0	0	0	4	0	1,13	0	1,7	150°
36	0	0	0	0	4	0	0,2	0	0,3	0
37	0	$\frac{0}{0}$	0	0	4	0	1,08	0	1,62	180°
38	0	0	0	0	4	0	0,2	0	0,3	0
39	0	0	0	0	4	0	0,2	0	0,3	-150°
40	0	0	5	0	4	0	0,2	0	0,3	0

9 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

9.1 Сравнивают идентификационное наименование ПО и номер версии, отображаемые на дисплее анализатора, с данными, приведёнными в таблице 11.

Таблица 11 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение		
Идентификационное наименование	CW500 firmware		
Номер версии (идентификационный номер)	не ниже 1.01		

9.2 Анализатор признают прошедшим идентификацию ПО, если идентификационные данные соответствуют данным, приведённым в таблице 11.

10 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 10.1 При положительных результатах поверки выдается свидетельство о поверке установленной формы или делается запись о результатах и дате поверки в паспорте анализатора. На обороте свидетельства и (или) в паспорте в обязательном порядке указываются модели и серийные номера токоизмерительных клещей, с которыми производилась поверка. Свидетельство о поверке и запись в паспорте должны быть удостоверены поверительным клеймом.
- 10.2 Результаты измерений, полученные в процессе поверки, заносят в протокол произвольной формы. При необходимости протокол поверки может быть приложен к свидетельству.
- 10.3 В случае проведения поверки лишь некоторых измерительных каналов и (или) в ограниченных диапазонах измеряемых величин, в свидетельстве о поверке делаются соответствующие отметки.
- 10.4 В случае отрицательных результатов поверки средство измерений признается непригодным и выдается извещение о непригодности с указанием причин непригодности и данное СИ запрещается к выпуску в обращение и к применению.

Начальник отдела 209 ФГУП «ВНИИМС»

С.Г. Семенчинский мерения С.Г. Семенчинский мерения С.И.М. Каширкина

Начальник отдела 201 ФГУП «ВНИИМС»