УТВЕРЖДАЮ

Государственная система обеспечения единства измерений

Группа излучателей на основе ламп ТРУ КВФШ.418233.005 и излучатель на основе лампы СИРШ КВФШ.418233.011

Методика поверки МП 001.М4-18

1 Ввеление

Настоящая методика распространяется на группу излучателей на основе ламп ТРУ КВФШ.418233.005 и излучатель на основе лампы СИРШ КВФШ.418233.011 (далее – излучатели), предназначенные для получения видимого оптического излучения, используемого при измерениях спектральной плотности энергетической яркости (далее – СПЭЯ), и устанавливает операции при проведении их первичной и периодической поверок.

Производство единичное.

Группа излучателей на основе ламп ТРУ КВФШ.418233.005 и излучатель на основе лампы СИРШ КВФШ.418233.011 состоит из:

- группа излучателей на основе ламп ТРУ КВФШ.418233.005;
- излучатель на основе лампы СИРШ КВФШ.418233.011.

Допускается проведение раздельной поверки группы излучателей и излучателя в соответствии с письменным заявлением владельца группы излучателей с обязательным указанием информации об объеме проведенной поверки в перечне поверенных, являющемся неотъемленной частью свидетельства о поверке группы излучателей.

Группа излучателей или излучатель из состава группы излучателей, прошедшие поверку с отрицательным результатом, выводятся из эксплуатации и не включаются в перечень поверенных, являющийся неотъемлемой частью свидетельства о поверке аппаратуры.

После замены лампы группы излучателей или излучателя лампой из состава ЗИП-О проводят первичную поверку. При этом срок действия свидетельства о поверке на группу излучателей в части указанных группы излучателй или излучателя устанавливается до окончания срока действия основного свидетельства о поверке.

Интервал между поверками - 1 год.

2 Операции поверки

2.1 При проведении первичной и периодической поверок выполняются операции, указанные в таблице 1.

Таблица 1

№ п/п	Наименование операции	Номер пункта	Обязательность выполне операции	
		НД по поверке	При первичной поверке	При периодической поверке
1	Внешний осмотр	8.1	Да	Да
2	Опробование	8.2	Да	Да
3	Определение диапазона измерений СПЭЯ	8.3	Да	Да
4	Расчет суммарного среднего квадратического отклонения результата сличения с государственным первичным эталоном по СПЭЯ*	8.4	Да	Да
5	Расчет относительной погрешности измерений СПЭЯ**	8.5	Да	Да

^{* -} проводится при поверке группы излучателей на основе ламп ТРУ в ранге вторичного эталона

^{** -} проводится при поверке излучателя на основе лампы СИРШ в ранге рабочего эталона 1-го разряда

^{2.2} При получении отрицательных результатов при проведении хотя бы одной операции поверка прекращается.

2.3 Поверку средств измерений осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.

3 Средства поверки

3.1 При проведении первичной и периодических поверок применяются средства поверки, указанные в таблице 2.

Таблица 2

	Наименование и основного	Основные технические и (или) метрологические		
	или вспомогательного	характеристики		
Номер	средства поверки;			
пункта	обозначение НД,			
1	регламентирующего			
методики	метрологические и основные			
	технические характеристики			
	средства поверки			
	1 Государственный	Диапазон значений СПЭЯ, воспроизводимый		
	первичный эталон по ГОСТ	эталоном в диапазоне длин волн от 0,2 до		
	8.195-2013 (ГЭТ)	$\begin{bmatrix} 25,0 & \text{мкм}, & \text{составляет:} & \text{от} & 1,0\cdot10^5 & \text{до} \\ 1,0\cdot10^{12} & \text{Вт/(ср·м}^3); & \end{bmatrix}$		
		Среднее квадратическое отклонение (СКО): от		
		0,15 до 2,5 % в зависимости от длины волны;		
		Неисключенная систематическая погрешность		
		(НСП): от 0,25 до 2,0 % в зависимости от		
8.3 - 8.5		длины волны.		
	2 Вторичный эталон по	Диапазон измерений СПЭЯ в диапазоне длин		
	ГОСТ 8.195-2013 (ВЭТ)	волн от 0.35 до 2.5 мкм составляет от 1.10^7 до		
		1,3·10 ¹¹ Вт/(ср·м ³);		
		Суммарное СКО результата сличения с		
		государственным первичным эталоном по		
		СПЭЯ составляет от 0,5 до 1,2 % в		
		зависимости от длины волны.		

3.2 Средства поверки, указанные в таблице 2, должны быть поверены и аттестованы в установленном порядке.

4 Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие настоящую методику и Руководство по эксплуатации излучателей и средств поверки, имеющие квалификационную группу не ниже III в соответствии с правилами по охране труда при эксплуатации электроустановок, указанными в приложении к приказу Министерства труда и социальной защиты РФ от 24.07.13 № 328Н и прошедшие полный инструктаж по технике безопасности, прошедших обучение на право проведения поверки по требуемому виду измерений, ученый хранитель, либо лица допущенные к работе на ГЭТ.

5 Требования безопасности и охраны окружающей среды

5.1 При проведении поверки следует соблюдать требования, установленные ГОСТ Р 12.1.031-2010, ГОСТ 12.1.040-83, правилами по охране труда при эксплуатации электроустановок, указанными в приложении к приказу Министерства труда и социальной

защиты РФ от 24.07.13 № 328Н. Оборудование, применяемое при поверке, должно соответствовать требованиям ГОСТ 12.2.003-91. Воздух рабочей зоны должен соответствовать ГОСТ 12.1.005-88 при температуре помещения, соответствующей условиям испытаний для легких физических работ.

- 5.2 При выполнении поверки должны соблюдаться требования Руководства по эксплуатации излучателей.
- 5.3 Помещение, в котором проводится поверка, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.
- 5.4 Излучатели не оказывают опасных воздействий на окружающую среду и не требуют специальных мер по защите окружающей среды.

6 Условия поверки

6.1 При проведении поверки должны быть соблюдены следующие условия:

- температура окружающей среды, $^{\circ}$ C от +15 до +25; - относительная влажность воздуха, %, не более 80; - атмосферное давление, мм рт.ст. от 720 до 760; - напряжение питающей сети переменного тока, В от 198 до 242; - частота питающей сети переменного тока, Γ ц от 49 до 51.

- 6.2 Помещение, в котором проводится поверка, должно быть чистым и сухим. В помещении не должно быть кислотных, щелочных и других газов, способных вызвать значительную коррозию металлов, а также газообразных органических растворителей (например, бензина и разбавителя), способных вызвать коррозию краски.
- 6.3 В помещении не допускаются посторонние источники оптического излучения, мощные постоянные и переменные электрические и магнитные поля.

7 Подготовка к поверке

- 7.1 Перед началом работы с излучателями необходимо внимательно изучить Руководство по эксплуатации, а также ознакомиться с правилами подключения излучателей.
- 7.2 Проверить наличие средств поверки по таблице 2, укомплектованность их документацией и необходимыми элементами соединений.
- 7.3 При подготовке излучателей к работе необходимо проверить чистоту колбы излучателя. Если на колбе излучателя имеются загрязнения, то их следует удалить с помощью чистой мягкой ткани.

8 Проведение поверки

8.1 Внешний осмотр

- 8.1.1 При внешнем осмотре должно быть установлено соответствие комплектности излучателей Руководству по эксплуатации. Стекло колбы излучателей должно быть бесцветным и чистым (внутри и снаружи), должны отсутствовать царапины, трещины, пятна распыления тела накала. На колбе не должно быть свилей, пузырей и прочих неоднородностей, видимых невооруженным глазом. Цоколь должен быть прочно скреплен с колбой, на нем не должно быть повреждений (например, следов коррозии).
- 8.1.2 Излучатели считаются прошедшими операцию поверки, если на колбе и цоколе отсутствуют повреждения и загрязнения, цоколь прочно скреплен с колбой, а комплектность соответствует комплектности, приведенной в таблице 3.

Таблица 3

Наименование	Обозначение	Количество
Группа излучателей на основе ламп ТРУ	КВФШ.418233.005	1 шт.
и излучатель на основе лампы СИРШ	КВФШ.418233.011	1 шт.
Комплект ЗИП группы излучателей на основе ламп ТРУ		1 комплект
и комплект ЗИП излучателя на основе лампы СИРШ	-	1 комплект
Коробка упаковочная индивидуальная для каждого		
излучателя группы излучателей на основе ламп ТРУ		3 шт.
и коробка упаковочная индивидуальная для излучателя	-	
на основе лампы СИРШ		1 шт.
Руководство по эксплуатации	КВФШ.418233.005РЭ	1 экз.
	КВФШ.418233.011РЭ	1 экз.
Методика поверки	MΠ 001.M4-2018	1 экз.

8.2 Опробование

- 8.2.1 Установить излучатель на основе лампы ТРУ в оптический стенд ГЭТ (излучатель на основе лампы СИРШ в оптический стенд ВЭТ).
- 8.2.2 Включить излучатель на основе лампы ТРУ, установив на блоке питания последовательно ток 16 A и 24 A (для излучателя на основе лампы СИРШ 12,6 A и 18,5 A).
- 8.2.3 Излучатели признаются прошедшими операцию поверки, если включение всех излучателей прошло успешно (лампы зажглись).

8.3 Определение диапазона измерений СПЭЯ

- 8.3.1 Определение диапазона измерений СПЭЯ группы излучателей на основе ламп ТРУ проводят на ГЭТ методом сличения с излучателем из состава ГЭТ (лампой накаливания светоизмерительной), работающим в тех же спектральных диапазонах, с помощью спектрального компаратора из состава ГЭТ.
- 8.3.1.1 Установить излучатель из состава ГЭТ и первый излучатель из состава группы излучателей на основе ламп ТРУ на оптический стенд ГЭТ и провести юстировку с помощью лазера, совместив геометрический центр тела накала по нормали к оптической оси.
- 8.3.1.2 На монохроматоре, входящем в состав спектрального компаратора из состава ГЭТ, установить длину волны 0,35 мкм.
 - 8.3.1.3 Установить на блоке питания поверяемого излучателя ток 16 А.
- 8.3.1.4 Поочередно снять показания сигналов приемника излучения спектрального компаратора из состава ГЭТ: $i_{0i}(\lambda)$, В, при освещении его излучателем из состава ГЭТ и $i_i(\lambda)$, В, при освещении его поверяемым излучателем.
- 8.3.1.5 Установить заслонку и измерить на той же длине волны темновые сигналы приемника излучения спектрального компаратора из состава ГЭТ: $i_{T0i}(\lambda)$, B, при освещении его излучателем из состава ГЭТ, $i_{Ti}(\lambda)$, B, при освещении его поверяемым излучателем.
- 8.3.1.6 Рассчитать отношение $R_i(\lambda)$ сигналов поверяемого и эталонного излучателей для заданной длины волны λ по формуле 1:

$$R_{i}(\lambda) = \frac{i_{i}(\lambda) - i_{Ti}(\lambda)}{i_{0i}(\lambda) - i_{T0i}(\lambda)} \tag{1}$$

- 8.3.1.7 Повторить 10 раз измерения в соответствии с 8.3.1.4-8.3.1.6.
- 8.3.1.8 Рассчитать среднее значение отношения сигналов $\overline{R}(\lambda)$ по формуле 2:

$$\overline{R}(\lambda) = \frac{1}{10} \cdot \sum_{i=1}^{10} R_i(\lambda) \tag{2}$$

8.3.1.9 Рассчитать значение СПЭЯ поверяемого излучателя для заданной длины волны λ $L(\lambda)$, $Br/(cp \cdot m^3)$, по формуле 3:

$$L(\lambda) = L_0(\lambda) \cdot \overline{R}(\lambda), \tag{3}$$

- где $L_0(\lambda)$ значение СПЭЯ излучателя из состава ГЭТ для заданной длины волны λ , Вт/(ср·м³), взятое из свидетельства о поверке излучателя.
- 8.3.1.10 Повторить 8.3.1.2-8.3.1.9 для длин волн 0,5 мкм, 1,0 мкм и 2,5 мкм, установив на блоке питание ток 24 А.
- 8.3.1.11 Повторить 8.3.1.1-8.3.1.10 для второго и третьего излучателей из состава группы излучателей на основе ламп ТРУ.
- 8.3.2 Определение диапазона измерений СПЭЯ для излучателя на основе лампы СИРШ проводят на ВЭТ методом сличения с излучателем из состава ВЭТ (лампой накаливания светоизмерительной), работающим в тех же спектральных диапазонах, с помощью спектрального компаратора из состава ВЭТ.
- 8.3.2.1 Установить поверяемый излучатель и излучатель из состава ВЭТ на оптический стенд из состава ВЭТ и провести юстировку с помощью лазера, совместив геометрический центр тела накала по нормали к оптической оси.
- 8.3.2.2 На монохроматоре, входящем в состав спектрального компаратора из состава ВЭТ, установить длину волны 0,35 мкм.
 - 8.3.2.3 Установить на блоке питания поверяемого излучателя ток 12,6 А.
- 8.3.2.4 Поочередно снять показания сигналов приемника излучения спектрального компаратора из состава ВЭТ: $i_{3i}(\lambda)$, В, при освещении его излучателем из состава ВЭТ и $i_i(\lambda)$, В, при освещении его поверяемым излучателем.
- 8.3.2.5 Установить заслонку и измерить на той же длине волны темновые сигналы приемника излучения спектрального компаратора из состава ВЭТ: $i_{T_3}(\lambda)$, В, при освещении его излучателем из состава ВЭТ, $i_T(\lambda)$, В, при освещении его поверяемым излучателем.
- 8.3.2.6 Рассчитать отношение $R_i(\lambda)$ сигналов эталонного и поверяемого излучателей для заданной длины волны λ по формуле 4:

$$R_{i}(\lambda) = \frac{i_{i}(\lambda) - i_{T}(\lambda)}{i_{2i}(\lambda) - i_{T2}(\lambda)},$$
(4)

- 8.3.2.7 Повторить 10 раз измерения в соответствии 8.3.2.4-8.3.2.6. (π =10)
- 8.3.2.8 Рассчитать среднее значение отношения сигналов $R(\lambda)$ по формуле 5:

$$\overline{R}(\lambda) = \frac{1}{10} \cdot \sum_{i=1}^{10} R_i(\lambda), \qquad (5)$$

8.3.2.9 Рассчитать значение СПЭЯ поверяемого излучателя $L(\lambda)$, Вт/(ср·м³), для заданной длины волны λ по формуле 6:

$$L(\lambda) = L_{3}(\lambda) \cdot \overline{R}(\lambda), \tag{6}$$

где $L_9(\lambda)$ - эталонное значение СПЭЯ для заданной длины волны, $Bt/(cp \cdot m^3)$, указанное в свидетельстве о поверке излучателя из состава ВЭТ.

- 8.3.2.10 Повторить 8.3.2.2- 8.3.2.9 для длин волн 0,5 мкм, 1,0 мкм и 2,5 мкм, установив на блоке питания поверяемого излучателя ток 18,5 А.
- 8.3.3 Излучатели считаются прошедшими операцию поверки, если нижнее значение диапазона измерений СПЭЯ составляет не более $1\cdot10^7$, а верхнее значение не менее $1,3\cdot10^{11}$ Вт/(ср·м³).
- 8.4 Расчет суммарного среднего квадратического отклонения результата сличения с государственным первичным эталоном по СПЭЯ
- 8.4.1 Суммарное СКО результата сличения с государственным первичным эталоном по СПЭЯ, %, определяют по формуле 7:

$$S_{\Sigma_0} = \sqrt{\left(\frac{\theta}{\sqrt{3}}\right)^2 + S_0^2(\lambda)}, \qquad (7)$$

где $S_0(\lambda)$ – СКО случайной относительной погрешности результатов измерений СПЭЯ, %, рассчитывается по формуле 9;

0 – НСП результатов измерений при передаче единицы СПЭЯ от ГЭТ, % (из паспорта на ГЭТ).

8.4.2 СКО случайной относительной погрешности результатов измерений СПЭЯ, %, вычисляют по формуле 8:

$$S_0(\lambda) = \frac{1}{\overline{R}(\lambda)} \cdot \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (R_i(\lambda) - \overline{R}(\lambda))^2} \cdot 100\%, \qquad (8)$$

где $R_i(\lambda)$ - *i*-й результат наблюдения отношения сигналов поверяемого излучателя из состава группы излучателей на основе ламп ТРУ и эталонного излучателя;

 $\overline{R}(\lambda)$ - среднее значение отношения сигналов поверяемого излучателя из состава группы излучателей на основе ламп ТРУ и эталонного излучателя;

n – число наблюдений (n = 10).

8.4.3 Излучатели считаются прошедшими операцию поверки, если суммарное среднее квадратическое отклонение результата сличения с государственным первичным эталоном по СПЭЯ не превышает значений, приведенных в таблице 4.

Таблица 4

Длина волны, мкм	Суммарное СКО, %
0,35	1,2
0,5	0,6
1,0	0,5
2,5	1,0

8.5 Расчет относительной погрешности измерений СПЭЯ

8.5.1 Относительную погрешность измерений СПЭЯ, %, определяют по формуле 9:

$$\Delta_0 = \mathcal{K} \sqrt{S_0^2(\lambda) + \frac{1}{3} (S_{\Sigma_0}^2 + \Delta_{\varepsilon_0}^2)}, \qquad (9)$$

где $S_0(\lambda)$ — СКО случайной относительной погрешности результатов измерений, %, вычисляют по формуле 8;

 S_{Σ_0} — суммарное СКО результатов сличений ВЭТ с ГЭТ, % (из свидетельства об аттестации ВЭТ);

 $\Delta_{\rm go}$ — погрешность метода передачи, % (из свидетельства об аттестации ВЭТ).

К – коэффициент, зависящий от соотношения случайной составляющей погрешности и НСП, определяемый по формуле 10:

$$K = \frac{\left(tS_{0}(\lambda) + (S_{\Sigma_{0}} + \Delta_{\omega})\right)}{\left(S_{0}(\lambda) + \sqrt{\frac{S_{\Sigma_{0}}^{2} + \Delta_{\omega}^{2}}{3}}\right)},$$
(10)

где t – коэффициент Стьюдента ($t_{0.95}$ (π = 10) = 2,262).

8.5.2 Излучатель считается прошедшим операцию поверки, если относительная погрешность измерений СПЭЯ не превышает значений, приведенных в таблице 5.

Таблица 5

Длина волны, мкм	Относительная погрешность, %	
0,35	± 3,8	
0,5	± 1,5	
1,0	± 1,8	
2,5	± 3,0	

9 Оформление результатов поверки

- 9.1 Результаты поверки заносятся в протокол (форма протокола приведена в приложении А настоящей методики поверки).
- 9.2 Излучатели, прошедшие поверку с положительным результатом, признают годными и допускаются к применению. На них выдаётся свидетельство о поверке установленной формы с указанием полученных по п.п. 8.3 − 8.5 фактических значений метрологических характеристик излучателей согласно Приказу Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

9.3 Излучатели, прошедшие поверку с отрицательным результатом, признаются непригодными, не допускают к применению. Свидетельство о предыдущей поверке аннулируют и выписывают «Извещение о непригодности» с указанием причин в соответствии с требованиями Приказа Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015.

Начальник лаборатории отделения М-4 ph h Б.Б. Хлевной ФГУП «ВНИИОФИ» С.С. Колесникова Ведущий инженер ФГУП «ВНИИОФИ»

Ведущий инженер ФГУП «ВНИИОФИ» Н.Е. Бурдакина «Группа излучателей на основе ламп ТРУ КВФШ.418233.005 и излучатель на основе лампы СИРШ КВФШ.418233.011»

протокол

первичной / периодической поверки

от «»	20года
Средство измерений: Группа излучателей на основе лам	п ТРУ КВФШ.418233.005 и
излучатель на основе лампы СИРШ КВФШ.418233.011	
(Наименование СИ, тип (если в состав СИ входит н	есколько автономных блоков
то приводят их перечень (наименования) и типы с раздел	ением знаком «косая дробь» /)
Зав. №	
Заводские номера блоков	
Принадлежащее Наименование юридического лиц	іа, ИНН
Поверено в соответствии с методикой поверки «Госу,	дарственная система обеспечения
единства измерений. Группа излучателей на основе ламп	ATT.
на основе лампы СИРШ КВФШ.418233.011. Методика по	оверки» № МП 001.M4-18,
утвержденной ФГУП«ВНИИОФИ» « » 2018 г	
Наименование документа на поверку,	кем утвержден (согласован), дата
С применением эталонов (наименование, заводской номер, разря	д, класс точности или погрешность)
При следующих значениях влияющих факторов: (приводят перечень и значения влияющих факторов,	нормированных в методике поверки)
- температура окружающего воздуха, °С	от +15 до +25
- относительная влажность воздуха, %, не более	80
- атмосферное давление, мм рт.ст.	от 720 до 760

Получены результаты поверки метрологических характеристик:

Таблица 1 Излучатель № 1 из состава группы излучателей на основе ламп ТРУ

Режим тока п	итания, А				
Длина волн	ы λ, мкм	0,35	0,5	1,0	2,5
Длина волн Отношение сигналов поверяемого и эталонного излучателей	$R_{1}(\lambda)$ $R_{2}(\lambda)$ $R_{3}(\lambda)$ $R_{4}(\lambda)$ $R_{5}(\lambda)$ $R_{6}(\lambda)$ $R_{7}(\lambda)$ $R_{8}(\lambda)$ $R_{9}(\lambda)$	0,35	0,5	1,0	2,5
	$R_{IO}(\lambda)$ Среднее: $\overline{R}(\lambda)$				

СПЭЯ <i>L</i> (λ), Вт/(ср·м ³)	Требования технической документации		от 10 ⁷ до	1,3·10 ¹¹	
Bir(cp M)	Результат				
$S_{\Sigma_0}(L(\lambda))$,%	Требования технической документации	1,2	0,6	0,5	1,0
	Результат				

Таблица 2 Излучатель № 2 из состава группы излучателей на основе ламп ТРУ

Режим тока	питания, А					
Длина волн	ы λ, мкм	0,35	0,5	1,0	2,5	
	$R_I(\lambda)$					
Отношение	$R_2(\lambda)$					
сигналов	$R_3(\lambda)$					
поверяемого и	$R_4(\lambda)$					
эталонного излучателей	$R_5(\lambda)$					
	$R_{\delta}(\lambda)$					
	$R_7(\lambda)$					
	$R_8(\lambda)$					
	$R_{g}(\lambda)$					
	$R_{I0}(\lambda)$					
	Среднее: $\overline{R}(\lambda)$					
	Требования	от 10 ⁷ до 1,3·10 ¹¹				
СПЭЯ $L(\lambda)$,	технической					
$BT/(cp \cdot M^3)$	документации	3			Υ	
_	Результат					
	Требования					
a (**(a)) 0/	технической	1,2	0,6	0,5	1,0	
$S_{\Sigma_0}(L(\lambda)),\%$	документации					
	Результат					

Таблица 3 Излучатель № 3 из состава группы излучателей на основе ламп ТРУ

Режим тока і	титания, А			**************************************	
Длина волн	ы λ, мкм	0,35	0,5	1,0	2,5
	$R_I(\lambda)$	10 (300)			
Отношение	$R_2(\lambda)$				
сигналов	$R_3(\lambda)$				
поверяемого и	$R_4(\lambda)$			-43344369	
эталонного	$R_5(\lambda)$				
излучателей	$R_6(\lambda)$				
	$R_7(\lambda)$				
	$R_{\delta}(\lambda)$				
	$R_{g}(\lambda)$				
	$R_{IO}(\lambda)$				
	Среднее: $\overline{R}(\lambda)$				
СПЭЯ $L(\lambda)$, Требования технической			от 10 ⁷ до	1,3·10 ¹¹	

Вт/(cp·м ³)	документации				
	Результат				
$S_{\Sigma_0}(L(\lambda)),$ %	Требования технической документации	1,2	0,6	0,5	1,0
	Результат	or an employee the second	pastern structures with an death of the control of		

Таблица 4 Излучатель на основе лампы СИРШ

Режим тока п	Режим тока питания, А				
Длина волні	Длина волны λ, мкм		0,5	1,0	2,5
2.8	$R_I(\lambda)$			200 W. C.	
Отношение	$R_2(\lambda)$				
сигналов	$R_3(\lambda)$				
поверяемого и	$R_4(\lambda)$				
эталонного	$R_5(\lambda)$		75/0/2005		
излучателей	$R_6(\lambda)$				
	$R_7(\lambda)$				
	$R_8(\lambda)$				
	$R_{g}(\lambda)$				
	$R_{IO}(\lambda)$		**		
	Среднее: $\overline{R}(\lambda)$				
СПЭЯ <i>L</i> (λ), Вт/(ср·м ³)	Требования технической документации		от 10 ⁷ до	1,3·10 ¹¹	
Ви(ср м)	Результат				
Δ(L(λ)) ,%	Требования технической документации	± 3,8	± 1,5	± 1,8	± 3,0
	Результат				

Рекомендации			
	Средство измерений признать пригодным (или непригодным) для применения		
Исполнители:			_
		подписи, ФИО, должнос	ГЬ