УТВЕРЖДАЮ

Первый заместитель генерального директора - заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Притунов Внимотря 2018 г.

Инструкция

Анализаторы спектра портативные AV4024D/E/F/G

Методика поверки 651-18-014 МП

- 1 Основные положения
- 1.1. Настоящая методика устанавливает методы и средства первичной и периодической поверок анализаторов спектра портативных AV4024D/E/F/G, изготавливаемых фирмой «China Electronics Technology Instruments Co., Ltd», КНР (далее AV4024).
 - 1.2 Интервал между поверками 1 год.
- 1.3. Периодическая поверка AV4024 в случае их использования для измерений меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» Описания типа, допускается на основании письменного заявления их владельца, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке средства измерений.
 - 2 Операции поверки
- 2.1 При проведении поверки должны производиться операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Номер	Проведение	операций при
Наименование операции	пункта	первичной	периодиче-
	методики	поверке	ской поверке
Внешний осмотр	7.1	да	да
Опробование	7.2	да	да
Идентификация программного обеспечения	7.3	да	да
Определение относительной погрешности частоты	7.4	да	да
опорного кварцевого генератора. Определение			
диапазона частот и абсолютной погрешности из-			
мерений частоты			
Определение уровня фазовых шумов	7.5	да	да
Определение среднего уровня собственных шумов	7.6	да	да
Определение уровня помех, не связанных с входом	7.7	да	да
Определение уровня второй гармоники относи-	7.8	да	да
тельно уровня основного сигнала			
Определение абсолютной погрешности измерений	7.9	да	да
мощности			

- 2.2 При получении отрицательных результатов в процессе выполнения операций по любому из пунктов таблицы 1 AV4024 признается непригодным и к эксплуатации не допускается.
 - 3 Средства поверки
 - 3.1 Основные средства поверки приведены в таблице 2.

Таблица 2 - Основные средства поверки

	II
Пункт	Наименование рабочих эталонов или вспомогательных средств поверки; номер
	документа, регламентирующего технические требования к рабочим эталонам или
методики	вспомогательным средствам; разряд по государственной поверочной схеме и
поверки	(или) метрологические и основные технические характеристики средства поверки
7.4	Частотомер Agilent 53230A, входная частота от 1 до 350 МГц, пределы допускае-
7.4	мой относительной погрешности измерений частоты ±10 ⁻⁶
Стандарт частоты рубидиевый FS725, пределы допускаемой относитель	
7.4, 7.5	грешности воспроизведения частоты 5 и 10 МГц ±5·10 ⁻¹¹
	Ваттметр N1914A с преобразователем измерительным N8487A, диапазон частот
7.9	от 50 МГц до 50 ГГц, динамический диапазон от 0,31 мкВт до 100 мВт, пределы
	допускаемой погрешности измерений мощности ±8 %
7475	Генератор сигналов Agilent E8257D с опциями UNX, 550, диапазон частот от 250
7.4, 7.5,	кГц до 50 ГГц, выходная мощность от минус 100 до плюс 15 дБм, наличие функ-
7.8, 7.9	ции низкочастотного выхода

- 3.2 Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемого AV4024 с требуемой точностью.
- 3.3 Применяемые при поверке средства измерений и рабочие эталоны должны быть поверены и иметь свидетельства о поверке с неистекшим сроком действия на время проведения поверки или оттиск поверительного клейма на приборе или в документации.
 - 4 Требования безопасности при поверке
- 4.1 При проведении операций поверки должны быть соблюдены меры безопасности, указанные в соответствующих разделах эксплуатационной документации на средства измерений, используемых при поверке.
- 4.2 К проведению поверки AV4024 допускается инженерно-технический персонал со среднетехническим или высшим радиотехническим образованием, имеющим опыт работы с радиотехническими установками, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке и имеющий право на поверку (аттестованными в качестве поверителей).
 - 5 Условия поверки
 - 5.1. При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха

(25±5) °C;

- относительная влажность воздуха

от 30 до 80 %;

- атмосферное давление

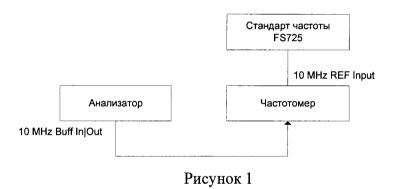
от 84,0 до 106,7 кПа;

- напряжение питающей сети

 (220 ± 20) B;

- частота питающей сети

 $(50\pm0,5)$ Гц.


- 6 Подготовка к поверке
- 6.1 Поверитель должен изучить руководство по эксплуатации поверяемого AV4024 и используемых средств поверки.
- 6.2 Поверяемый AV4024 должен быть выдержан в помещении в расположении средств поверки не менее 2-х часов.
- 6.3 AV4024 и средства поверки должны быть подготовлены к работе в соответствии с РЭ.
 - 7 Методы (методики) поверки
 - 7.1 Внешний осмотр
 - 7.1.1 При внешнем осмотре проверить:
- отсутствие механических повреждений и ослабление элементов, чёткость фиксации их положения;
- чёткость обозначений, чистоту и исправность разъёмов и гнёзд, наличие и целостность пломб;
 - комплектность согласно требованиям эксплуатационной документации;
 - наличие маркировки согласно требованиям эксплуатационной документации.
- 7.1.2 Результаты внешнего осмотра считать положительными, если выполняются требования, перечисленные в п. 7.1.1.
 - 7.2 Опробование
 - 7.2.1 Подключить AV4024 к сети питания и включить его согласно РЭ.
- 7.2.2 Убедиться в возможности установки режимов измерений и настройки основных параметров и режимов измерений AV4024.

- · 7.2.3 Результаты опробования считать положительными, если при включении отсутствуют сообщения о неисправности и AV4024 позволяет менять настройки параметров и режимы работы.
 - 7.3 Идентификация ПО
- 7.3.1 Войти в меню System, выбрать System Info. На экране AV4024 должны отобразиться идентификационные данные AV4024 и версия установленного программного обеспечения.
- 7.3.2 Результаты поверки считать положительными, если процедура самопроверки проходит успешно идентификационные данные программного обеспечения соответствуют идентификационным данным, приведённым в таблице 3.

Т	аб	лип	ล	3

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Spectrum Analyzer: AV4024 Series
Номер версии (идентификационный номер) ПО	не ниже 1.2.87
Цифровой идентификатор ПО	-

7.4 Определение относительной погрешности частоты опорного кварцевого генератора. Определение диапазона частот и абсолютной погрешности измерений частоты 7.4.1 Собрать схему измерений в соответствии с рисунком 1.

- 7.4.2 Включить в меню System выход 10 МГц In/Out
- 7.4.3 Измерить частоту сигнала $f_{_{
 m H3M}}$ при помощи частотомера, зафиксировать
- 7.4.4 Относительную погрешность частоты ($^{\mathcal{S}f}$) вычислить по формуле (1):

$$\delta f = \frac{f_{\text{N3M}} - f_{\text{HOM}}}{f_{\text{HOM}}} \qquad , \tag{1}$$

где $f_{\text{ном}}$ - номинальное значение частоты опорного генератора, Γ ц; $f_{\text{изм}}$ - измеренное частотомером значение частоты, Γ ц.

7.4.5 Соединить выход частоты 10 МГц стандарта частоты со входом внешней опорной частоты генератора сигналов в соответствии с рисунком 2.

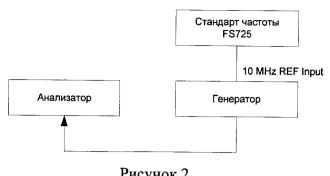


Рисунок 2

- 7.4.6 Соединить выход низкой частоты (LF) генератора сигналов с входом AV4024. Установить следующие параметры выхода низкой частоты: частота 9 кГц, значение амплитуды 100 мВ.
 - 7.4.7 Установить следующие параметры AV4024:
 - центральная частота 9 кГц;
 - полоса обзора 100 Гц;
 - остальные параметры по умолчанию.
 - Измерить значение частоты с помощью маркера путём нажатия клавиши Peak. 7.4.8
- 7.4.9 Изменить соединение приборов для измерения частоты на высокочастотном входе AV4024 (RF).
 - 7.4.10 Установить следующие параметры генератора:
- частота выходного сигнала, равная верхнему пределу диапазона рабочих частот поверяемой модификации AV4024 в соответствии с таблицей 4;
 - значение амплитуды выхода минус 10 дБ/мВт:

Таблина 4

Модификация AV4024	Диапазон рабочих частот		
AV4024D	от 9 кГц до 20 ГГц		
AV4024E	от 9 кГц до 26,5 ГГц		
AV4024F	от 9 кГц до 32 ГГц		
AV4024G	от 9 кГц до 44 ГГц		

- 7.4.11 Установить следующие параметры AV4024:
- центральная частота AV4024 номинальный верхний предел частоты AV4024 (зависит от модели AV4024);
 - полоса обзора 20 кГц.
 - 7.4.12 Измерить значение частоты с помощью маркера путём нажатия клавиши Реак.
 - 7.4.13 Установить следующие параметры генератора сигналов:
 - частота выходного сигнала 1 ГГц;
 - значение амплитуды выхода минус 10 дБ/мВт.
 - 7.4.14 Нажать кнопу Reset AV4024 и установить на нем следующие параметры:
 - центральная частота 1 ГГц;
 - значение полосы обзора 100 кГц;
 - отношение полосы обзора к полосе пропускания(Span/RBW): 100.
- 7.4.15 Повторить измерения для всех значений центральной частоты и полос обзора (зависит от модификации AV4024) из таблицы 5. (для измерения частоты 9 кГц выполнить п. 7.4.6-7.4.8)

Таблица 5

полоса обзора	100 Гц	0,1 МГц	3 МГц	30 МГц	100 МГц	1 ГГц	3 ГГц	5 ГГц	15 ГГц
полоса про- пускания	10 Гц	0,001 МГц	0,03 МГц	0,3 МГц	1 МГц	10 МГц	10 МГц	10 МГц	10 МГц
	9·10 ⁻⁶	-	-	-	-	-	-	-	-
	-	1	1	1	1	1	-	-	-
	-	3	3	3	3	3	-	-	-
	-	5	5	5	5	5	5	5	-
Центральная	-	15	15	15	15	15	15	15	15
частота, ГГц	-	20	20	20	20	20	20	20	20
	-	26,5	26,5	26,5	26,5	26,5	26,5	26,5	26,5
	-	32	32	32	32	32	32	32	32
	-	40	40	40	40	40	40	40	-
	-	44	-	-	-	-	-	-	-

- 7.4.16 Результаты поверки считать положительными, если значение относительной погрешности частоты опорного генератора находится в пределах $\pm (T \cdot 5 \cdot 10^{-7} + 4 \cdot 10^{-7})$, где T количество лет с даты выпуска; диапазон частот соответствует таблице 4, значения абсолютной погрешности измерений частоты находятся в пределах, вычисленных по формуле: $\pm [F \cdot 3 \cdot 10^{-7} + 0.02 \cdot F_{no} + 0.1 \ F_{nn}]$, где F— измеряемая частота; F_{no} полоса обзора; F_{nn} полоса пропускания.
 - 7.5 Определение уровня фазовых шумов
 - 7.5.2 Собрать схему измерений в соответствии с рисунком 3.

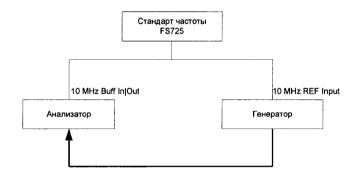


Рисунок 3

- 7.5.1. Установить следующие значения параметров генератора сигналов: значение частоты выходного сигнала 1 ГГц, значение уровня выходного сигнала 0 дБ/мВт.
- 7.5.2. Установить опорный уровень AV4024 0 дБ/мВт центральную частоту AV4024 1 ГГц , полосу обзора 20 кГц, полосу пропускания 1 кГц.
- 7.5.3. Установить уровень выходного сигнала генератора так, чтобы его значение соответствовало опорному уровню AV4024.
- 7.5.4. Выбрать режим AV4024 Peak Search (Поиск пика), и Delta Marker (Дельта маркер), запустить усреднение по 10 измерениям (кнопка меню BW—Average) и выбрать Single Sweep в меню Sweep(однократная развёртка).
- 7.5.5. Снять показание дельта маркера при отстройке частоты на $10 \, \text{к}\Gamma\text{ц}$ и минус $10 \, \text{к}\Gamma\text{ц}$ как уровень фазового шума при отстройке частоты на $10 \, \text{к}\Gamma\text{ц}$ и минус $10 \, \text{к}\Gamma\text{ц}$, соответственно. Нормализовать полученное значение уровня сигнала к полосе пропускания $1 \, \Gamma\text{ц}$ путём прибавления к полученному значению минус $30 \, \text{д}\text{Б}/\text{м}\text{B}\text{T}$.
- 7.5.6. Провести измерения уровня фазового шума, устанавливая значения параметров AV4024 в соответствии с таблицей 6.

Таблица 6

Отстройка	Полоса обзора	Полоса видеофильтра	Допускаемое значение фазовых шу-
_	*		мов, дБн/Гц, не более
10 кГц	20 кГц	1 кГц	- 102
100 кГц	200 кГц	10 кГц	- 106
1 МГц	2 МГц	100 кГц	- 111
10 МГц	20 МГц	1 МГц	- 123

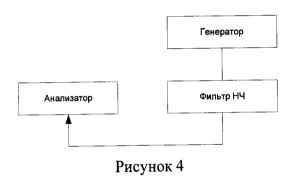
- 7.5.7. Результаты поверки считать положительными, если значения уровня фазового шума соответствуют указанным в таблице 6.
 - 7.6 Определение среднего уровня собственных шумов
- 7.6.1. Средний уровень собственных шумов измерять при отсутствии сигнала на входе AV4024.
- 7.6.2. Установить на входной RF-разъем AV4024 согласованную короткозамкнутую нагрузку 50 Ом.
 - 7.6.3. Установить на AV4024 следующие значения параметров:
 - начальная частота(Start Frequency) 10 МГц,
 - конечная частота(Stop Frequency) 4 ГГц;
 - опорный уровень минус 50 дБ/мВт;
 - входной аттенюатор 0 дБ;
 - полоса пропускания 100 кГц;
 - отношение полосы пропускания к полосе видеофильтра(RBW/VBW) 100;
 - предусилитель выключен;
 - тип детектора Average;
 - количество измерений 10.
- 7.6.4. Выбрать режим AV4024 Peak Search (Поиск пика). Запустить усреднение по 10 измерениям (кнопка меню BW—Average) и выбрать Single Sweep в меню Sweep(однократная развёртка). Нормализовать полученное значение уровня сигнала к полосе пропускания 1 Гц путём прибавления к полученному значению минус 50 дБ/мВт.
- 7.6.5. Повторить измерения для значений диапазонов частот, указанных в таблице 5. Повторить измерения с включенным предусилителем для всех значений диапазонов частот.
- 7.6.6. Результаты поверки считать положительными, если уровень помех, не связанных с входом, не превышает значений, указанных в таблице 7.

Таблица 7

Допустимое значение среднего уровня собст-
венных шумов, дБ/мВт, не более
-138
-135
-138
-135
-135
-127
-157
-152
-157
-154
-154
-148

- 7.7.2 Установить на входной RF-разъем AV4024 согласованную короткозамкнутую нагрузку 50 Ом.
 - 7.7.3 Установить на AV4024 следующие значения параметров:
 - начальная частота(Start Frequency) 10 МГц,
 - конечная частота(Stop Frequency) 2 ГГц;
 - опорный уровень минус 50 дБ/мВт;
 - входной аттенюатор 0 дБ;
 - полоса пропускания 30 кГц;
 - отношение полосы пропускания к полосе видеофильтра (RBW/VBW) 10;
 - тип детектора Normal;
 - предусилитель выключен;
 - количество измерений 5.
- 7.7.4 Выбрать режим AV4024 Peak Search (Поиск пика). Запустить усреднение по 10 измерениям (кнопка меню BW—Average) и выбрать Single Sweep в меню Sweep(однократная развёртка). Устанавливать параметры на AV4024 в соответствии с таблицей 8.

Таблица 8


Единица	Начальная часто-	Конечная час-	Полоса	Полоса видео-
измерений	та (Fstart)	тота (Fstop)	пропускания	фильтра
МГц	10	2000	30 кГц	3 кГц
ГГц	2	4	30 кГц	3 кГц
ГГц	4	5,35	30 кГц	3 кГц
ГГц	5,35	7,2	30 кГц	3 кГц
ГГц	7,2	8,2	30 кГц	3 кГц
ГГц	8,2	9	30 кГц	3 кГц
ГГц	9	10	30 кГц	3 кГц
ГГц	10	11,1	30 кГц	3 кГц
ГГц	11,1	13	30 кГц	3 кГц
ГГц	13	16,5	30 кГц	3 кГц
ГГц	16,5	17,5	30 кГц	3 кГц
ГГц	17,5	18,5	30 кГц	3 кГц
ГГц	18,5	19,25	30 кГц	3 кГц
ГГц	19,25	20	30 кГц	3 кГц
ГГц	20	22	30 кГц	3 кГц
ГГц	22	24	30 кГц	3 кГц
ГГц	24	26,5	30 кГц	3 кГц
ГГц	26,5	28	30 кГц	3 кГц
ГГц	28	30	30 кГц	3 кГц
ГГц	30	32	30 кГц	3 кГц
ГГц	32	34	30 кГц	3 кГц
ГГц	34	36	30 кГц	3 кГц
ГГц	36	38	30 кГц	3 кГц
ГГц	38	40	30 кГц	3 кГц
ГГц	40	44	30 кГц	3 кГц

- 7.7.5 Измерить величину максимальных помех путем нажатия кнопки Peak -Peak Search. Зафиксировать измеренное значение.
 - 7.7.6 Повторить измерения при включенном предусилителе.
- 7.7.7 Результаты поверки считать положительными, если уровень помех, не связанных с входом, не превышает значений, указанных в таблице 9.

Таблица 9

Таолица 9 Условия измерений	Остаточные отклики, дБ/мВт, не более		
Предусилитель выключен: от 10 МГц до 13 ГГц включ. св. 13 до 20 ГГц включ. св. 20 до 44 ГГц включ.	-90 -85 -80		
Предусилитель включен:: от 10 МГц до 32 ГГц включ. св. 32 до 44 ГГц включ.	-100 -95		

- 7.8. Определение уровня второй гармоники относительно уровня основного сигнала
 - 7.8.1. Собрать схему в соответствии с рисунком 4.

- 7.8.2. На AV4024 установить значение ослабления входного аттенюатора 0 дБ.
- 7.8.3. При измерении уровня второй гармоники необходимо использовать фильтры нижних частот, соответствующие частоте несущей. Подать на вход AV4024 гармонический сигнал частотой F и мощностью минус 30 дБ/мВт, зафиксировать при помощи маркера значение 2 гармоники на частоте 2F.
 - 7.8.4. Измерения проводить при частоте несущей 850 МГц.
- 7.8.5. Результаты поверки считать положительными, если уровень 2 гармоники не превышает 60 дБ по отношению к несущей.
 - 7.9 Определение абсолютной погрешности измерений мощности
 - 7.9.1 Откалибровать ваттметр и измерительный преобразователь.
- 7.9.2 Уровень сигнала (мощность) на выходе генератора контролировать с помощью ваттметра и измерительного преобразователя.
- 7.9.3 Абсолютную погрешность измерения уровня сигналов определять на частотах 50 МГц, 1, 5, 10, 15, 20, 24, 26.5, 30, 32, 40 ГГц, в зависимости от верхнего предела диапазона рабочей частоты модификации AV4024. Устанавливать на генераторе последовательно значения частот в зависимости от модификации AV4024 и уровни сигнала минус 30, минус 5, 0 дБ/мВт для каждой частотной точки.
- 7.9.4 Нажать кнопку Reset AV4024 и установить на нем следующие параметры: отношение полосы пропускания к полосе видеофильтра (RBW/VBW) 10; тип детектора Normal; предусилитель выключен; количество измерений 5, остальные параметры сохранить по умолчанию или использовать режим автоустановки. Выбрать режим AV4024 Peak Search (Поиск пика).
- 7.9.5 Вычислить абсолютную погрешность измерений уровня сигнала как разность между значением мощности, измеренной при помощи AV4024 и измеренной ваттметром.
- 7.9.6 Результаты поверки считать положительными, если значения абсолютной погрешности измерений мощности сигнала находятся в пределах $\pm 2,3$ дБ в диапазоне частот от 10 МГц до 40 ГГц.

- 8 Оформление результатов поверки
- 8.1. При положительных результатах поверки на AV4024 выдают свидетельство установленной формы. Знак поверки наносится на свидетельство о поверке.
- 8.2. В случае отрицательных результатов поверки применение AV4024 запрещается, на него выдается извещение о непригодности к применению с указанием причин забракования.

Начальник НИО-1 ФГУП «ВНИИФТРИ»

О.В. Каминский