УТВЕРЖДАЮ

Первый заместитель генерального директора заместитель по научной работе

ФГУП «ВНИИФТРИ»

« 25 » Внимотри в начавания н

Инструкция

Комплекс автоматизированный измерительно-вычислительный TMCA-18БМ1 18

Методика поверки 165-17-09 МП

СОДЕРЖАНИЕ

І ВВОДНАЯ ЧАСТЬ	3
2 ОПЕРАЦИИ ПОВЕРКИ	3
З СРЕДСТВА ПОВЕРКИ	4
ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	4
ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	4
5 УСЛОВИЯ ПОВЕРКИ	4
7 ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ	5
В ПРОВЕДЕНИЕ ПОВЕРКИ	5
В.1 Внешний осмотр	5
3.2 Опробование	5
3.3 Определение метрологических характеристик	7
В.3.1 Определение погрешности измерений амплитудного распределения электромагнитного	
поля и абсолютной погрешности измерений фазового распределения электромагнитного поля	1.7
В.3.2 Определение погрешности измерений относительных уровней амплитудных диаграмм	
направленности и абсолютной погрешности измерений фазовых диаграмм направленности	
В.3.3 Определение погрешности измерений коэффициента усиления антенн	16
3.3.4 Определение неравномерности частотных характеристик между каналами	
тробоскопического приемного модуля	17
В.3.5 Определение диапазона рабочих частот	
В.3.6 Определение размеров рабочей области сканирования	
В.3.7 Определение сектора углов восстанавливаемых диаграмм направленности	18
ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	18

1 ВВОДНАЯ ЧАСТЬ

1.1 Настоящая методика поверки (далее – МП) устанавливает методы и средства первичной и периодической поверок комплекса автоматизированного измерительно-вычислительного ТМСА-18БМ1 18, изготовленного ООО «НПП «ТРИМ СШП Измерительные системы», г. Санкт-Петербург, заводской № 003М (далее – комплекс).

Первичная поверка комплекса проводится при вводе его в эксплуатацию и после ремонта.

Периодическая поверка комплекса проводится в ходе его эксплуатации и хранения.

- 1.2 Комплекс предназначен для измерений радиотехнических характеристик антенн.
- 1.3 Поверка комплекса проводится не реже одного раза в 24 (двадцать четыре) месяца.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки комплекса должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование операции	Пункт Проведени		не операций при	
	МΠ	первичной поверке	периодической поверке	
1 Внешний осмотр	8.1	+	+	
2 Опробование	8.2	+	+	
3 Определение метрологических характеристик	8.3	+	+	
3.1 Определение погрешности измерений амплитудного распределения электромагнитного поля и абсолютной погрешности измерений фазового распределения электромагнитного поля	8.3.1	+	+	
3.2 Определение погрешности измерений относительных уровней амплитудных диаграмм и абсолютной погрешности измерений фазовых диаграмм	8.3.2	+	-	
3.3 Определение погрешности измерений коэффициента усиления антенны методом замещения	8.3.3	+	-	
3.4 Определение неравномерно- сти частотных характеристик между каналами стробоскопи- ческого приемного модуля	8.3.4	+	-	
3.5 Определение диапазона рабочих частот	8.3.5	+	-	
3.6 Определение размеров ра- бочей области сканирования	8.3.6	+	-	
3.7 Определение сектора углов измеряемых диаграмм направленности	8.3.7	+	-	

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки комплекса должны быть применены средства измерений, указанные в таблице 2.

Таблица 2 – Средства измерений для поверки комплекса

Пункт МП	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки
8.3.1 - 8.3.3, 8.3.4, 8.3.7	Аттенюатор ступенчатый программируемый 84908M, диапазон частот от 0 до 50 ГГц, диапазон вводимых ослаблений от 0 до 65 дБ с шагом 5 дБ
8.3.1 - 8.3.3, 8.3.7	Анализатор цепей векторный N5224A, диапазон рабочих частот от 0,01 до 43,5 ГГц, пределы допускаемой относительной погрешности установки частоты $\pm 1\cdot 10^{-6}$, уровень гармонических составляющих в выходном сигнале не более минус 15 дБ, диапазон мощности выходного сигнала от минус 30 до 16 дБм, пределы допускаемой относительной погрешности измерений модуля коэффициента передачи в диапазоне от минус 49,99 до 10 дБ - \pm 0,9 дБ, пределы допускаемой относительной погрешности измерений модуля коэффициента отражения в диапазоне от минус 24,99 до 0 дБ - \pm 1,63 дБ
8.3.1 – 8.3.3, 8.3.5 - 8.3.7	Система лазерная координатно-измерительная Leica AT401, диапазон измерений расстояний от 1,5 до 60000 мм, предел допускаемой основной абсолютной погрешности объемных измерений ±15 мкм + 6 мкм/м

- 3.2 Допускается использовать аналогичные средства поверки, которые обеспечат измерения соответствующих параметров с требуемой точностью.
- 3.3 Средства поверки должны быть исправны, поверены и иметь свидетельства о поверке.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 Поверка должна осуществляться лицами с высшим и среднем техническим образованием, аттестованными в качестве поверителей в области радиотехнических измерений в соответствии с ГОСТ Р 56069-2014, и имеющими квалификационную группу электробезопасности не ниже третьей.
- 4.2 Перед проведением поверки поверитель должен предварительно ознакомиться с документом «Комплекс автоматизированный измерительно-вычислительный ТМСА-18БМ1 18. Руководство по эксплуатации. ТМСА 003. 018. 00Б РЭ».

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80 «ССБТ. Испытания и измерения электрические. Общие требования безопасности», а также требования безопасности, приведённые в эксплуатационной документации на составные элементы комплекса и средства поверки.
- 5.2 Размещение и подключение измерительных приборов разрешается производить только при выключенном питании.

6 УСЛОВИЯ ПОВЕРКИ

6.1 При проведении поверки комплекса должны соблюдаться условия, приведенные в таблице 3.

Таблица 3 – Условия проведения поверки комплекса

Влияющая величина	Нормальное значение	Допускаемое отклонение от нормального значения
Температура окружающей среды, °С	20	±5
Относительная влажность воздуха, %	от 30 до 80	-
Атмосферное давление, кПа	от 84 до 106,7	_
Напряжение питающей сети переменного тока, В	220	±22
Частота питающей сети, Гц	50	±1

7 ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ

- 7.1 Проверить наличие эксплуатационной документации и срок действия свидетельств о поверке на средства поверки.
- 7.2 Подготовить средства поверки к проведению измерений в соответствии с руководствами по их эксплуатации.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

- 8.1.1 При проведении внешнего осмотра комплекса проверить:
- комплектность и маркировку комплекса;
- наружную поверхность элементов комплекса, в том числе управляющих и питающих кабелей;
 - состояние органов управления;
- 8.1.2 Проверку комплектности комплекса проводить сличением действительной комплектности с данными, приведенными в разделе «Комплект поставки» документа «Комплекс автоматизированный измерительно-вычислительный ТМСА-18БМ1 18. Паспорт. ТМСА 003. 018. 00Б ПС» (далее ПС).
- $8.1.3~ \Pi$ роверку маркировки производить путем внешнего осмотра и сличением с данными, приведенными в ΠC .
 - 8.1.4 Результаты внешнего осмотра считать положительными, если:
 - комплектность и маркировка комплекса соответствует ПС;
- наружная поверхность комплекса не имеет механических повреждений и других дефектов;
- управляющие и питающие кабели не имеют механических и электрических повреждений;
- органы управления закреплены прочно и без перекосов, действуют плавно и обеспечивают надежную фиксацию;
- все надписи на органах управления и индикации четкие и соответствуют их функциональному назначению.
- В противном случае результаты внешнего осмотра считать отрицательными и последующие операции поверки не проводить.

8.2 Опробование

- 8.2.1 Идентификация программного обеспечения (далее ПО)
- 8.2.1.1 Включить персональные компьютеры (далее ПК), для чего:
- на блоке источника бесперебойного питания нажать кнопку ВКЛ;
- нажать на системном блоке ПК кнопку включения;
- включить монитор.

После загрузки операционной системы WINDOWS 7 на экране монитора ПК наблюдать иконку программы *NFMeas6*, *NFCalc*, *AmrView*.

Установить далее на ПК программу, позволяющую определять версию и контрольную сумму файла по алгоритму MD5, например, программу «**HashTab**».

- 8.2.1.2 Выбрать в папке **TRIM** файл *NFMeas6.exe*, нажать на правую кнопку мыши на файле и выбрать пункт «**Свойства**». Открыть вкладку «**Хеш-суммы файлов**». Наблюдать контрольную сумму файла *NFMeas6.exe* по алгоритму MD5. Открыть вкладку «**О программе**». Наблюдать значение версии файла *NFMeas6.exe*. Результаты наблюдения зафиксировать в рабочем журнале.
 - 8.2.1.3 Повторить операции п. 8.2.1.2 для программ NFCalc.exe и AmrView.exe.
- 8.2.1.4 Сравнить полученные контрольные суммы и версии с их значениями, записанными в ПС. Результат сравнения зафиксировать в рабочем журнале.
- 8.2.1.5 Результаты идентификации ПО считать положительными, если полученные идентификационные данные ПО соответствуют значениям, приведенным в таблице 3.

Таблица 3 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	NFMeas6.exe	NFCalc.exe	AmrView.exe
Номер версии (идентификационный номер) ПО	4.3.1.0	3.2.0.1	3.1.6.1511
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	991E900DB796E1A79 B5FDC63C0513DD4 (алгоритм MD5)	90F2307A43D11220 7504337B9CCA9F24 (алгоритм MD5)	130E2FA290407E86E 9C0FD0014F63944 (алгоритм MD5)

В противном случае результаты проверки соответствия ПО считать отрицательными и последующие операции поверки не проводить.

- 8.2.2 Проверка работоспособности
- 8.2.2.1 Подготовить комплекс к работе в соответствии с РЭ.
- 8.2.2.2 Проверить работоспособность аппаратуры комплекса путем проверки отсутствия сообщений об ошибках и неисправностях при загрузке программного продукта для измерений в ближней зоне «**NFMeas6**».
 - 8.2.2.3 Проверить работоспособность всех приводов четырехкоординатного Т-сканера:
 - при перемещении по оси 0x;
 - при перемещении по оси 0у;
 - при перемещении по оси 0z;
 - при вращении каретки зонда в плоскости поляризации.
- 8.2.2.4 Проверить работоспособность всех приводов трехкоординатного опорно-поворотного устройства:
 - при перемещении по оси 0z;
 - при вращении в азимутальной плоскости;
 - при вращении в плоскости поляризации.
- 8.2.2.5 В соответствии с РЭ установить антенну П6-123 из состава антенного измеритель-ного комплекта АИК 1-40Б в рабочую зону сканера. Настроить комплекс и провести измерения амплитудной диаграммы направленности антенны П6-123 на частотах 1; 6 и 12 ГГц. При измерениях использовать любой из входов сверхширокополосного приемника.
- 8.2.2.6 В соответствии с РЭ установить антенну П6-140 из состава антенного измеритель-ного комплекта АИК 1-40Б в рабочую зону сканера. Настроить комплекс и провести измерения амплитудной диаграммы направленности антенны П6-140 на частоте 18 ГГц. При измерениях использовать любой из входов сверхширокополосного приемника.
- 8.2.2.7 Результаты поверки считать положительными, если четырехкоординатный Т-сканер обеспечивает перемещение антенны-зонда по осям 0х, 0у, 0z и в плоскости поляриза-

шии, трехкоординатное опорно-поворотное устройство обеспечивает перемешение по оси 0z. вращение в азимутальной плоскости и плоскости поляризации, комплекс обеспечивает измерения амплитудных диаграмм направленности, а также отсутствует программная или аппаратная сигнализация о неисправностях комплекса..

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3 Определение метрологических характеристик

- Определение погрешности измерений амплитудного распределения электромагнитного поля и абсолютной погрешности измерений фазового распределения электромагнитного поля
- 8.3.1.1 Погрешность измерений амплитудного распределения электромагнитного поля δ_4 , дБ, определить по формулам (1) – (4):

$$\delta_A = 20\lg(1 + KS_{\Sigma}),\tag{1}$$

$$K = \frac{tS + |\theta_{A1}| + |\theta_{A2}|}{S + \frac{|\theta_{A1}| + |\theta_{A2}|}{\sqrt{3}}},$$
(2)

$$S_{\Sigma} = \sqrt{\frac{(\theta_{A1} + \theta_{A2})^2}{3} + S^2} , \qquad (3)$$

$$S = \sqrt{\frac{\sum_{j=1}^{m} \left(\frac{A_j - \overline{A}}{A_j}\right)^2}{m - 1}},$$
(4)

где $\theta_{{\scriptscriptstyle A}{\scriptscriptstyle 1}}$ - погрешность измерений отношений уровней сверхширокополосным приемником из состава комплекса;

 $\theta_{{\scriptscriptstyle A2}}$ - погрешность измерений, обусловленная неидеальной поляризационной развязкой антенн-зондов из состава комплекса;

S - среднее квадратическое отклонение результатов измерений амплитудного распределения;

А – результат измерений амплитудного распределения;

 \overline{A} — среднее арифметическое результатов измерений амплитудного распределения;

t - коэффициент Стьюдента для заданного числа реализаций измерений амплитудного распределения.

Абсолютную погрешность измерений фазового распределения электромагнитного поля Δ_{α} , градус, определить по формулам (5) – (8):

$$\Delta_{\varphi} = \frac{180}{\pi} K_{\phi} S_{\Sigma \phi}, \tag{5}$$

$$K = \frac{tS + |\theta_{\Phi 1}| + |\theta_{\Phi 2}|}{S + \frac{|\theta_{\Phi 1}| + |\theta_{\Phi 2}|}{\sqrt{3}}},$$

$$S_{\Sigma} = \sqrt{\frac{(\theta_{\Phi 1} + \theta_{\Phi 2})^{2}}{3} + S_{\varphi}^{2}},$$
(6)

$$S_{\Sigma} = \sqrt{\frac{(\theta_{\Phi 1} + \theta_{\Phi 2})^2}{3} + S_{\varphi}^2},$$
 (7)

$$S_{\varphi} = \sqrt{\frac{\sum_{j=1}^{m} (\varphi_{j} - \overline{\varphi})^{2}}{m-1}},$$
(8)

где θ_{ϕ_1} - погрешность измерений фазы сигнала, обусловленная неточностью измерений временных интервалов сверхширокополосным приемником, рад;

 $\theta_{\phi 2}$ - погрешность измерений фазы, обусловленная неточностью позиционирования антенны-зонда в плоскости сканирования, рад;

 S_{ϕ} – среднее квадратическое отклонение результатов измерений фазового распределения, рад;

ф – результат измерений фазового распределения, рад;

 φ – среднее арифметическое результатов измерений фазового распределения, рад.

Погрешность измерений амплитудного распределения электромагнитного поля и погрешность измерений фазового распределения электромагнитного поля определить при относительных уровнях амплитудного распределения от -10 до -50 дБ с интервалом 10 дБ. Динамический диапазон измерений амплитудного распределения при этом должен составлять не менее 60 дБ. Под динамическим диапазоном измерений амплитудного распределения понимать отношение максимального уровня амплитудного распределения к среднему уровню измеряемых радиошумов.

Погрешность измерений амплитудного распределения электромагнитного поля и погрешность измерений фазового распределения электромагнитного поля определить на частотах 1; 10; 18 ГГц.

На частотах 1 и 10 ГГц ограничиться формулами (9) и (10):

$$\delta_A = \pm 201 g (1 + |\theta_{A1}| + |\theta_{A2}|);$$
 (9)

$$\Delta_{\phi} = \pm \frac{180}{\pi} 1, 1\sqrt{\theta_{\phi_1}^2 + \theta_{\phi_3}^2 + \theta_{\phi_3}^2} . \tag{10}$$

Частные составляющие погрешности измерений (слагаемые в выражениях (2), (3), (6), (7)) определить по следующим методикам.

8.3.1.2 Погрешность измерений отношений уровней сигналов сверхширокополосным (далее – СШП) приемником из состава комплекса определить при помощи аттенюатора Agilent 84908M.

Подключить к входу выносного смесителя СШП приемника TMR 8218-6 генераторный модуль (высокочастотный канал) через программируемый аттенюатор 84908М.

В случае, если амплитуда сигнала на входе приемного устройства при нулевом ослаблении программируемого аттенюатора превышает 0,7 В, установить в радиочастотный тракт дополнительные фиксированные аттенюаторы для достижения величины амплитуды сигнала (0,5 - 0,7) В.

Установить временную развертку $T_{\text{РАЗВ}}$ СШП приемного устройства ТМR 8218-6 равной 0,5...2 нс в зависимости от формы сигнала, количество временных отсчетов 2048, количество усреднений сигнала 128. Фронт импульсного сигнала установить с задержкой, соответствующей 1/5 ширины временной развертки.

Выполнить автоматическую калибровку каналов стробоскопического преобразователя согласно РЭ.

Записать сигналы $s_A(nT)$ на входе стробоскопического преобразователя в память ЭВМ в текстовом формате поочередно для ослаблений A программируемого аттенюатора 0, 10, 20, 30, 40 и 50 дБ.

Обработку сигналов производить в математических программных пакетах.

Совместить измеренные сигналы по характерным точкам путем добавления нулевых отсчетов в начале сигнальных массивов.

Подвергнуть записанные сигналы быстрому преобразованию Фурье. Для устранения разрывов сигнала на краях развертки применить сглаживающую оконную функция на основе окна Ханна с длительностью, равной интервалу от фронта импульсного сигнала до его спада по

уровню 0,1 (рисунок 1). Построить нормированную амплитудную характеристику стробоскопического преобразователя в диапазоне частот от 1 до 18 ГГц с шагом по частоте, равным $1/T_{\rm PA3B}$.

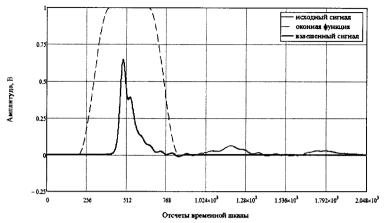


Рисунок 1 – Пример спектральной обработки импульсных сигналов

Подключить программируемый аттенюатор 84908М к векторному анализатору цепей N5224A. Провести измерения величин вводимого относительного ослабления (без учета собственно ослабления аттенюатора) аналогично вышеописанному в соответствии с РЭ на анализатор цепей. Измерения проводить с шагом по частоте $1/T_{\rm PA3B}$ в диапазоне частот от 1 до 18 ГГц, выходная мощность источника должна иметь значение, устанавливаемое по умолчанию, при ослаблении минус 45 дБ должно обеспечиваться отношение сигнал/шум не менее 40 дБ.

Зафиксировать результаты измерений $L_{0dB}(nf)$, $L_{10dB}(nf)$... $L_{50dB}(nf)$ в памяти ПЭВМ в текстовом формате.

Погрешность измерений отношений уровней $\Delta_A(nf)$, дБ, для каждого номинального ослабления в рабочем диапазоне частот рассчитать по формуле (11):

$$\Delta_{A}(nf) = \left[A_{0dB}(nf) - A_{xdB}(nf) \right] - \left[L_{0dB}(nf) - L_{xdB}(nf) \right], \tag{11}$$

где $A_{0dB}(nf)$ и $A_{xdB}(nf)$ - результаты измерений уровней спектров при соответствующих значениях ослабления программируемого аттенюатора (x=10; 20; 30; 40; 50 дБ);

 $L_{0dB}(nf)$ и $L_{xdB}(nf)$ - результаты измерений ослабления программируемого аттенюатора анализатором цепей, дБ.

В качестве погрешности измерений отношений уровней θ_{A1} для каждого номинального ослабления приять среднее значение модуля $\Delta_A(nf)$ в диапазоне частот (12):

$$\theta_{A1} = 10^{0,1 \left[\frac{1}{n}\sum_{n}|\Delta_{A}(nf)|\right]}.$$
 (12)

Результаты испытаний записать в таблицу 4.

Таблица 4 — Результаты оценки погрешности измерений отношений уровней СШП приемником из состава комплекса

Ослабление аттенюатора L, дБ	Соответствующий относительный уровень амплитудного распределения, дБ	Погрешность измерений $ heta_{A\!1}$, дБ
10	-10	
20	-20	
30	-30	
40	-40	
50	-50	

8.3.1.3 Погрешность измерений, обусловленную неидеальной поляризационной развязкой антенн-зондов из состава комплекса, определить по формуле (13):

$$\theta_{42} = (1 + 10^{0.1 \text{KMP}})^2 - 1, \tag{13}$$

где *кпр* - минимальный уровень кроссполяризационной развязки антенн-зондов из состава комплекса, принимаемый равным -20 дБ.

8.3.1.4 Погрешность измерений фазы сигнала, обусловленную неточностью измерений временных интервалов сверхширокополосным приемником из состава комплекса определить с помощью аттенюатора Agilent 84908M.

Подключить к входу выносного смесителя СШП приемника TMR 8218-6 генераторный модуль (высокочастотный канал) через программируемый аттенюатор 84908М.

В случае, если амплитуда сигнала на входе приемного устройства при нулевом ослаблении программируемого аттенюатора превышает 0,7 В, установить в радиочастотный тракт дополнительные фиксированные аттенюаторы для достижения величины амплитуды сигнала (0,5 - 0,7) В.

Установить временную развертку T_{PA3B} СШП приемного устройства ТМR 8218-6 равной 0,5...2 нс в зависимости от формы сигнала, количество временных отсчетов 2048, количество усреднений сигнала 128. Фронт импульсного сигнала установить с задержкой, соответствующей 1/5 ширины временной развертки.

Выполнить автоматическую калибровку каналов стробоскопического преобразователя согласно РЭ.

Записать сигналы $s_A(nT)$ на входе стробоскопического преобразователя в память ЭВМ в текстовом формате поочередно для ослаблений A программируемого аттенюатора 0, 10, 20, 30, 40 и 50 дБ.

Обработку сигналов производить в программных пакетах Mathcad или MatLab.

Совместить измеренные сигналы по характерным точкам путем добавления нулевых отсчетов в начале сигнальных массивов.

Подвергнуть записанные сигналы быстрому преобразованию Фурье. Для устранения разрывов сигнала на краях развертки применить сглаживающую оконную функция на основе окна Ханна с длительностью, равной интервалу от фронта импульсного сигнала до его спада по уровню 0,1. Построить фазовую характеристику стробоскопического преобразователя в диапазоне частот от 1 до $18\ \Gamma\Gamma$ ц с шагом по частоте, равным $1/T_{\text{разв}}$.

Подключить программируемый аттенюатор 84908М к векторному анализатору цепей N5224A. Провести измерения фазы комплексного коэффициента передачи при внесении соответствующих номиналов ослабления (без учета собственно ослабления аттенюатора) в соответствии с РЭ на анализатор цепей. Измерения проводить с шагом по частоте $1/T_{\rm PA3B}$ в диапазоне частот от 1 до 18 ГГц, выходная мощность источника должна иметь значение, устанавливаемое по умолчанию, при ослаблении минус 45 дБ должно обеспечиваться отношение сигнал/шум не менее 40 дБ.

Зафиксировать результаты измерений $\tau_{0dB}(nf)$, $\tau_{10dB}(nf)$... $\tau_{50dB}(nf)$ в памяти ПЭВМ в текстовом формате.

Погрешность измерений фазы сигнала $\Delta_t(nf)$, дБ, для каждого номинального ослабления в рабочем диапазоне частот рассчитать по формуле (14):

$$\Delta_{t}(nf) = [t_{0dB}(nf) - t_{xdB}(nf)] - [\tau_{0dB}(nf) - \tau_{xdB}(nf)], \tag{14}$$

где $t_{0dB}(nf)$ и $t_{xdB}(nf)$ - результаты расчетов фазы сигнала, выполненных на основе измерений СШП приемника, при соответствующих значениях ослабления программируемого аттенюатора (x=10; 20; 30; 40; 50 дБ);

 $au_{odB}(nf)$ и $au_{xdB}(nf)$ - результаты измерений ослабления программируемого аттенюатора анализатором цепей, дБ.

В качестве погрешности измерений фазы сигнала, обусловленной неточностью измерений временных интервалов сверхширокополосным приемником из состава комплекса θ_{ϕ_1} для

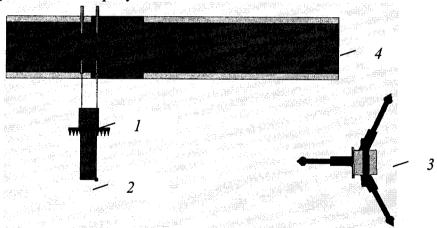
каждого номинального ослабления приять среднее значение модуля $\Delta_t(nf)$ в диапазоне частот (15):

$$\theta_{\Phi 1} = \frac{1}{n} \sum_{n} |\Delta_{t}(nf)|. \tag{15}$$

Результаты испытаний записать в таблицу 5.

Таблица 5 – Результаты оценки погрешности измерений фазы сигнала, обусловленной неточно-

стью измерений временных интервалов СШП приемником из состава комплекса


	Topical Table Market in the Control of the Control	aba Kommitekea
Ослабление	Соответствующий относительный уровень	Погрешность измерений
аттенюатора L, дБ	амплитудного распределения, дБ	$ heta_{\phi_1}$, рад
10	-10	
20	-20	
30	-30	
40	-40	
50	-50	

8.3.1.5 Погрешность измерений фазы, обусловленную неточностью позиционирования антенны-зонда в плоскости сканирования, определить с помощью системы лазерной координатно-измерительной Leica AT401.

Подготовить комплекс к измерению характеристик антенн в ближней зоне в соответствии с РЭ.

Подготовить систему лазерную координатно-измерительную Leica AT401 к измерению в соответствии с эксплуатационной документацией на нее.

Оптический отражатель из состава системы лазерной координатно-измерительной Leica AT401 закрепить на антенну-зонд, установленную на сканере из состава комплекса, в соответствии со схемой, приведенной на рисунке 2.

1 – антенна-зонд; 2 – оптический отражатель; 3 – система Leica AT401; 4 – сканер Рисунок 2 – Схема измерений характеристик позиционирования сканера

С помощью программы ручного управления сканером (рисунок 3) в соответствующей вкладке программного продукта для измерений в ближней зоне «NFMeas6» переместить антенну-зонд в крайнее центральное левое положение. Зафиксировать показания Leica AT401.

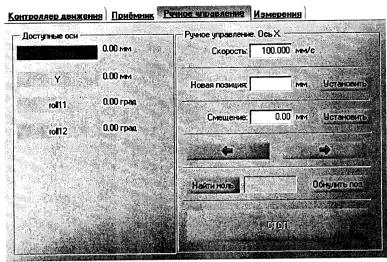


Рисунок 3 – Меню программы для ручного управления движением сканера

Перемещая антенну-зонд с установленным оптическим отражателем вдоль оси 0x в пределах рабочей зоны сканера с шагом $\lambda_{min}/2$, где λ_{min} - минимальная длина волны, соответствующая верхней границе диапазона рабочих частот комплекса, до срабатывания механического ограничителя, фиксировать показания системы лазерной координатно-измерительной Leica AT401.

С помощью программы ручного управления сканером (рисунок 3) в соответствующей вкладке программного продукта для измерений в ближней зоне «NFMeas6» переместить антенну-зонд в крайнее центральное нижнее положение. Зафиксировать показания Leica AT401.

Перемещая антенну-зонд с установленным оптическим отражателем вдоль оси 0у в пределах рабочей зоны сканера с шагом $\lambda_{min}/2$, до срабатывания механического ограничителя, фиксировать показания системы лазерной координатно-измерительной Leica AT401.

Рассчитать погрешность позиционирования антенны-зонда как разность между координатами вертикальной плоскости измерений системы лазерной координатно-измерительной Leica AT401 и измеренными координатами положения антенны-зонда Δz , м.

Погрешность измерений фазы $\Delta \varphi(f_i)$, рад, обусловленную неточностью позиционирования антенны-зонда в плоскости сканирования, для каждого номинала частоты, указанного в п. 8.3.1.1, оценить по формуле (16):

$$\Delta \varphi(f_i) = k \cdot \Delta z \,, \tag{16}$$

где $k=2\pi/\lambda$ - волновое число, 1/м;

 λ — длина волны, соответствующая частотам, указанным в п. 5.1.1, м.

За погрешность измерений фазы $\theta_{\hat{O}2}$ для каждого номинала частоты, указанного в п. 8.3.1.1, принять среднее квадратическое значение погрешности, определенное по формуле (17):

$$\theta_{\phi_2} = \sqrt{\frac{\sum_{i=0}^{M-1} (\Delta \varphi(f_i))^2}{M}}, \qquad (17)$$

где М – число точек, в которых проводились измерения пространственного положения антенны-зонда.

Размеры рабочей области сканирования по осям 0х и 0у рассчитать как разность между показаниями системы лазерной координатно-измерительной Leica AT401 в момент срабатывания механического ограничителя сканера и ее показаниями при установке антенны-зонда в крайние положения.

8.3.1.6 Оценку среднего квадратического отклонения результатов измерений амплитудного и фазового распределений (АФР) проводить методом прямых измерений с многократными наблюдениями распределения поля, формируемого на плоскости сканирования антенной Пб-140 из состава антенного измерительного комплекта АИК 1-40Б.

Антенну П6-140 установить на опорно-поворотное устройство в положение, соответ-

ствующее вертикальной поляризации, таким образом, чтобы плоскость раскрыва была параллельна плоскости сканирования.

Используя режим ручного или дистанционного управления сканера, установить антеннузонд соосно с антенной Пб-140 в положение, соответствующее вертикальной поляризации.

Расстояние между раскрывами антенны $\Pi6-140$ и антенны-зонда установить равным 3λ , где λ — максимальная длина волны измеряемого поддиапазона частот.

Запустить программу измерений в ближней зоне.

Открыть вкладку «ДАННЫЕ» и установить следующие настройки:

- «ИСТОЧНИК» в соответствии с тем, к какому каналу подключена антенна П6-140;
- «КОЛИЧЕСТВО ТОЧЕК» 2048;
- «УСРЕДНЕНИЕ» 128;
- «ПАПКА ДЛЯ СОХРАНЕННЫХ ДАННЫХ» произвольно.

Подать питание на СШП передатчик.

В меню «ВРЕМЯ» и «КАНАЛ...» регулировать параметры «ВРЕМЯ/ДЕЛЕНИЕ», «ЗА-ДЕРЖКА» и «ЧУВСТВИТЕЛЬНОСТЬ/ДЕЛЕНИЕ» таким образом, чтобы во временном окне полностью укладывался импульс (по времени и амплитуде на 2/3 окна), а задержка была равна одному делению по шкале времени.

Незначительно перемещая антенну-зонд (программно или дистанционно) в плоскости XY, добиться максимального значения амплитуды импульса. Положение антенны-зонда, соответствующее этому максимальному значению, принять за нулевое, нажав соответствующую клавишу во вкладке «РУЧНОЕ УПРАВЛЕНИЕ».

Далее установить следующие настройки:

- шаг сканирования не более $\lambda/2$;
- режим сканирования непрерывное сканирование с реверсом;
- поляризация измеряемой антенны вертикальная;
- поляризация зонда вертикальная.

Перемещая зонд вдоль оси X и вдоль оси Y относительно нулевого положения, фиксировать значения амплитуды импульса. Положения зонда по оси X и оси Y, при которых амплитуда зондирующего импульса будет минимальна (оценивать по результатам измерений осциллографа, визуализируемых в соответствующем окне программы измерений во временной области), будут определять границы области сканирования по соответствующим осям.

Нажать кнопку «НАЧАТЬ ИЗМЕРЕНИЯ».

Измерить АФР не менее 7 раз с интервалом не менее 5 мин (далее по тексту - результаты измерений АФР, полученные в ходе одного сканирования, – реализация).

Запустить программу расчета характеристик антенн по данным в ближнем поле nfcalc.exe, входящую в комплект поставки комплекса. На частоте 18 ГГц рассчитать амплитудные A_j и фазовые φ_j распределения. Сохранить результаты расчетов в текстовом формате. С помощью программных средств Mathcad, Mathlab или других сред рассчитать среднее квадратическое отклонение результатов измерений амплитудного и фазового распределений по формулам (4) и (8), а также погрешности измерений амплитудного и фазового распределений по формулам (1) – (8).

- 8.3.1.7 При периодической поверке значения погрешности измерений фазы, обусловленной неточностью позиционирования антенны-зонда в плоскости сканирования, положить равной значениям, полученным при первичной поверке. В случае, если рассчитанные значения погрешности измерений амплитудного и фазового распределений, полученные при периодическое поверке, превысят установленные пределы, необходимо по изложенной в п. 8.3.1.5 методике определить погрешность измерений фазы, обусловленной неточностью позиционирования антенны-зонда в плоскости сканирования.
- 8.3.1.8 Результаты поверки считать положительными, если значения погрешности измерений амплитудного распределения электромагнитного поля (при количестве отсчетов в сигнале не менее 2048, усреднении не менее 128, динамическом диапазоне измерений амплитудного распределения антенны не менее 60 дБ и кроссполяризационной развязке антенны-зонда не менее 20 дБ) находятся в следующих пределах для относительных уровней амплитудного распределения:

−10 дБ	±0,5 дБ;
–20 дБ	±0,8 дБ;
–30 дБ	±1,0 дБ;
–40 дБ	±1,3 дБ;
–50 дБ	±2,5 дБ,

а значения абсолютной погрешности измерений фазового распределения электромагнитного поля (при количестве отсчетов в сигнале не менее 2048, усреднении не менее 128, динамическом диапазоне измерений амплитудного распределения антенны не менее 60 дБ) находятся в следующих пределах при относительном уровне амплитудного распределения:

−10 дБ	±8°;
–20 дБ	±11°;
−30 дБ	±13°;
–40 дБ	±16°;
−50 дБ	±22°.

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.2 Определение погрешности измерений относительных уровней амплитудных диаграмм направленности и абсолютной погрешности измерений фазовых диаграмм направленности

8.3.2.1 Определение погрешности измерений относительных уровней амплитудных диаграмм направленности (АДН) и фазовых диаграмм направленности (ФДН) осуществить методом математического моделирования с учетом результатов, полученных в п. 8.3.1 настоящего документа, путем сравнения невозмущенных амплитудных диаграмм направленности, определенных для антенн с равномерным синфазным распределением токов на апертуре, и тех же диаграмм направленности, но с учетом погрешности измерений амплитудного и фазового распределений (АФР).

8.3.2.2 Невозмущенную диаграмму направленности оценить следующим образом.

Размеры плоскости сканирования выбрать из критерия максимального сектора углов восстанавливаемой ДН, равного $\pm 60^{\circ}$, по формулам (18):

$$L_{X} = a + 2R \cdot tg\theta,$$

$$L_{Y} = b + 2R \cdot tg\varphi,$$
(18)

где L_{X_i} L_Y – размеры плоскости сканирования в соответствующих плоскостях, м;

 $a,\ b$ — размеры раскрыва в соответствующих плоскостях, м, $a=b \ge 5\lambda_{max}$, где λ_{max} - длина волны, соответствующая частотам 1; 10 и 18 ГГц;

R – измерительное расстояние, $R=3~\lambda_{max}$, м;

 $\Theta = 2,09$ рад..

Интервал дискретизации выбрать равным $0.5\lambda_{max}$.

Для частоты 1 ГГц пересчитать АФР в раскрыве антенны в АФР на плоскости сканирования по формуле (19):

$$J(x_2, y_2) = \left[\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} \left[\frac{A_0(x, y) \exp[j(\varphi_0(x, y))]}{\sqrt{(x - x_2)^2 + (y - y_2)^2 + R^2}} \cdot \exp[-j\frac{2\pi}{\lambda} \sqrt{(x - x_2)^2 + (y - y_2)^2 + R^2} \right] \right], (19)$$

где $J(x_2, y_2)$ - AФР на плоскости сканирования;

 (x_2, y_2) – координаты на плоскости сканирования, м;

 A_0 – амплитуда сигнала ($A_0 = 1 B$);

 φ_0 – фаза сигнала ($\varphi_0=0$ $pa\partial$);

 $N(M) = \left[\frac{L_X(L_Y)}{\Delta x(\Delta y)} \right]$ - число шагов сканирования в каждой из плоскостей, где Δx , Δy - шаг ска-

нирования в плоскости X и Y, соответственно.

Рассчитать нормированную амплитудную диаграмму направленности и фазовую диаграмму направленности по формулам (20) и (21):

$$F_{A}(u,v) = \sqrt{1 - u^{2} - v^{2}} \frac{\left| \Im(J(x_{2}, y_{2})) \right|}{MAX(\left| \Im(J(x_{2}, y_{2})) \right|)},$$
(20)

$$F_{\phi}(u, v) = \arg[\Im(J(x_2, y_2))]$$
 (21)

где |... - модуль комплексной величины;

 $\mathfrak{I}(...)$ - оператор двумерного дискретного преобразования Фурье;

МАХ – максимальное значение амплитудной диаграммы направленности;

arg – аргумент функции;

 $u = \sin \theta \cdot \cos \varphi$, $v = \sin \theta \cdot \sin \varphi$ - угловые координаты;

 $U=\pm rac{\lambda}{2L_x}N$, $V=\pm rac{\lambda}{2L_y}M$ — угловые сектора в системе координат направляющих косинусов

(u,v), в пределах которых восстанавливается диаграмма, рад;

$$w = \sqrt{1 - u^2 - v^2}$$
, $\theta = \arccos w$, $\varphi = arctg\left(\frac{v}{u}\right)$.

8.3.2.3 Амплитудную диаграмму антенны и ФДН с учетом погрешности измерений АФР оценить следующим образом.

Значения погрешности измерений амплитудного и фазового распределений для каждого относительного уровня амплитудного распределения М задавать программно с учетом оценки погрешности измерений АФР, полученных в п. 8.3.1, по формулам (22) и (23):

$$\delta A = Norm(0, \sigma^2_A), \tag{22}$$

$$\Delta \varphi = Norm(0, \sigma^2_{\varphi}), \tag{23}$$

где Norm – генератор случайных величин, распределенных по нормальному закону;

 $\sigma_{\scriptscriptstyle A}$ - среднее квадратическое отклонение результатов измерений амплитудного распределения

$$\sigma_A = 10^{\frac{\Delta_A}{20}} / 2,45$$
;

 σ_{φ} - среднее квадратическое отклонение результатов измерений фазового распределения $\sigma_{A} = \Delta_{\Phi}/2,45$.

Рассчитать амплитудное и фазовое распределения ЭМП на плоскости сканирования с учетом погрешности их измерений по формуле (24):

$$J^{*}(x_{2}, y_{2}) = |J(x_{2}, y_{2})|(1 + \delta A) \exp(j(\arg(J(x_{2}, y_{2})) + \Delta \varphi)).$$
 (24)

Аналогичным образом провести расчет «возмущенных» ДН 7 раз. При каждой последующей реализации воспроизводить новые случайные величины по законам (21).

8.3.2.4 Погрешность измерений относительных уровней АДН и ФДН оценить следующим образом.

Среднее квадратическое отклонение результатов измерений уровней АДН и ФДН в двух главных сечениях при ϕ =0 и ϕ = π /2 рассчитать по формулам (25) и (26):

$$\sigma F_{A} = \sum_{i=1}^{k} \sqrt{\frac{\left(F_{A}^{*}\right)_{i} - F_{A}}{\left(F_{A}^{*}\right)_{i}}^{2}},$$
(25)

$$\sigma F_{\Phi} = \sqrt{\frac{\sum_{i=1}^{k} \left(\left(F_{\Phi}^{*} \right)_{i} - F_{\Phi} \right)^{2}}{k - 1}} \tag{26}$$

где k — число реализаций моделирования, k =7.

Рассчитать погрешность измерений уровней АДН и ФДН по формулам (27) и (28):

$$\delta F_A = \pm 20 \lg (1 + 2,45 \sigma F_A);$$
 (27)

$$\Delta F_{\Phi} = \pm \frac{180}{\pi} 2,45 \cdot \sigma F_{\Phi} \,. \tag{28}$$

Аналогичные расчеты провести для номиналов частот, указанных в п. 8.3.2.2.

8.3.2.5 Результаты поверки считать положительными, если значения погрешности измерений относительных уровней амплитудных диаграмм направленности до уровней (при кроссполяризационной развязке антенны-зонда не менее 20 дБ, динамическом диапазоне измеренного амплитудного распределения антенны не менее 60 дБ), не превышают пределов:

-10 дБ	±0,5 дБ;
-20 дБ	±0,8 дБ;
-30 дБ	±1,3 дБ;
-40 дБ	±1,8 дБ;
-50 дБ	±3,0 дБ,
20 72	

и значения абсолютной погрешности измерений фазовых диаграмм направленности (при кроссполяризационной развязке антенны-зонда не менее 20 дБ, динамическом диапазоне измеренного амплитудного распределения антенны не менее 60 дБ) при относительных уровнях амплитудных диаграмм, не превышают пределов:

-10 дБ	±8°;
-20 дБ	±12°;
-20 дБ -30 дБ	±15°;
-30 дБ -40 дБ	±19°;
• •	±25°.
-50 дБ	

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.3 Определение погрешности измерений коэффициента усиления антенн

8.3.3.1 Погрешность измерений коэффициента усиления определить расчетным путем при использовании результатов измерений, полученных в п. 8.3.2 настоящей МП.

Погрешность измерений коэффициента усиления δ , дБ, рассчитать по формуле (29):

$$\delta = \pm 10 \lg \left(1 + 1, 1 \cdot \sqrt{\delta_1^2 + \delta_2^2 + \delta_3^2} \right), \tag{29}$$

где δ_{I} – погрешность измерений АДН до уровней минус 10 дБ, δ_{I} =0,12;

 δ_2 – погрешность коэффициента усиления эталонной антенны, δ_2 =0,12; 0,2; 0,41; 0,6;

 δ_3 – погрешность за счет рассогласования.

За погрешность δ_3 принять максимальное из двух значений, рассчитанных по формулам (30) и (31):

$$\delta_{3}' = \frac{\left(1 - \left|\Gamma_{3}\right|^{2}\right)\left(1 + \left|\Gamma_{H}\right| \cdot \left|\Gamma_{K}\right|\right)^{2}}{\left(1 - \left|\Gamma_{3}\right|^{2}\right)\left(1 - \left|\Gamma_{H}\right| \cdot \left|\Gamma_{3}\right|\right)^{2}} - 1,$$
(30)

$$\delta_{3} = \frac{\left(1 - \left|\Gamma_{9}\right|^{2}\right)\left(1 - \left|\Gamma_{H}\right| \cdot \left|\Gamma_{K}\right|\right)^{2}}{\left(1 - \left|\Gamma_{9}\right|^{2}\right)\left(1 + \left|\Gamma_{H}\right| \cdot \left|\Gamma_{9}\right|\right)^{2}} - 1,$$
(31)

где Γ_{3} , $\Gamma_{\text{И}}$, Γ_{K} – коэффициенты отражения входов эталонной, испытываемой антенн, входа анализатора из состава комплекса.

Модуль коэффициента отражения связан с коэффициентом стоячей волны по напряжению (КСВН) соотношением (32):

$$\left| \Gamma \right| = \frac{K - 1}{K + 1} \,. \tag{32}$$

- 8.3.3.2~ При расчетах погрешности за счет рассогласования значение КСВН эталонной антенны, используемой при проведении измерений, не должно превышать 1,2, испытываемой антенны 2,0, КСВН входа векторного анализатора цепей 1,2.
 - 8.3.3.3 Результаты поверки считать положительными, если значения погрешности изме-

рений коэффициента усиления антенны методом замещения при КСВН испытываемой антенны не более 2 и погрешности измерений коэффициента усиления эталонной антенны, дБ:

0,5 дБ	±0,9 дБ;
0,8 дБ	±1,1 дБ;
1,5 дБ	±1,8 дБ;
2,0 дБ	±2,3 дБ.

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.4 Определение неравномерности частотных характеристик между каналами стробоскопического приемного модуля

- 8.3.4.1 Неравномерность частотных характеристик между каналами стробоскопического приемного модуля определить следующим образом.
- 8.3.4.2 Подключить к входу выносного смесителя СШП приемника ТМR 8218-6 генераторный модуль (высокочастотный канал).

В случае, если амплитуда сигнала на входе приемного устройства при нулевом ослаблении программируемого аттенюатора превышает 0,7 В, установить в радиочастотный тракт дополнительные фиксированные аттенюаторы для достижения величины амплитуды сигнала (0,5 - 0,7) В.

- 8.3.4.3 Установить временную развертку $T_{\text{РАЗВ}}$ СШП приемного устройства ТМR 8218-6 равной 0,5...2 нс в зависимости от формы сигнала, количество временных отсчетов 2048, количество усреднений сигнала 128. Фронт импульсного сигнала установить с задержкой, соответствующей 1/5 ширины временной развертки.
- 8.3.4.4 Выполнить автоматическую калибровку каналов стробоскопического преобразователя согласно РЭ.
- 8.3.4.5 Записать сигналы $s_A(nT)$ на входе стробоскопического преобразователя в память ЭВМ в текстовом формате поочередно для каждого из четырех каналов стробоскопического четырехканального приемного модуля.
 - 8.3.4.6 Обработку сигналов производить в математических программных пакетах.

Совместить измеренные сигналы по характерным точкам путем добавления нулевых отсчетов в начале сигнальных массивов.

Подвергнуть записанные сигналы быстрому преобразованию Фурье. Построить нормированную амплитудную характеристику $A_{ich}(nf)$ и фазовую характеристику $\Phi_{ich}(nf)$ всех четырех каналов стробоскопического четырехканального приемного модуля в диапазоне частот от 1 до 18 ГГц с шагом по частоте, равным $1/T_{\rm PA3B}$.

8.3.4.7 Неравномерность частотной характеристики между каналами стробоскопического приемного модуля по амплитуде L_{AX} , дБ, рассчитать как разницу (в логарифмическом масштабе) максимального и минимального значения амплитудной характеристики на частотах 1; 9 и 18 ГГц по формуле (33):

 $L_{AX} = \max\{A_{ich}\} - \min\{A_{ich}\}. \tag{33}$

8.3.4.8 Неравномерность частотной характеристики между каналами стробоскопического приемного модуля по амплитуде $L_{\phi X}$, градус, рассчитать как разницу (в линейном масштабе) максимального и минимального значения фазовой характеристики на частотах 1; 9 и 18 ГГц по формуле (34):

 $L_{\Phi X} = \max\{\Phi_{ich}\} - \min\{\Phi_{ich}\}. \tag{34}$

8.3.4.9 Результаты поверки считать положительными, если значения неравномерности частотных характеристик между каналами стробоскопического приемного модуля не превышают:

Частота:	По амплитуде:	По фазе:
1 ГГц	0,3 дБ	2,0°
9 ГГц	3,5 дБ	18,0°
18 ГГц	6,0 дБ	27,0°

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.5 Определение диапазона рабочих частот

- 8.3.5.1 Проверку диапазона рабочих частот проводить по результатам определения погрешности измерений амплитудного и фазового распределений.
- 8.3.5.2 Результаты поверки считать положительными, если в диапазоне частот от 1 до 18 ГГц значения погрешности измерений амплитудного и фазового распределений не превышают установленных значений (см. п. 8.3.1). В этом случае диапазон частот комплекса составляет от 1 до 18 ГГц.

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.6 Определение размеров рабочей области сканирования

- 8.3.6.1 Определение размеров рабочей области сканирования осуществить по результатам измерений, выполненных в соответствии с п. 8.3.1.5 настоящей МП.
- 8.3.6.2 Результаты поверки считать положительными, если размеры рабочей области сканирования комплекса (длина × высота) не менее 4,5 × 4,0 м.

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.7 Определение сектора углов восстанавливаемых диаграмм направленности

- 8.3.7.1 Определение сектора углов восстанавливаемых диаграмм направленности осуществить по результатам определения погрешности измерений по п.8.3.2.
- 8.3.7.2 Результаты поверки считать положительными и сектор углов восстанавливаемой амплитудной диаграммы направленности в азимутальной и угломестной плоскостях составляет от -60° до 60°, если при заданных в п. 8.3.2 условиях моделирования (секторы углов Θ и ϕ) рассчитанная погрешность измерений относительных уровней АДН не превышает установленных в п. 8.3.2 значений.

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Комплекс признается годным, если в ходе поверки все результаты поверки положительные.
- 9.2 Результаты поверки удостоверяются свидетельством о поверке в соответствии с Приказом Министерства промышленности и торговли РФ от 02 июля 2015 г. № 1815.
- 9.3 Если по результатам поверки комплекс признан непригодным к применению, свидетельство о поверке аннулируется и выписывается извещение о непригодности к применению в соответствии с Приказом Министерства промышленности и торговли РФ от 02 июля 2015 г. № 1815.

Начальник НИО-1 ФГУП «ВНИИФТРИ»

О.В. Каминский