УТВЕРЖДАЮ

СИСТЕМЫ КОНТРОЛЯ И РЕГИСТРАЦИИ УСЛОВИЙ ТРАНСПОРТИРОВАНИЯ ЖЕЛЕЗНОДОРОЖНЫМ ТРАНСПОРТОМ СКРУТЖТ

Методика поверки СДАИ.402158.002 МП

> г. Пенза 2017 г.

Содержание

Вводная часть	3
1 Операции поверки	3
2 Средства поверки	3
3 Требования безопасности	4
4 Условия поверки	4
5 Подготовка к поверке	4
6 Проведение поверки	4
6.1 Контроль внешнего вида и маркировки	4
6.2 Контроль неравномерности амплитудно-частотной характеристики (АЧХ)	6
6.3 Контроль приведенной погрешности измерения давления	8
6.4 Контроль абсолютной погрешности измерения температуры	9
6.5 Определение приведенной погрешности измерений виброускорений	10
7 Оформление результатов поверки	10
Приложение А	11

Вводная часть

Настоящая методика по поверке распространяется на системы контроля и регистрации условий транспортирования железнодорожным транспортом СКРУТЖТ (далее по тексту - СКРУТЖТ), предназначенная для измерения виброускорений, температуры окружающей среды и атмосферного давления.

1 Операции поверки

 1.1Π ри проведении поверки должны выполняться операции, указанные в таблице 1. Таблица 1

	Номер пунк-	Проведение	операции при
Наименование операции	та методики	первичной	периодиче-
	по поверке	поверке	ской поверке
1 Контроль внешнего вида и маркировки	6.1	да	да
2 Контроль неравномерности амплитудно-			
частотной характеристики (АЧХ) канала измере-	6.2	да	да
ний виброускорений			
3 Контроль значения приведенной погрешности			
канала измерения давления	6.3	да	да
4 Контроль значения абсолютной погрешности	6.4	да	да
канала измерения температуры			
5 Контроль значения приведенной погрешности	6.5	да	да
канала измерения виброускорений			

1.2При получении отрицательного результата при проведении любой операции поверка прекращается.

2 Средства поверки

2.1При проведении поверки рекомендуется применять средства поверки, указанные в таблице 2.

Таблица 2 – Рекомендуемые средства поверки

Tuestingu 2 Tenemengy emple epegerbu nebepan	•	
Наименование и тип основного или вспомогательного средства поверки	Основные метрологические характеристики	
1 Источник питания постоянного тока Б5-71/4 ПРО	Диапазон (0,2-75) В, (0,03-4) А, погрешность $\pm (0,002 \mathrm{U}_{\mathrm{ycr}} + 0,1)$ В, $\pm (0,01 \mathrm{I}_{\mathrm{max}} + 0,05)$ мА	
2 Поверочная виброустановка 2-го разряда по ГОСТ Р 8.800-2012. (Установка вибрационная 4802 «Брюль и Къер»)	Диапазон воспроизводимых ускорений от 1 до 500 м/c^2 , диапазон частот от 5 до $4000 \Gamma\text{ц}$	
3 Манометр абсолютного давления МПА-15	Диапазон (0-400) кПа, класс точности 0,01	
4 Климатическая камера 3524/58	Диапазон температур от минус 70°C до 100 °C; равномерность температуры в камере ±1,2 °C	

Наименование и тип основного	Основные метрологические характеристики	
или вспомогательного средства поверки	основные метрологические характеристики	
5 Термометр сопротивления эталонный	Диапазон ((-196)-419,53) град. Цельсия,	
ЭTC-100	3 разряд	
6 Измеритель температуры прецизионный	Диапазон ((-200)-500) град. Цельсия, погреш-	
МИТ 8	ность $\pm (0,0035+0,00001t)$	
7 Вибропреобразователь мод. 8305 с согла-	Диапазон частот (0,2 – 4400) Гц, неравномер-	
сующим усилителем мод. 2690-OS фирмы	ность АЧХ ±2%	
«Брюль и Кьер»		

2.2Допускается замена средств поверки, указанных в таблице 2, другими средствами поверки с равным или более высоким классом точности.

3 Требования безопасности

3.1 При проведении поверки необходимо соблюдать общие требования безопасности по ГОСТ 12.3.019-80 и требования на конкретное поверочное оборудование.

4 Условия поверки

- 4.1Все операции при проведении поверки, если нет особых указаний, должны проводиться в нормальных климатических условиях:
 - температура воздуха от 15 до 35 °C;
 - относительная влажность воздуха от 45 до 75 %;
 - атмосферное давление от $8,6\cdot10^4$ до $10,6\cdot10^4$ Па (от 645 до 795 мм.рт.ст.).

Примечание – При температуре воздуха выше 30 °C относительная влажность не должна превышать 70%.

5 Подготовка к поверке

- 5.1 Предварительный прогрев контрольно-измерительных приборов должен соответствовать требованиям технических описаний и инструкций по эксплуатации на них.
- 5.2 Контрольно-измерительные приборы должны быть надежно заземлены с целью исключения влияния электрических полей на результаты измерений.
- 5.3 Не допускается применять средства поверки, срок обязательных поверок которых истек.
- 5.4 Все операции по поверке, если нет особых указаний, проводить после выдержки под напряжением питания в течение 15 с.
- 5.5Порядок проведения испытаний должен соответствовать порядку изложения видов испытаний в таблице 1.

6 Проведение поверки

6.1 Контроль внешнего вида и маркировки.

6.1.1 Проверку внешнего вида составляющих СКРУТЖТ проводить внешним осмотром на отсутствие механических повреждений корпуса блока контроля и регистрации (БКиР). Наружная поверхность трубок кабелей соединительных должна соответствовать требованиям раздела 1 ТУ3491-005-00214639.

Внешний вид составных частей, входящих в СКРУТЖТ, должен соответствовать следующим требованиям:

1) на поверхности корпуса БКиР не должно быть вмятин, царапин, забоин, отслоений покрытий. Наружная поверхность трубок кабелей соединительных должна соответствовать требованиям раздела 1ТУ3491-005-00214639.

Допускается на кабелях соединительных СДАИ.685611.871 и СДАИ.685611.871-01 наличие потертостей по всей длине, не влияющих на их электрические свойства.

- 2) на поверхности акселерометров не допускаются рваные края, сколы, трещины, вмятины, следы коррозии, раковины, отслоения покрытия и другие дефекты за исключением отдельных царапин и вмятин (точек) глубиной не более 0,04 мм (контроль визуальный). Наружная поверхность трубки кабельной перемычки должна соответствовать требованиям раздела 1 ТУ 3491-005-00214639.
- 3) датчик давления (ДД) не должен иметь дефектов: вмятин, глубоких царапин, нарушений целостности кабельной перемычки, за исключением:
 - потемнений некоррозионного характера наружных поверхностей;
 - наличия цветов побежалости на наружных поверхностях;
- волнообразного, чешуйчатого характера сварных швов с высотой неровностей до 0,2 мм (контроль визуальный);
- наличия визуально видимого зазора между кабельной перемычкой и заливочным материалом в месте выхода кабельной перемычки из кожуха;
- наличия локальных отслоений наружного слоя фторопластовой трубки кабельной перемычки без сквозного разрушения.
- 4) На поверхности корпуса датчика температуры (ДТ) не допускаются царапины и вмятины глубиной более 0,2 мм (контроль визуальный).
 - 6.1.2Проверка маркировки составных частей, входящих в СКРУТЖТ:
 - 1) на передней панели БКиР должно быть отчетливо отмаркированы:
 - индекс СКРУТЖТ;
 - заводской номер СКРУТЖТ;
 - условное обозначение БКиР;
- заводской номер БКиР. Заводским номером СКРУТЖТ считается заводской номер БКиР.
 - обозначение СДАИ.411619.146;

- — знак защиты от статического электричества;
- обозначение разъемов;
- IP65 обозначение степени защиты;
- У2 вариант климатического обозначения;
- II тип атмосферы.
- 2) На бирке кабелей должны быть отмаркированы:
- обозначение кабеля:
- заводской номер кабеля.
- 3) Маркировка датчиков должна соответствовать требованиям:

На каждом акселерометре должно быть отчетливо выгравировано:

- индекс акселерометра;
- наибольшее и наименьшее значение диапазона измерений;
- наибольшее значение частоты частотного диапазона измерений (ЧДИ);
- заводской номер;
- направление осей системы координат, связанной с установочными плоскостями;

- направление измерительной оси;
- (СЭ)- знак защиты от статического электричества.

На каждом ДД должно быть отчетливо отмаркированы:

- ДАВ 084 индекс;
- 2 конструктивное исполнение;
- Б группа по точности измерения и наличию дублирующего канала;
- 1,6 предел измерений;
- заводской номер (шестизначное число);
- СЭ знак защиты от статического электричества

На втулке ДТ должно быть отчетливо выгравировано:

- обозначение СДАИ.405219.015;
- заводской номер;
- СЭ знак защиты от статического электричества.

6.2 Контроль неравномерности амплитудно-частотной характеристики (АЧХ) канала измерений виброускорений

- 6.2.1Установить акселерометр на платформу вибростенда, расположенную горизонтально. Повернуть вибростенд на 90 °. Собрать схему испытаний в соответствии с рисунком 1, при этом ДД и ДТ допускается не подключать.
 - 6.2.2 Установить на выходе прибора G1 напряжение (27,0±0,1) В.
- 6.2.3 Включить питание БКиР, для чего включить тумблер на источнике питания G1 и установить переключатель «ПИТАНИЕ 27 В» пульта П 100 в положение «ВКЛ».
- 6.2.4 Включить ПЭВМ. На рабочем столе ПЭВМ запустить файл программы skrutzht.exe. Вид окна программы представлен на рисунке 2.

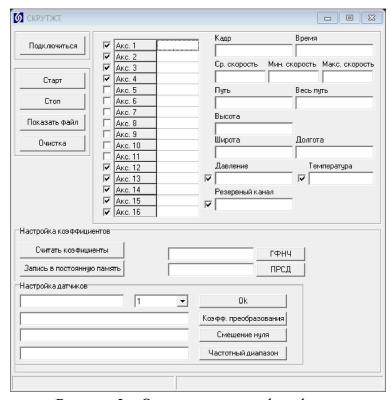
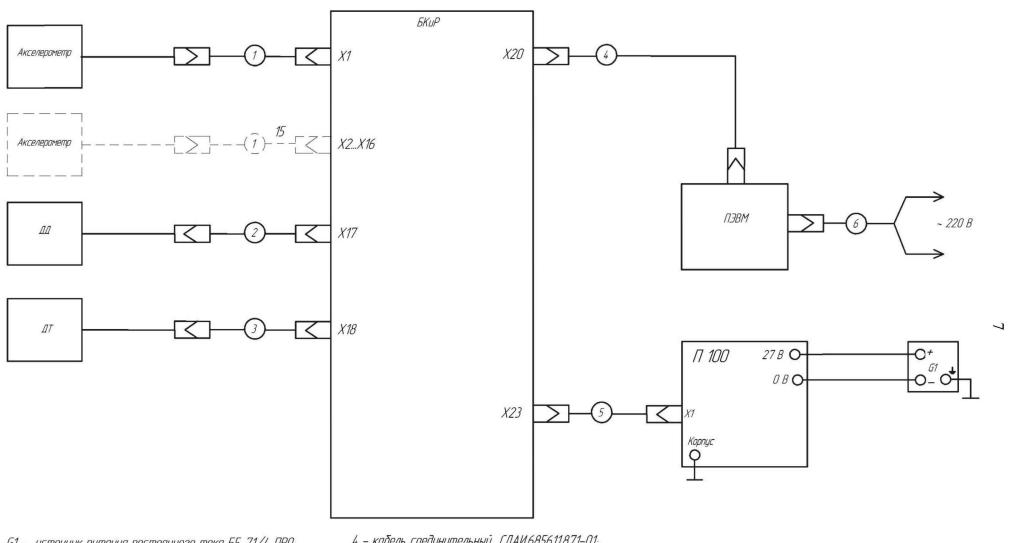



Рисунок 2 – Окно программы skrutzht.exe

G1 – источник питания постоянного тока Б5-71/4 ПРО;

3 – кабель соединительный СДАИ.685611.870;

4 – кабель соединительный СДАИ.685611.871-01;

6 – входит в комплект поставки ПЭВМ.

Рисунок 1 – Схема контроля параметров СКРУТЖТ

^{1 –} кабель соединительный СДАИ.685611.868; –01; –02; –03;–04;

^{2 –} кабель соединительный СДАИ.685611.869;

^{5 –} кабель соединительный СДАИ.685611.874;

В окне программы «Настройка коэффициентов» необходимо записать следующие значения:

- коэффициента преобразования, смещения нуля и частотного диапазона измерений акселерометров с привязкой к заводскому номеру и номеру входа СКРУТЖТ (значения брать из формуляра);
- диапазонов измерений ДД, ДТ, с привязкой к заводскому номеру и номеру входа СКРУТЖТ.

Установить знак « $\sqrt{\ }$ » напротив каждого подключенного канала. На незадействованных каналах данный значок не устанавливать.

- 6.2.5Нажать кнопку «Подключиться», а затем «Старт» в окне программы. Результаты измерений будут показаны в полях «Акс.1...Акс.16» окна программы.
- 6.2.6 Подвергнуть акселерометр воздействию ускорения, среднеквадратическое значение (СКЗ) которого равно 0.707 от диапазона измерений X, на частотах в соответствии с таблицей 4. На каждой из частот проводить измерение выходного СКЗ кода N_j с точностью до первого знака после запятой.

Таблица 4

чди, гц	Частота, Гц	
0 – 100	20; 50 ; 100	
Примечание – Жирным шрифтом выделено значение базовой частоты		

- 6.2.7 Результаты испытаний занести в таблицу по форме таблицы А.1 приложения А.
- 6.2.8 Определить неравномерность АЧХ в ЧДИ для каждого канала в % по формуле (1).

$$\gamma_{H} = \frac{\sum_{j=1,3}^{1,3} |N_{j} - N_{6}|}{2N_{6}} \cdot 100, \tag{1}$$

где $N_{\rm g}$ - СКЗ выходного кода, полученного на базовой частоте, м/с 2 .

- 6.2.9Повторить операции настоящего пункта для каждого канала измерения виброускорений.
- 6.2.10 Результаты считать положительными, если значение неравномерности АЧХ не более 15 % для каждого канала измерения виброускорения.

6.3 Контроль приведенной погрешности канала измерения давления

- 6.3.1Собрать схему испытаний в соответствии с рисунком 1, при этом акселерометры и ДТ допускается не подключать.
 - 6.3.2 Установить на выходе прибора G1 напряжение (27,0±0,1) В.
- 6.3.3 Включить питание БКиР, включив тумблер на источнике питания G1 и установив переключатель «ПИТАНИЕ 27 В» пульта П 100 в положение «ВКЛ».
- 6.3.4Подготовить ПЭВМ к работе по п. 6.2.4.Нажать кнопку «Подключиться», а затем «Старт» в окне программы. Результаты измерений будут показаны в поле «Давление» окна программы.
- 6.3.5 Присоединить ДД к подводящим давление магистралям грузопоршневого манометра типа МПА-15.
- 6.3.6 Включить питание БКиР, включив тумблер на источнике питания G1 и установив переключатель «ПИТАНИЕ 27 В» пульта П 100 в положение «ВКЛ».

- 6.3.7 Последовательно подать на ДД давления $P_1 = 1,0$ кПа (j=1) и $P_2 = 130,0$ кПа (j=2).
- 6.3.8 Контроль кода выходного сигнала $N_{pj}(j=1,2)$ проводить через 5 с после установления заданного давления с точностью до первого знака после запятой. Снять давление с ДД.

Результаты записать в таблицу, выполненную по форме таблицы А.2 приложения А.

6.3.9 Определить значение предела допускаемой приведенной погрешности датчика давления по формуле (2)

$$\gamma_{P} = \frac{K}{P} \sqrt{\frac{(P_{1} - N_{p1})^{2} + (P_{2} - N_{p2})^{2}}{2}} \cdot 100$$
 (2)

где К – коэффициент, соответствующий доверительной вероятности 0,95, равный 2;

Р – нормируемое значение давления, равное верхнему пределу измерений.

6.3.10 Результаты испытаний считать положительными, если значение приведённой погрешности γ_P не превышает ± 2 %.

6.4Контроль абсолютной погрешности канала измерения температуры окружающей среды

- 6.4.1Собрать схему испытаний в соответствии с рисунком 1, при этом акселерометры и ДД допускается не подключать.
- 6.4.2Подготовить ДТ к работе с использованием термометра сопротивления эталонного ЭТС-100 и измерителя регулятора температуры многоканального прецизионного МИТ 8.
 - 6.4.3 Установить на выходе прибора G1 напряжение (27,0±0,1) В.
- 6.4.4 Включить питание БКиР, включив тумблер на источнике питания G1 и установив переключатель «ПИТАНИЕ 27 В» пульта П 100 в положение «ВКЛ».
- 6.4.5Подготовить ПЭВМ к работе по п. 6.2.4. Нажать кнопку «Старт». Результаты измерений будут показаны в поле «Температура» окна программы.
- 6.4.6 Установить в камере последовательно температуру минус 50, 0, 70 °C, выдерживая ДТ при установившихся температурах в течение времени, необходимого для того, чтобы показание на дисплее МИТ 8 изменялись значения в третьем знаке после запятой. Зафиксировать температуру термометра ЭТС- $100\ T_{\phi,j}$ по МИТ 8 с точностью до первого знака после запятой и значение выходного кода ДТ T_i с точностью до первого знака после запятой.

Результаты записать в таблицу, выполненную по форме таблицы А.3 приложения А.

6.4.7Определить значение абсолютной погрешности измерений температуры по формуле (3)

$$\gamma_{T} = 2 \cdot \sqrt{\frac{\sum_{j=1}^{3} (T_{\phi,j} - N_{Tj})^{2}}{3}}$$
 (3)

6.4.8 Результаты испытаний считать положительными, если значение абсолютной погрешности γ_T не превышает ± 2 °C.

6.5 Контроль допускаемого значения приведенной погрешности канала измерения виброускорений

6.5.1Установить акселерометр на платформу вибростенда, расположенную горизонтально. Повернуть вибростенд на 90 °. Собрать схему испытаний в соответствии с рисунком 1, при этом ДД и ДТ допускается не подключать.

- 6.5.2 Собрать схему испытаний в соответствии с рисунком 1, при этом ДД и ДТ допускается не подключать.
 - 6.5.3 Установить на выходе прибора G1 напряжение (27,0±0,1) В.
- 6.5.4 Включить питание БКиР, включив тумблер на источнике питания G1 и установив переключатель «ПИТАНИЕ 27 В» пульта П 100 в положение «ВКЛ».
- 6.5.5 Подготовить ПЭВМ к работе по п. 6.2.4. Нажать кнопку «Подключиться», а затем «Старт» в окне программы. Результаты измерений будут показаны в полях «Акс.1...Акс.16» окна программы.
- 6.5.6Воспроизвести на базовой частоте, равной 50 Гц, СКЗ виброускорение амплитудой Хj, равное $\pm 7,07$; $\pm 8,49$; $\pm 10,61$; $\pm 12,02$; $\pm 14,14$ м/с 2 ($j=1,\ldots,5$) для акселерометров с диапазоном измерений ± 20 м/с 2 , и $\pm 7,07$; $\pm 14,14$; $\pm 21,21$; $\pm 28,28$; $\pm 35,35$ м/с 2 ($j=1,\ldots,5$) для акселерометров с диапазоном измерений ± 50 м/с 2 . При каждом значении виброускорения проконтролировать СКЗ выходного кода акселерометра Nj($j=1,\ldots,5$).

Результаты записать в таблицу, выполненную по форме таблицы А.4 приложения А.

6.5.7 Определить значение предела допускаемой приведенной погрешности канала измерений виброускорений $\gamma_{\rm B}$ по формуле (4)

$$\gamma_{\rm B} = \frac{2}{X} \cdot \sqrt{\frac{\sum_{j=1}^{5} (X_{j} - N_{j})^{2}}{j}} \cdot 100,$$
(4)

где X – нормируемое значение виброускоерния, равное диапазону измерений.

6.5.8 Результаты считать положительными, если значение $\gamma_{\rm B}$ не превышает 30 % для каждого канала измерения виброускорения.

7Оформление результатов поверки

Результаты поверки оформить в соответствии с Приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. N 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке». При периодической поверке оформить протокол поверки по формам приложения A.

Приложение А

Формы таблиц для регистрации результатов поверки

Таблица А.1 – Результаты контроля неравномерности амплитудно-частотной характеристики (AЧX) канала измерений виброускорений

Номер канала	Номер п/п, j	Частота воздействующей вибрации f _i , Гц	Значение кода выходного сигнала Nj, м/с ²
	1	20	
	2	50	
	3	100	

Таблица А.2-Результаты контроля приведенной погрешности канала измерения давления

j	Значение задаваемого давления, P_{j} , к Π а	Значение кода выходного сигнала, N_{pj} , кПа
1	1	
2	130	

Таблица А.3 – Результаты контроля абсолютной погрешности канала измерения температуры окружающей среды

		Контролируем	ный параметр
j	Измеряемая температура $T_j,{}^{\circ}C,$	Значение выходного кода, °C	Температура, измеренная термометром ЭТС-100, °C
		N_{Tj}	$T_{\phi,j}$
1	минус 50		
2	0		
3	70		

Таблица А.4 – Результаты контроля допускаемого значения приведенной погрешности канала измерения виброускорений

Номер точки	Значение задаваемого ускорения	Значение кода выходного сигнала
градуирования, ј	Xj, м/c ²	$N_{j, M/c^2}$
1		
2		
3		
4		
5		