УТВЕРЖДАЮ

Первый заместитель генерального директора – заместитель по научной

работе ФГУП «ВНИИФЛРИ»

АН Шит нов

2018 г.

Дозкалибратор ATOMLAB 500+

МЕТОДИКА ПОВЕРКИ 651-17-031 МП

1 Общие положения

Поверку дозкалибратора ATOMLAB 500+ (далее – дозкалибратора), изготовленного фирмой «BIODEX Medical Systems Inc.», США (блок управления зав. № 15040465, детектор зав. № 96276031), проводят юридические лица или индивидуальные предприниматели, аккредитованные в установленном порядке в области обеспечения единства измерений.

Требования к организации, порядку проведения поверки и форма представления результатов поверки определяются приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. № 1815.

Первичная поверка производится при выпуске вновь произведенных дозкалибраторов и после их ремонта.

Периодическая поверка производится при эксплуатации дозкалибраторов.

Интервал между поверками составляет один год.

2 Операции поверки

При проведении поверки должны быть выполнены операции, указанные в таблице 1.
 Таблица 1 – Операции поверок

Наименование операций	Номер пункта	Операции, выполняемые при поверке:	
	методики	первичной	периодической
Внешний осмотр	7.1	+	+
Опробование	7.2	+	+
Определение относительной погрешности измерений активности	7.3	+	+
Определение системной линейности	7.4	+	+
Проверка соответствия программного обеспечения	8	+	+

3 Средства поверки

3.1 При проведении поверки необходимо применять основные и вспомогательные средства поверки, приведенные в таблице 2.

Таблица 2 – Перечень основных и вспомогательных средств поверки

Наименование рабочих эталонов или вспомогательных средств поверки; номер
документа, регламентирующего технические требования к рабочим эталонам или
вспомогательным средствам; разряд по государственной поверочной схеме и (или)
метрологические и основные технические характеристики средства поверки
- Радиометры РИС-А1-Э «Дозкалибратор» (Рег. № в ФИФ 37683-08). Диапазон
измерений активности:
гамма - излучающих нуклидов (по $^{99\text{m}}$ Tc), от 2,0·10 ⁶ до 1,85·10 ¹⁰ Бк,
бета - излучающих нуклидов (по 89 Sr) от $8,0\cdot10^7$ до $1,85\cdot10^{10}$;
- Спектрометрические установки в соответствии с ГОСТ 8.033-96. Интегральная
нелинейность не более 0,05 %, основная относительная погрешность измерений
активности ±4,0 %;
- Растворы радионуклидов $^{99\text{m}}$ Tc, 131 I, 18 F, 89 Sr, 131 Cs; 177 Lu (по ГОСТ 8.033-96).
Активность в диапазоне 10^7 - 10^{12} Бк.
Термометр лабораторный по ГОСТ 28498-90. Цена деления 0,1 °C, диапазон
измерений от минус 50 °C до плюс 125 °C
Барометр-анероид (Рег. № в ФИФ 5738-76). Диапазон измерений абсолютного
давления от 80 до 106 кПа, пределы допускаемой основной погрешности
измерений \pm 0,2 кПа
Психрометр по ГОСТ 112-78. Диапазон измерений относительной влажности от
20 до 90 %, пределы допускаемой относительной погрешности измерений ± 5%.
Дозиметр-радиометр ДКС-96 с БДКС-96б (Рег. № в ФИФ 16369-11). Мощность
амбиентного эквивалента дозы в диапазоне $0,1$ мк 3 в ч $^{-1} \div 1$ 3 в ч $^{-1}$, пределы
допускаемой относительной погрешности не более ± (15 + 6/H) %, где H –
безразмерная величина, численно равная измеренному значению МАЭД в мкЗв-ч-1

Примечания:

- 1) Допускается применение других средств поверки, не приведенных в перечне, но обеспечивающих определение метрологических характеристик с требуемой точностью.
- 2) Используемые эталонные средства измерений должны иметь действующие поверительные клейма или свидетельства о поверке.
- 3) Допускается проведение поверки на меньшем диапазоне измерений, для одного или нескольких радионуклидов из списка: ¹³¹Cs, ¹⁷⁷Lu, с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.

4 Требования по безопасности и квалификации поверителей

- 4.1 При проведении поверки должны выполняться требования:
- «Норм радиационной безопасности (НРБ-99/2009)»;
- «Основных санитарных правил обеспечения радиационной безопасности (ОСПОРБ-99/2010)»;
- «Правил технической эксплуатации электроустановок потребителей и правил техники безопасности при эксплуатации электроустановок потребителей (ПТЭ и ПТБ-84)»;
 - Инструкций по радиационной безопасности.
- 4.2 Поверку могут проводить лица, имеющие квалификацию поверителя, ознакомленные с руководством по эксплуатации дозкалибраторов и допущенные к работам с источниками ионизирующих излучений.

5 Условия поверки

5.1 При проведении поверки должны выполняться следующие условия:

_	мощность амбиентного эквивалента дозы фонового	
	излучения не должна превышать, мкЗв/ч	0,25
-	температура окружающего воздуха, °С	20 ± 5
-	относительная влажность воздуха, %	60 ± 15
_	атмосферное давление, кПа	$101,3 \pm 4$
_	напряжение и частота питающей сети, В	от 187 до 242
_	частота, Гц	от 47 до 53

6 Подготовка к поверке

Перед проведением поверки необходимо выполнить следующие операции:

- 6.1 Дозкалибратор подготовить к работе в соответствии с требованиями руководства по эксплуатации.
- 6.2 Провести измерения температуры, относительной влажности, давления окружающего воздуха и уровня внешнего гамма-фона в месте расположения дозкалибратора. Результаты измерений занести в рабочий журнал.

7 Проведение поверки

7.1 Виешний осмотр

При проведении внешнего осмотра устанавливают:

 отсутствие механических повреждений и других видимых дефектов, которые могут повлиять на работоспособность;

- наличие маркировки и пломбы;
- наличие руководства по эксплуатации;
- наличие свидетельства о предыдущей поверке дозкалибратора (при периодической поверке).

7.2 Опробование

Опробование дозкалибратора провести в соответствии с руководством по эксплуатации: включить дозкалибратор, после установления рабочего режима убедиться, что в процессе измерений на экране отображается показание значения активности.

7.3 Определение относительной погрешности измерений активности

7.3.1 Определение относительной погрешности измерений активности должно быть проведено одним из следующих методов: поверка с применением эталонного дозкалибратора, поверка с применением эталонной спектрометрической установки в соответствии с ГОСТ 8.033-96.

7.3.1.1 Поверка с применением эталонного дозкалибратора

Для проведения проверки необходимо выполнить следующие операции:

- подготовить эталонный и поверяемый дозкалибратор к проведению измерений в соответствии с технической документацией;
- провести наработку радионуклида с применением генератора нуклидов;
- установить штатный держатель без источника излучения;
- провести измерения фоновых значений эталонным и поверяемым дозкалибратором в отсутствии источников излучения. Количество измерений не менее 5.
- вычислить среднее значение фоновых измерений для поверяемого и эталонного дозкалибратора по формуле (1):

$$A_{\phi_{OH}} = \frac{\sum_{i=1}^{i=n} A_{\phi_{OH}}^{i}}{n}, \tag{1}$$

где $A_{\phi o n}^{\rm i}$ — фоновые показания дозкалибратора в i-том наблюдении, Бк;

n – количество наблюдений.

- установить источник излучения (флакон) с радионуклидом в штатный держатель;
- провести измерения активности радионуклидов эталонным и поверяемым дозкалибратором чередуя измерения. Количество измерений для эталонного и поверяемого дозкалибратора не менее 10;
- вычислить среднее значение активности за вычетом фона и относительное СКО результатов измерений по формулам (2), (3), (4), (5): для поверяемого дозкалибратора

$$A_{noe} = \frac{\sum_{i=1}^{i=n} A_{noe}^{i}}{n}, \tag{2}$$

$$S(A_{noe}) = \frac{1}{A_{noe}} \sqrt{\frac{\sum_{i=1}^{i=n} (A_{noe}^{i} - A_{noe})^{2}}{n-1}},$$
 (3)

где A_{nos}^{1} — показания поверяемого дозкалибратора (за вычетом фона) в i-том наблюдении, Бк; для эталонного дозкалибратора

$$A_{2m} = \frac{\sum_{i=1}^{l=n} A_{2m}^{i}}{n}, \tag{4}$$

$$S(A_{9m}) = \frac{1}{A_{9m}} \sqrt{\frac{\sum_{i=1}^{i=n} (A_{9m}^{i} - A_{9m})^{2}}{n-1}},$$
 (5)

где: $A_{\mathfrak{s}m}^{\mathfrak{i}}-$ показания эталонного дозкалибратора (за вычетом фона) в i-том наблюдении, Бк;

 A_{no6} и A_{9m} — идентичные показания измеренной активности поверяемого и эталонного дозкалибратора соответственно за вычетом фоновых значений.

<u>Примечание</u>: $S(A_{2m})$ и $S(A_{nos})$ для ряда наблюдений (n=10; P=0,95) при проведении поверки дозкалибратора не должно превышать значения 0,015. Если это условие не удовлетворяется, необходимо увеличить количество наблюдений n.

Относительную погрешность измерений активности рассчитать по формуле (6):

$$\delta_{u_{3M}} = \frac{A_{nos} - A_{om}}{A_{om}} \cdot 100\%.$$
 (6)

7.3.1.2 <u>Поверка с применением эталонной спектрометрической установки в соответствии с ГОСТ</u> 8.033-96.

Для проведения проверки необходимо выполнить следующие операции:

- подготовить эталонное и поверяемое средство измерений (СИ) к проведению измерений в соответствии с технической документацией;
- провести наработку радионуклида с применением генератора нуклидов;
- установить штатный держатель без источника излучения;
- провести измерения фоновых значений эталонным и поверяемым СИ в отсутствие источников излучения. Количество измерений не менее 5;
- вычислить среднее значение фоновых измерений эталонного и поверяемого СИ по формуле (1).
- установить источник излучения (флакон) с радионуклидом в штатный держатель поверяемого дозкалибратора;

- провести измерения активности соответствующих радионуклидов. Количество измерений должно быть не менее 10;
- вычислить среднее значение активности за вычетом фона и относительное СКО результатов измерений по формулам (2), (3);
- провести измерения источника излучения (флакон) на эталонной спектрометрической установке.
- относительную погрешность измерений активности рассчитать по формуле (6).
- 7.3.2 Рассчитать значения доверительных границ относительной погрешности δ, %, с доверительной вероятностью 0,95 по формуле (7):

$$\delta = \left| \delta_{u_{3M}} \right| + 2 \cdot \sqrt{\left(\delta_{9}^{2} \right) / 3 + S(A_{nog})^{2}}, \tag{7}$$

где: δ_9 — относительная погрешность эталонного значения активности источника (по результатам измерений на эталонном комплексе), %;

<u>Примечание</u>. Если при проведении поверки используется радионуклид с периодом полураспада, требующим коррекции на распад во время проведения поверки, то A_{nos} и A_{sm} должны быть приведены к одному времени. Коррекция проводится на каждое измерение по формуле (8):

$$A_{no\theta, \mathfrak{I}} = A_{no\theta, \mathfrak{I}}^{l_1} \cdot e^{-\lambda(l_1 - l_2)} \tag{8}$$

где: t_1 – время окончания 1-го измерения;

 t_2 - время окончания каждого последующего соответствующего измерения.

 λ - постоянная распада.

Провести измерения по п. 7.3.1 для источников на основе каждого из нуклидов ¹³¹Cs, ¹⁷⁷Lu, или одного из них (по письменному требованию эксплуатирующей организации).

Результаты поверки считать положительными, если полученные значения δ находятся в пределах \pm 5 %.

7.4 Определение системной линейности.

Для проведения проверки необходимо выполнить следующие операции:

- установить источник на основе одного из нуклидов $^{99\text{m}}$ Tc , 131 I, 18 F, 89 Sr, 131 Cs, 177 Lu (или любых других нуклидов, не приведенных в перечне), активностью от $3 \cdot 10^7$ Бк до $2 \cdot 10^{12}$ Бк;
- устанавливать поочередно источники в измерительную камеру, используя держатель образца;
- дозкалибратором провести измерения. Количество наблюдений должно быть не менее 10;
- определить исходное значение активности источника A_{ucx} (за вычетом фона) как среднее арифметическое значение для полученного ряда результатов наблюдений по формуле (1).
- рассчитать относительное СКО для A_{ucr} по формуле (3).

Примечание:

- $1\ S(A_{ucx})$ не должно превышать значения 0,015. Если это условие не удовлетворяется, необходимо увеличить количество наблюдений n.
- 2 Коррекция на время измерения не учитывается, так как время измерения дозкалибратора (1 3 с) существенно меньше периода полураспада применяемых радионуклидов.
- вычислить отношение K_i по формуле (9):

$$K_i = \frac{A_i}{A_i^{pacq}} \tag{9}$$

где: A_i – показания дозкалибратора (за вычетом фона) в i-том наблюдении, Бк;

 $A_i^{\it pacч}$ — расчетное значение активности (с учетом периода полураспада радионуклида), Бк.

- рассчитать относительное СКО для ряда результатов отношения K_i по формулам (10) и (11):

$$K_{cp} = \frac{\sum_{i=1}^{i=n} K_i}{n},\tag{10}$$

$$S(K_{cp}) = \frac{1}{K_{cp}} \sqrt{\frac{\sum_{i=1}^{i=n} (K_i - K_{cp})^2}{n-1}}.$$
 (11)

Результаты поверки считать положительными, если выполняется условие: $S(K) \le 0.020$, т.е. системная линейность активности диапазоне $3 \cdot 10^7$ Бк до $2 \cdot 10^{12}$ Бк находится в пределах ± 2 %.

8 Проверка соответствия программного обеспечения (ПО)

 Π О можно идентифицировать, используя функциональные клавиши, по следующему пути: «Main menu» \rightarrow «Utilities» \rightarrow «System Maintenance» \rightarrow «Detector Status». На дисплее отобразится идентификационное наименование и номер версии Π О. Производителем не предусмотрен иной способ идентификации Π О.

Результаты поверки считать положительными, если идентификационные данные ПО соответствуют данным, приведенным в таблице 3.

Таблица 3 – Идентификационные данные программного обеспечения

Идентификационное наименование программного обеспечения	Номер версии (идентификационный номер) программного обеспечения
Atomlab 500 firmware	DisplayModule Firmware version 1.33 PC104 Firmware version 1.01 Dose calibrator Firmware version 1.00.03/1.00.02

9 Оформление результатов поверки

- 9.1 Положительные результаты поверки оформляют выдачей свидетельства о поверке по форме, установленной в приказе Министерства промышленности и торговли РФ от 2 июля 2015 г № 1815.
- 9.2 Отрицательные результаты поверки оформляют выдачей извещения о непригодности, в установленной в приказе Министерства промышленности и торговли РФ от 2 июля 2015 г № 1815 форме, с указанием причин непригодности.
- 9.3 Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска повелительного клейма.

Heef

Заместитель начальника НИО-4

по научной работе ФГУП «ВНИИФТРИ»

О.И. Коваленко

Старший научный сотрудник

НИО-4 ФГУП «ВНИИФТРИ»

М.А. Зотова