

Закрытое Акционерное Общество «АКТИ-Мастер» АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ и ИНФОРМАТИКА

> 127254, Москва, Огородный проезд, д. 5, стр. 5 тел./факс (495)926-71-85 E-mail: <u>post@actimaster.ru</u> <u>http://www.actimaster.ru</u>

> > **УТВЕРЖДАЮ**

Генеральный директор ЗАО «АКТИ-Мастер»

Государственная система обеспечения единства измерений

Генераторы-анализаторы цифровых сигналов с параметрическим измерителем модульные M9195B

> Методика поверки M9195B/MП-2018

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

has Д.Р. Васильев

г. Москва 2018 Настоящая методика поверки распространяется на генераторы-анализаторы цифровых сигналов с параметрическим измерителем модульные М9195В (далее – модули), изготовленные компанией "Keysight Technologies Malaysia Sdn. Bhd." (Малайзия), и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Номер Проведение операции Наименование операции при поверке пункта методики первичной периодической Внешний осмотр и подготовка к поверке 6 да да 7.2 Опробование и функциональное тестирование да да Определение погрешности установки и измерения напряжения параметрическими измерителями в 7.3 да да режиме источника напряжения Определение погрешности установки и измерения силы тока параметрическими измерителями в режиме 7.4 да да источника тока Определение погрешности установки постоянного 7.5 да да напряжения драйверами Определение погрешности порогов срабатывания 7.6 да да компараторов

Таблица 1 – Операции поверки

1.2 Если у поверяемого модуля используются не все каналы и/или режимы и диапазоны, то по запросу пользователя периодическая поверка может быть проведена по указанным в таблице 1 операциям для определенных каналов, режимов и диапазонов, при этом должна быть сделана соответствующая запись в свидетельстве о поверке.

2 СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуется применять средства поверки, указанные в таблице 2.

2.2 Средства измерений должны быть исправны, поверены и иметь документы о поверке.

2.3 Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых модулей с требуемой точностью.

2.4 Переходной кабель поз. 2.5 таблицы 2 должен быть сделан из двух отрезков многожильного изолированного провода длиной (400 ... 500) mm. На одном из концов кабеля нужно припаять к проводам миниатюрный разъем DS1071-1x2, на другом конце кабеля припаять к проводам вилки banana(m), обозначив полярность (соответствие гнезд разъема и вилок banana).

Гаолица 2 – Средства поверки							
	Наименование	Номер	Требуемые	Рекомендуемый тип			
N⁰	средства	пункта	технические	средства поверки,			
	поверки	методики	характеристики	рег. номер реестра			
1	2	3	4	5			
			1. Средства измерений				
1.1	Измеритель	7.3	абсолютная погрешность измерения				
	постоянного	7.5	постоянного напряжения				
	напряжения		от -2 до $+6$ V не более ± 1 mV	Мультиметр			
				Agilent 3458A			
1.2	Измеритель	7.4	относительная погрешность	рег. № 25900-03			
	постоянного		измерения силы постоянного тока	1996			
	тока		от 2 μ A до 40 mA не более $\pm 0,2$ %				
1.3	Калибратор	7.6	абсолютная погрешность установки	Калибратор универсальный			
	постоянного		постоянного напряжения	Fluke 9100			
	напряжения		от 1 до 2 V не более ±1 mV	рег. № 25985-09			
2. Вспомогательные средства и принадлежности							
2.1	Шасси	Разделы	не менее 8-х слотов РХІе	Kausiaht M0018A			
	PXI Express	6, 7		Keysight M9018A			
2.2	Модуль	Разделы	DVI Express	Kouright MOO27A			
	контроллера	6, 7	r AI Express	Keysight M9037A			
2.3	Плата	2		Kousight V1252 A			
	коммутации	раздел /	коммутация то каналов модуля	Keysight 11255A			
2.4	Кабель	1 1 2 1 6 1 7	KOMMUTAHING 16 KAHAROP MORVING	Keysight V1246A			
	ссединительный	раздел 7	коммутация то каналов модуля	Reysignt 11240A			
2.5	Монитор,	Разделы					
	клавиатура,	6, 7	_	-			
	манипулятор		-	-			
	«мышь»						
2.6	Кабель	73 76	присоединение канала модуля к	$v_{22211147} = n_{1111772} 2 A$			
	переходной	1.5 - 1.0	средству поверки	yRasanna b Hynkit 2.4			
			3. Программное обеспечение				
3.1	Операционная	Разделы	управление работой молуля	Windows 7 (32/64)			
	система	6, 7	управление работой модуля	willuows / (32/04)			
3.2	Драйвер	Разделы	иправление работой молиля	MDsr версии 2.1.118.0 и			
	модуля	6, 7	управление работой модуля	выше			

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области электрических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

4.2 Во избежание несчастного случая и для предупреждения повреждения модуля необходимо обеспечить выполнение следующих требований:

- подсоединение шасси с модулем и средств поверки к сети должно производиться с помощью сетевых кабелей из комплекта шасси и комплектов средств поверки;

- заземление шасси и средств поверки должно производиться посредством заземляющих контактов сетевых кабелей;

Reysight Mis 195B Mil 2010 Clp. 5 HS 22	Keysight M9195B	Методика поверки М9195В-МП-2018	стр. 3 из 22
---	-----------------	---------------------------------	--------------

- соединения модуля и средств поверки следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах модуля и средств поверки);

- запрещается работать с модулем при наличии в воздухе взрывоопасных веществ;

- запрещается работать с модулем в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ±3) °С;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра проверяются:

- чистота и исправность разъемов модуля;
- отсутствие механических повреждений корпуса модуля и элементов плат;
- правильность маркировки и комплектность модуля.

6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого модуля, его следует направить в сервисный центр для проведения ремонта.

6.2 Подготовка к поверке

6.2.1 Перед началом работы следует изучить руководство по эксплуатации модуля, а также руководства по эксплуатации применяемых средств поверки.

6.2.2 Выполнить установку контроллера и модуля:

- 1) установить в 4 левых слота шасси РХІе модуль контроллера;
- 2) присоединить к контроллеру монитор, клавиатуру и мышь;
- 3) подсоединить шасси и монитор к сети 220 V/50 Hz;
- 4) установить поверяемый модуль в слот шасси РХІе;

5) включить шасси и контроллер, дождаться загрузки Windows.

6.2.3 Если на контроллере не установлен драйвер "MDsr, следует инсталлировать его в соответствии с указаниями руководства по эксплуатации модуля.

6.2.4 Подготовить к работе средства поверки в соответствии с руководствами по эксплуатации.

6.2.5 Выдержать модуль и средства поверки во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева модуля 30 min.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Общие указания по проведению поверки

В процессе выполнения операций результаты заносятся в протокол поверки.

Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах раздела 7. При получении отрицательных результатов необходимо повторить операцию. При повторном отрицательном результате модуль следует направить в сервисный центр для проведения регулировки или ремонта.

7.2 Опробование и функциональное тестирование

7.2.1 Запустить виртуальную панель модуля "MDsr SFP", для чего выбрать:

Меню Пуск > Keysight > MDsr > MDsr SFP

7.2.2 Выбрать модуль для подключения через "MDsr SFP", нажать клавишу "Connect".

	Module	s and Saved	Instruments 🔽 🗌 Simulation Mode	
Alia	S Slot	Modol	Description	
	15	M9195A_B	PXI14::0::0::INSTR	
)
<				
< ecte	d Instru	ment:		

7.2.3 В появившемся окне кликнуть на вкладке Help, выбрать пункт About.

7.2.4 Записать номер версии (Driver Revision) в таблицу 7.2.

7.2.5 Закрыть окно.

Таблица 7.2 – Опробование и функциональное тестирование

Содержание проверки	Результат проверки	Критерии проверки
идентификация версии ПО		MDsr 2.1.118.0 или выше

7.3 Определение погрешности установки и измерения напряжения параметрическими измерителями в режиме источника напряжения

7.3.1 Выбрать на мультиметре режим DCV, NDIG5, NPLC20.

7.3.2 Используя переходной кабель, подключить на плате коммутации контакты поверяемого канала модуля к гнездам "Input HI", "Input LO" мультиметра, соблюдая полярность.

7.3.3 Создать профиль PPMU, для чего во вкладке PpmuSites нажать клавишу Add Site.

7.3.4 Сконфигурировать профиль РРМU для требуемых каналов в окне Add Site

Starting Channel Number: 0 Number of Signals: 16

7.3.5 Активировать профиль клавишей Activate

7.3.6 На вкладке Test Site выбрать в поле Measurement: Force Voltage Measure Voltage, установить усреднения Averaging: Window 50 Hz.

7.3.7 Установить в поле Force Voltage первое значение напряжения U_S из столбца 1 таблицы 7.3, после чего нажать на кнопку Continuous.

Измеряемые модулем значения напряжения отображаются в нижней части поля Test Site.

7.3.8 Записать отсчет напряжения на мультиметре Um в столбец 2 таблицы 7.3, а измеряемое значение U_P на канале модуля – в столбец 5 таблицы 7.3.

7.3.9 Вычислить значение абсолютной погрешности установки напряжения $\Delta_{\rm S} = ({\rm Um} - {\rm U}_{\rm S})$, занести его в столбец 2 таблицы 7.3.

7.3.10 Вычислить значение абсолютной погрешности измерения напряжения $\Delta_{\rm M} = (U_{\rm P} - Um)$, занести его в столбец 5 таблицы 7.3.

7.3.11 Выполнить действия по пунктам 7.3.7 – 7.3.10 для остальных значений напряжения, указанных в столбце 1 таблицы 2.

7.3.12 Выполнить действия по пунктам 7.3.2, 7.3.7 – 7.3.10 для остальных поверяемых каналов модуля из 0 – 15.

7.3.13 Отсоединить переходной кабель от мультиметра.

Таблица 7.3 – Погрешность установки и измерения напряжения параметрическими измерителями PPMU в режиме источника напряжения

Установленное РРМU значение U _s , V	Измеренное мультиметром значение Um, V	Абсолютная погрешность установки (Um – U _s), V	Пределы допуска погрешности установки, V	Измеренное РРМU значение U _P , V	Абсолютная погрешность измерения (U _P – Um), V	Пределы допуска погрешности измерения, V
1	2	3	4	5	6	7
+6.500			±0.010			±0.010
-2.000			±0.010			±0.010
+0.000			± 0.010			±0.010

7.4 Определение погрешности установки и измерения силы тока параметрическими измерителями в режиме источника тока

7.4.1 Выбрать на мультиметре режим DCI, NDIG5, NPLC20.

7.4.2 Используя переходной кабель, подключить на плате коммутации контакты поверяемого канала модуля к гнездам "Input I", "Input LO" мультиметра, соблюдая полярность.

7.4.3 На вкладке Test Site выбрать в поле Measurement: Force Current Measure Current, установить усреднения Averaging: Window 50 Hz.

7.4.4 Установить в поле Force Current первое значение силы тока I_S из столбца 1 таблицы 7.4, после чего нажать на кнопку Continuous.

Измеряемые модулем значения силы тока отображаются в нижней части поля Test Site. <u>Примечания</u>:

1) Поскольку измерительная цепь замкнута только для выбранного канала, значение измеряемой силы тока отображается в соответствующей номеру канала строке поля Test Site.

2) Для установки значений µA следует вводить их в mA (например, для установки 2 µA надо ввести 0,002 mA, для установки 0 µA надо ввести 0,000 mA).

7.4.5 Записать отсчет силы тока на мультиметре Іт в столбец 2 таблицы 7.4, а измеряемое значение Ір на канале модуля – в столбец 5 таблицы 7.4.

7.4.6 Вычислить значение абсолютной погрешности установки силы тока $\Delta_{\rm S} = ({\rm Im} - {\rm I_S})$, занести его в столбец 2 таблицы 7.4.

7.4.7 Вычислить значение абсолютной погрешности измерения силы тока $\Delta_{\rm M} = ({\rm I_P} - {\rm Im})$, занести его в столбец 6 таблицы 7.4.

7.4.8 Выполнить действия по пунктам 7.4.4 – 7.4.7 для остальных значений силы тока, указанных в столбце 1 таблицы 3.

7.4.9 Выполнить действия по пунктам 7.4.2, 7.4.4 – 7.4.7 для остальных поверяемых каналов модуля из 0 – 15.

7.4.10 Отсоединить переходной кабель от мультиметра.

Таблица 7.4 – Погрешность установки и измерения силы тока параметрическими измерителями PPMU в режиме источника тока

Установленное РРМІ	Измеренное мультиметром	Абсолютная погрешность	Пределы допуска	Измеренное РРМІ	Абсолютная погрешность	Пределы допуска
значение	значение	установки	погрешности	значение	измерения	погрешности
Is	Im, V	$(Im - I_s)$	установки	$\mathbf{I}_{\mathbf{P}}$	$(I_P - Im)$	измерения
1	2	3	4	5	6	7
+40.000 mA			$\pm 0.400 \text{ mA}$			$\pm 0.400 \text{ mA}$
-40.000 mA			±0.400 mA			±0.400 mA
+1.000 mA			±0.010 mA			±0.010 mA
-1.000 mA			±0.010 mA			±0.010 mA
+100.00 μA			$\pm 1.000 \ \mu A$			$\pm 1.000 \ \mu A$
-100.00 µA			$\pm 1.000 \ \mu A$			$\pm 1.000 \ \mu A$
+10.000 µA			$\pm 0.100 \ \mu A$			±0.100 μA
-10.000 µA			$\pm 0.100 \ \mu A$			±0.100 µA
+2.000 μA			$\pm 0.020 \ \mu A$			$\pm 0.020 \ \mu A$
-2.000 μA			$\pm 0.020 \ \mu A$			$\pm 0.020 \ \mu A$

7.5 Определение погрешности установки постоянного напряжения драйверами

7.5.1 Выбрать на мультиметре режим DCV, NDIG5, NPLC20.

7.5.2 Используя переходной кабель, подключить на плате коммутации контакты первого поверяемого канала модуля к гнездам "Input HI", "Input LO" мультиметра, соблюдая полярность.

7.5.3 Сбросить плату на стандартные настройки кнопкой Remove All Dynamic Items.

Keysight DSR Module	
File View Utilities Tools Help	
Operation Instrument Channels T	riggers
Load Pattern File Reload Last File	Remove All Dynamic Items
Loaded File(s): MySavedStil.stil	

7.5.4 Для установки уровня логической единицы +5 V загрузить файл «5V.stil», нажав на кнопку Load Pattern File. Следует указать путь к папке, в которой находится файл (например, C:\Users\Administrator\Desktop\M9195). Файл «5V.stil» приведен в Приложении.

Keysight M9195B	Методика поверки М9195В-МП-2018	стр. 7 из 22
-----------------	---------------------------------	--------------

7.5.5 Проверить, правильность загрузки файла. Для этого в поле STIL Components VIEW выбрать вкладку Pattern и убедиться, что отображается состояние «все единицы».

7.5.6 В поле Active Sites развернуть меню PatternSites Properties и выбрать Retain Last Level. Нажать кнопку Activate.

7.5.7 В поле Activated PatternSites нажать кнопку Initiate.

7.5.8 Записать измеренное мультиметром значение Um в столбец 2 таблицы 7.5

7.5.9 Вычислить значение абсолютной погрешности установки напряжения $\Delta_{\rm S} = ({\rm Um} - {\rm U}_{\rm S})$, занести его в столбец 3 таблицы 7.5.

7.5.10 Пересоединять разъем переходного кабеля на контакты следующих поверяемых каналов модуля из 0 – 15 и выполнять действия по пунктам 7.5.8, 7.5.9.

7.5.11 Присоединить разъем переходного кабеля к контактам первого поверяемого канала модуля.

7.5.12 Сбросить плату на стандартные настройки кнопкой Remove All Dynamic Items.

7.5.13 Для установки уровня логического нуля +100 mV загрузить файл «100mV.stil», нажав на кнопку Load Pattern File. Следует указать путь к папке, в которой находится файл (например, C:\Users\Administrator\Desktop\M9195). Файл «100mV.stil» приведен в Приложении.

7.5.14 Проверить, правильность загрузки файла. Для этого в поле STIL Components VIEW выбрать вкладку Pattern и убедиться, что отображается состояние «все нули».

7.5.15 Выполнить действия по пунктам 7.5.6 – 7.5.10 для уровня логического нуля +100 mV.

7.5.16 Отсоединить переходной кабель от мультиметра.

Установленное значение U _s , V	Измеренное значение Um, V	Абсолютн ая погрешность (Um – U _s), V	Пределы допуска погрешности, V
1	2	3	4
+5 V			±0.025
+0,1 V			±0.025

Таблица 7.5 – Погрешность установки постоянного напряжения драйверами

7.6 Определение погрешности порогов срабатывания компараторов

7.6.1 Выбрать на калибраторе режим DCV.

7.6.2 Используя переходной кабель, подключить на плате коммутации контакты первого поверяемого канала модуля к гнездам "HI", "LO" калибратора, соблюдая полярность.

7.6.3 Сбросить плату на стандартные настройки кнопкой Remove All Dynamic Items.

7.6.4 Для установки порога «High» +1.7 V загрузить файл «1_7V.stil», нажав на кнопку Load Pattern File. Следует указать путь к папке, в которой находится файл (например, C:\Users\Administrator\Desktop\M9195). Файл «1_7V.stil» приведен в Приложении.

7.6.5 Проверить, правильность загрузки файла. Для этого в поле STIL Components VIEW выбрать вкладку Pattern и убедиться, что отображается состояние «все высокий».

7.6.6 В поле Active Sites развернуть меню PatternSites Properties и установить What to Log: Every Cycle with Compare. Нажать кнопку Activate.

Keysight M9195B	Методика поверки М9195В-МП-2018	стр. 8 из 22
-----------------	---------------------------------	--------------

7.6.7 Установить на калибраторе значение напряжения +1.700 V.

7.6.8 В поле Activated PatternSites нажать кнопку Initiate, затем View Results

7.6.9 В появившемся окне Results View выбрать Binary.

7.6.10 В окне Results View нажать на кнопку Fetch Results. Результат компарирования отобразится в строке Result, нумерация каналов справа налево.

7.6.11 Выполнить определение порога срабатывания «High» следующим образом. Например, подключен канал с номером «7», как показано на рисунках выше и ниже. 1) Если значение бита на канале равно **«1»**, как показано на рисунке выше, следует **увеличить** напряжение на калибраторе на шаг 4 mV, т.е. установить значение +1.704 V.

Если значение бита на канале равно «0», как показано на рисунке ниже, следует

уменьшить напряжение на калибраторе на шаг 4 mV, т.е. установить значение +1.696 V.

2) Выполнить новое компарирование, для чего:

- закрыть окно Results View

- выполнить действия по пунктам 7.6.8, 7.6.10.

3) Если значение бита на канале не изменилось, повторить действия по пунктам 1) и 2).

Если значение бита изменилось, то выполнять действия по пунктам 1) и 2) сначала с шагом 2 mV, а затем с шагом 1 mV.

4) Значение напряжения калибратора, при котором «1» меняется на «0», принимается за порог срабатывания «High». Записать это значение в столбец 2 таблицы 7.6.

7.6.12 Пересоединять разъем переходного кабеля на контакты следующих поверяемых каналов модуля из 0 – 15 и для каждого канала выполнять действия:

- закрыть окно Results View

- выполнить пункты 7.6.8, 7.6.10, 7.6.11.

7.6.13 Присоединить разъем переходного кабеля к контактам первого поверяемого канала.

7.6.14 Выполнить действия по пунктам 7.6.3 – 7.6.12 для порога срабатывания «Low» со следующими изменениями:

- в пункте 7.6.4 для установки порога «Low» +1.6 V загрузить файл «1_6V.stil». Следует указать путь к папке, в которой находится файл (например, :\Users\Administrator\Desktop\M9195). Файл «1 6V.stil» приведен в Приложении.

- в пункте 7.6.5 должно отображаться состояние «все низкий».

- в пункте 7.6.7 установить на калибраторе значение напряжения +1.600 V

- в пункте 7.6.11.1):

Если значение бита на канале равно «1», как показано на рисунке выше, следует **уменьшить** напряжение на калибраторе на шаг 4 mV, т.е. установить значение +1.596 V.

Если значение бита на канале равно «0», как показано на рисунке ниже, следует

увеличить напряжение на калибраторе на шаг 4 mV, т.е. установить значение +1.604 V. - в пункте 6.11.4):

Значение напряжения калибратора, при котором «1» меняется на «0», принимается за порог срабатывания «Low». Записать это значение в столбец 2 таблицы 7.6.

7.6.15 Отсоединить кабель от калибратора.

Установленное значение порога U _T , V	Значение напряжения на калибраторе U _C , V	Абсолютная погрешность порогов (U _C – U _T), mV	Пределы допуска погрешности, mV
1	2	3	4
+1.700 (High)			± 0.020
+1.600 (Low)			± 0.020

Keysight M9195B	Методика поверки М9195В-МП-2018	Ст	p.
-----------------	---------------------------------	----	----

9 из 22

ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:

- полное наименование аккредитованной на право поверки организации;

- номер и дата протокола поверки
- наименование и обозначение поверенного средства измерения
- заводской (серийный) номер;

- обозначение документа, по которому выполнена поверка;

- наименования, обозначения и заводские (серийные) номера использованных при поверке средств измерений, сведения об их последней поверке;

- температура и влажность в помещении;

- фамилия лица, проводившего поверку;

- результаты определения метрологических характеристик по форме таблиц раздела 7 настоящего документа.

Допускается не оформлять протокол поверки отдельным документом, а результаты поверки (метрологические характеристики) указать на оборотной стороне свидетельства о поверке.

8.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

Ведущий инженер по метрологии ЗАО «АКТИ-Мастер»	Jone -	Е.В. Маркин
--	--------	-------------

Файл «5V.stil»

```
STIL 1.0 { Design 2005; DCLevels 2002; }
    UserKeywords Site Channels Triggers WatchLoop VCOM VHH VIT VHYST;
    Signals {
     ch0 InOut;
     ch1 InOut;
     ch2 InOut;
     ch3 InOut;
     ch4 InOut;
     ch5 InOut;
     ch6 InOut;
     ch7 InOut;
     ch8 InOut;
     ch9 InOut:
     ch10 InOut;
     ch11 InOut:
     ch12 InOut;
     ch13 InOut;
     ch14 InOut;
     ch15 InOut;
    }
    Spec MyVars {
     Category ts1 {
       MyPeriod = '100.00000ns';
     }
    }
    SignalGroups {
     All = 'ch15 + ch14 + ch13 + ch12 + ch11 + ch10 + ch9 + ch8 + ch7 + ch6 + ch5 + ch4 + ch3 + ch2 + ch1
    + ch0';
    }
    Site MySite {
     Channels {
       ch0 0 0;
       ch1 1 1:
       ch2 2 2:
       ch3 3 3:
       ch4 4 4;
       ch5 5 5;
       ch6 6 6;
       ch777;
       ch8 8 8;
       ch9 9 9;
       ch10 10 10;
       ch11 11 11;
       ch12 12 12;
       ch13 13 13;
       ch14 14 14;
       ch15 15 15;
     }
   }
   DCLevels My_Levels {
     All { VIH '5V; VIL '0.1V; VOH '1.7V'; VOL '1.6V'; }
    3
    Timing {
     WaveformTable MyWFT {
       Period 'MyPeriod';
       Waveforms {
         ch15 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
Keysight M9195B
                                                                                           стр. 11 из 22
                      Методика поверки М9195В-МП-2018
```

```
H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch14 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch13 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch12 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch11 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch10 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch9 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch8 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch7 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch6 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch5 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch4 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
```

```
L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch3 {
      0 { '0ns' ForceDown; }
      1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch2 {
      0 { '0ns' ForceDown; }
      1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch1 {
      0 { '0ns' ForceDown; }
       1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch0 {
      0 { '0ns' ForceDown; }
      1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
   }
 }
}
PatternBurst "MyBurst" {
 PatList {
   MyPattern;
 }
}
PatternExec MyPatternExec {
 DCLevels My_Levels;
 PatternBurst "MyBurst";
}
Pattern MyPattern {
 WaveformTable MyWFT;
 V {ch15 = 1; ch14 = 1; ch13 = 1; ch12 = 1; ch11 = 1; ch10 = 1; ch9 = 1; ch8 = 1; ch7 = 1; ch6 = 1; ch5 =
1; ch4 = 1; ch3 = 1; ch2 = 1; ch1 = 1; ch0 = 1; }
}
```

Файл «100mV.stil»

```
STIL 1.0 { Design 2005; DCLevels 2002; }
    UserKeywords Site Channels Triggers WatchLoop VCOM VHH VIT VHYST;
    Signals {
     ch0 InOut;
     ch1 InOut:
     ch2 InOut;
     ch3 InOut;
     ch4 InOut;
     ch5 InOut;
     ch6 InOut;
     ch7 InOut;
     ch8 InOut;
     ch9 InOut;
     ch10 InOut;
     ch11 InOut;
     ch12 InOut;
     ch13 InOut;
     ch14 InOut;
     ch15 InOut;
    }
    Spec MyVars {
     Category ts1 {
       MyPeriod = '100.00000ns';
     }
   }
    SignalGroups {
     All = 'ch15 + ch14 + ch13 + ch12 + ch11 + ch10 + ch9 + ch8 + ch7 + ch6 + ch5 + ch4 + ch3 + ch2 + ch1
    + ch0';
    }
    Site MySite {
     Channels {
       ch0 0 0;
       ch1 1 1;
       ch2 2 2;
       ch3 3 3:
       ch4 4 4;
       ch5 5 5;
       ch6 6 6;
       ch777;
       ch8 8 8;
       ch9 9 9;
       ch10 10 10;
       ch11 11 11;
       ch12 12 12;
       ch13 13 13;
       ch14 14 14;
       ch15 15 15;
     }
   }
    DCLevels My_Levels {
     All { VIH '5V'; VIL '0.1V'; VOH '1.7V'; VOL '1.6V'; }
    }
    Timing {
     WaveformTable MyWFT {
       Period 'MyPeriod';
       Waveforms {
         ch15 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
Keysight M9195B
                                                                                           стр. 14 из 22
                      Методика поверки М9195В-МП-2018
```

```
}
         ch14 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch13 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
        ch12 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch11 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch10 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
        ch9 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch8 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch7 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch6 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch5 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
        ch4 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
Keysight M9195B
                      Методика поверки М9195В-МП-2018
```

```
H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch3 {
      0 { '0ns' ForceDown; }
      1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch2 {
      0 { '0ns' ForceDown; }
      1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch1 {
      0 { '0ns' ForceDown; }
       1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch0 {
      0 { '0ns' ForceDown; }
      1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
   }
 }
}
PatternBurst "MyBurst" {
 PatList {
   MyPattern;
 }
}
PatternExec MyPatternExec {
 DCLevels My_Levels;
 PatternBurst "MyBurst";
}
Pattern MyPattern {
 WaveformTable MyWFT;
 V {ch15 = 0; ch14 = 0; ch13 = 0; ch12 = 0; ch11 = 0; ch10 = 0; ch9 = 0; ch8 = 0; ch7 = 0; ch6 = 0; ch5 =
0; ch4 = 0; ch3 = 0; ch2 = 0; ch1 = 0; ch0 = 0; }
}
```

Файл «1_7V.stil»

```
STIL 1.0 { Design 2005; DCLevels 2002; }
    UserKeywords Site Channels Triggers WatchLoop VCOM VHH VIT VHYST;
    Signals {
     ch0 InOut;
     ch1 InOut:
     ch2 InOut;
     ch3 InOut;
     ch4 InOut;
     ch5 InOut;
     ch6 InOut;
     ch7 InOut;
     ch8 InOut;
     ch9 InOut;
     ch10 InOut;
     ch11 InOut;
     ch12 InOut;
     ch13 InOut;
     ch14 InOut;
     ch15 InOut;
    }
    Spec MyVars {
     Category ts1 {
       MyPeriod = '100.00000ns';
     }
   }
    SignalGroups {
     All = 'ch15 + ch14 + ch13 + ch12 + ch11 + ch10 + ch9 + ch8 + ch7 + ch6 + ch5 + ch4 + ch3 + ch2 + ch1
    + ch0';
    }
    Site MySite {
     Channels {
       ch0 0 0;
       ch1 1 1;
       ch2 2 2;
       ch3 3 3:
       ch4 4 4;
       ch5 5 5;
       ch6 6 6;
       ch777;
       ch8 8 8;
       ch9 9 9;
       ch10 10 10;
       ch11 11 11;
       ch12 12 12;
       ch13 13 13;
       ch14 14 14;
       ch15 15 15;
     }
   }
    DCLevels My_Levels {
     All { VIH '2V'; VIL '0V'; VOH '1.7V'; VOL '1.6V'; }
    }
    Timing {
     WaveformTable MyWFT {
       Period 'MyPeriod';
       Waveforms {
         ch15 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
Keysight M9195B
                                                                                           стр. 17 из 22
                      Методика поверки М9195В-МП-2018
```

```
}
         ch14 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch13 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
        ch12 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch11 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch10 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
        ch9 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch8 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch7 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch6 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch5 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
        ch4 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
Keysight M9195B
                      Методика поверки М9195В-МП-2018
```

```
H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch3 {
      0 { '0ns' ForceDown; }
      1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch2 {
      0 { '0ns' ForceDown; }
      1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch1 {
      0 { '0ns' ForceDown; }
       1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch0 {
      0 { '0ns' ForceDown; }
      1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
   }
 }
}
PatternBurst "MyBurst" {
 PatList {
   MyPattern;
 }
}
PatternExec MyPatternExec {
 DCLevels My_Levels;
 PatternBurst "MyBurst";
}
Pattern MyPattern {
 WaveformTable MyWFT;
 V {ch15 = H; ch14 = H; ch13 = H; ch12 = H; ch11 = H; ch10 = H; ch9 = H; ch8 = H; ch7 = H; ch6 = H;
ch5 = H; ch4 = H; ch3 = H; ch2 = 1; ch1 = H; ch0 = H; }
}
```

Файл «1_6V.stil»

```
STIL 1.0 { Design 2005; DCLevels 2002; }
    UserKeywords Site Channels Triggers WatchLoop VCOM VHH VIT VHYST;
    Signals {
     ch0 InOut;
     ch1 InOut:
     ch2 InOut;
     ch3 InOut;
     ch4 InOut;
     ch5 InOut;
     ch6 InOut;
     ch7 InOut;
     ch8 InOut;
     ch9 InOut;
     ch10 InOut;
     ch11 InOut;
     ch12 InOut;
     ch13 InOut;
     ch14 InOut;
     ch15 InOut;
    }
    Spec MyVars {
     Category ts1 {
       MyPeriod = '100.00000ns';
     }
   }
    SignalGroups {
     All = 'ch15 + ch14 + ch13 + ch12 + ch11 + ch10 + ch9 + ch8 + ch7 + ch6 + ch5 + ch4 + ch3 + ch2 + ch1
    + ch0';
    }
    Site MySite {
     Channels {
       ch0 0 0;
       ch1 1 1;
       ch2 2 2;
       ch3 3 3:
       ch4 4 4;
       ch5 5 5;
       ch6 6 6;
       ch777;
       ch8 8 8;
       ch9 9 9;
       ch10 10 10;
       ch11 11 11;
       ch12 12 12;
       ch13 13 13;
       ch14 14 14;
       ch15 15 15;
     }
   }
    DCLevels My_Levels {
     All { VIH '2V'; VIL '0V'; VOH '1.7V'; VOL '1.6V'; }
    }
    Timing {
     WaveformTable MyWFT {
       Period 'MyPeriod';
       Waveforms {
         ch15 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
Keysight M9195B
                                                                                           стр. 20 из 22
                      Методика поверки М9195В-МП-2018
```

```
}
         ch14 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch13 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
        ch12 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch11 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch10 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
        ch9 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch8 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch7 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch6 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
         ch5 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
          H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
        }
        ch4 {
          0 { '0ns' ForceDown; }
          1 { '0ns' ForceUp; }
          L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
Keysight M9195B
                      Методика поверки М9195В-МП-2018
```

```
H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch3 {
       0 { '0ns' ForceDown; }
       1 { '0ns' ForceUp; }
       L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
       H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch2 {
       0 { '0ns' ForceDown; }
       1 { '0ns' ForceUp; }
       L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
       H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch1 {
       0 { '0ns' ForceDown; }
       1 { '0ns' ForceUp; }
       L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
       H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch0 {
       0 { '0ns' ForceDown; }
       1 { '0ns' ForceUp; }
       L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
       H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
   }
 }
}
PatternBurst "MyBurst" {
  PatList {
   MyPattern;
 }
}
PatternExec MyPatternExec {
 DCLevels My_Levels;
  PatternBurst "MyBurst";
}
Pattern MyPattern {
 WaveformTable MyWFT;
 V {ch15 = L; ch14 = L; ch13 = L; ch12 = L; ch11 = L; ch10 = L; ch9 = L; ch8 = L; ch7 = L; ch6 = L; ch5
= L; ch4 = L; ch3 = L; ch2 = L; ch1 = L; ch0 = L; }
}
```