УТВЕРЖДАЮ

Первый заместитель генерального директора заместитель по научной работе

Инструкция

Комплекс автоматизированный измерительно-вычислительный TMCA 1.0-5.85 К 091

Методика поверки 133-18-07 МП

СОДЕРЖАНИЕ

1 ВВОДНАЯ ЧАСТЬ	3
2 ОПЕРАЦИИ ПОВЕРКИ	
3 СРЕДСТВА ПОВЕРКИ	4
4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	
5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	4
6 УСЛОВИЯ ПОВЕРКИ	4
7 ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ	5
8 ПРОВЕДЕНИЕ ПОВЕРКИ	5
8.1 Внешний осмотр	
8.2 Опробование	
8.3 Определение метрологических характеристик	6
8.3.1 Определение неравномерности амплитудного и фазового распределений, относительного	O
уровня кроссполяризационной составляющей электромагнитного поля в рабочей зоне и	
максимального размера рабочей зоны	6
8.3.2 Определение инструментальной погрешности измерений амплитуды и фазы диаграммы	
	. 10
8.3.3 Определение пределов допускаемой инструментальной погрешности измерений	
эффективной изотропно-излучаемой направленности	
9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	. 12

1 ВВОДНАЯ ЧАСТЬ

1.1 Настоящая методика поверки (далее – МП) устанавливает методы и средства первичной и периодической поверок комплекса автоматизированного измерительно-вычислительного ТМСА 1.0-5.85 К 091, изготовленного ООО «НПП «ТРИМ СШП Измерительные системы», г. Санкт-Петербург, заводской № 091 (далее – комплекс).

Первичная поверка комплекса проводится при вводе его в эксплуатацию и после ремонта.

Периодическая поверка комплекса проводится в ходе его эксплуатации и хранения.

- 1.2 Комплекс предназначен для измерений радиотехнических характеристик антенн.
- 1.3 Поверка комплекса проводится не реже одного раза в 24 (двадцать четыре) месяца.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки комплекса должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

11	Thursen MIT	Проведение операций при	
Наименование операции	Пункт МП	первичной поверке	периодической поверке
1 Внешний осмотр	8.1	+	+
2 Опробование	8.2	+	+
3 Определение метрологиче- ских характеристик	8.3	+	+
3.1 Определение неравномерности амплитудного и фазового распределений, относительного уровня кроссполяризационной составляющей электромагнитного поля в рабочей зоне и максимальных размеров рабочей зоны	8.3.1	+	+
3.2 Определение инструментальной погрешности измерений амплитуды и фазы диаграммы направленности	8.3.2	+	+
3.3 Определение пределов до- пускаемой инструментальной погрешности измерений эф- фективной изотропно- излучаемой мощности	8.3.3	+	+

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки комплекса должны быть применены средства измерений, указанные в таблице 2.

Таблица 2 – Средства измерений для поверки комплекса

Пункт МП	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки
8.3.1	Система лазерная координатно-измерительная Leica AT401, диапазон измерений расстояний от 1,5 до 60000 мм, предел допускаемой основной абсолютной погрешности объемных измерений ±15 мкм + 6 мкм/м
8.3.2	Анализатор электрических цепей векторный ZVA50, диапазон частот от 0,01 до 50 ГГц, динамический диапазон для диапазона частот от 1 до 50 ГГц не менее 110 дБ, линейность приёмных устройств не более 0,1 дБ
8.3.2	Аттенюатор ступенчатый программируемый 84908М, диапазон частот от 0 до 50 ГГц, диапазон вводимых ослаблений от 0 до 65 дБ с шагом 5 дБ
8.3.3	Генератор сигналов SMB100A с опцией B 112 (B 112, B112L, B120, B120L, B 140), диапазон частот от 100 кГц до 12,7 ГГц, пределы допускаемой относительной погрешности установки частоты $\pm 1 \cdot 10^{-7}$, диапазон установки значений уровня выходного сигнала на нагрузке 50 Ом от минус 120 до 13 дБ (м B т).
8.3.3	Преобразователь измерительный NRP-Z21, диапазон частот от 0,01 до 18 ГГц, динамический диапазон от -67 до +23 дБ (мВт), пределы допускаемой относительной погрешности измерений мощности ± 6 %.

- 3.2 Допускается использовать аналогичные средства поверки, которые обеспечат измерения соответствующих параметров с требуемой точностью.
- 3.3 Средства поверки должны быть исправны, поверены и иметь свидетельства о поверке.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 Поверка должна осуществляться лицами с высшим и среднем техническим образованием, аттестованными в качестве поверителей в области радиотехнических измерений в соответствии с ГОСТ Р 56069-2014, и имеющими квалификационную группу электробезопасности не ниже третьей.
- 4.2 Перед проведением поверки поверитель должен предварительно ознакомиться с документом «Комплекс автоматизированный измерительно-вычислительный ТМСА 1.0-5.85 К 091. Руководство по эксплуатации. ТМСА 091.005.00К РЭ».

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80 «ССБТ. Испытания и измерения электрические. Общие требования безопасности», а также требования безопасности, приведённые в эксплуатационной документации на составные элементы комплекса и средства поверки.
- 5.2 Размещение и подключение измерительных приборов разрешается производить только при выключенном питании.

6 УСЛОВИЯ ПОВЕРКИ

6.1 При проведении поверки комплекса должны соблюдаться условия, приведенные в таблице 3.

Таблица 3 – Условия проведения поверки комплекса

Таолица 3— 3 словия проведения новерки компьтек	-	
Влияющая величина	Нормальное	Допускаемое отклонение

	значение	от нормального значения
Температура окружающей среды, °С	20	±2
Относительная влажность воздуха, %	от 30 до 70	_
Атмосферное давление, кПа	от 84 до 106,7	
Напряжение питающей сети переменного тока, В	220	±22
Частота питающей сети, Гц	50	±1

7 ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ

- 7.1 Проверить наличие эксплуатационной документации и срок действия свидетельств о поверке на средства поверки.
- 7.2 Подготовить средства поверки к проведению измерений в соответствии с руководствами по их эксплуатации.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

- 8.1.1 При проведении внешнего осмотра комплекса проверить:
- комплектность и маркировку комплекса;
- наружную поверхность элементов комплекса, в том числе управляющих и питающих кабелей;
 - состояние органов управления;
- 8.1.2 Проверку комплектности комплекса проводить сличением действительной комплектности с данными, приведенными в разделе «Комплект поставки» документа «Комплекс автоматизированный измерительно-вычислительный ТМСА 1.0-5.85 К 091. Паспорт. ТМСА 091.005.00К ПС» (далее ПС).
- 8.1.3 Проверку маркировки производить путем внешнего осмотра и сличением с данными, приведенными в ПС.
 - 8.1.4 Результаты внешнего осмотра считать положительными, если:
 - комплектность и маркировка комплекса соответствует ПС;
- наружная поверхность элементов комплекса не имеет механических повреждений и других дефектов;
- управляющие и питающие кабели не имеют механических и электрических повреждений;
- органы управления закреплены прочно и без перекосов, действуют плавно и обеспечивают надежную фиксацию;
- все надписи на органах управления и индикации четкие и соответствуют их функциональному назначению.

В противном случае результаты внешнего осмотра считать отрицательными и последующие операции поверки не проводить.

8.2 Опробование

- 8.2.1 Идентификация программного обеспечения (далее ПО)
- 8.2.1.1 Включить персональные компьютеры (далее ПК), для чего:
- на блоке источника бесперебойного питания нажать кнопку ВКЛ;
- нажать на системном блоке ПК кнопку включения;
- включить монитор.

После загрузки операционной системы WINDOWS 7 на экране монитора ПК наблюдать иконку программы *FrequencyMeas, NFCalc, AmrView*.

Установить далее на ПК программу, позволяющую определять версию и контрольную сумму файла по алгоритму MD5, например, программу «HashTab».

- 8.2.1.2 Выбрать в папке **TRIM** файл *FrequencyMeas.exe*, нажать на правую кнопку мыши на файле и выбрать пункт «Свойства». Открыть вкладку «**Xem-cymmы файлов»**. Наблюдать контрольную сумму файла *FrequencyMeas.exe* по алгоритму MD5. Открыть вкладку «**O программе»**. Наблюдать значение версии файла *FrequencyMeas.exe*. Результаты наблюдения зафиксировать в рабочем журнале.
 - 8.2.1.3 Повторить операции п. 8.2.1.2 для программ NFCalc.exe и AmrView.exe.
- 8.2.1.4 Сравнить полученные контрольные суммы и версии с их значениями, записанными в ПС. Результат сравнения зафиксировать в рабочем журнале.
- 8.2.1.5 Результаты идентификации ПО считать положительными, если полученные идентификационные данные ПО соответствуют значениям, приведенным в таблице 4.

Таблица 4 - Идентификационные данные ПО

Идентификационные данные (признаки)		Значение	
Идентификационное наименование ПО	FrequencyMeas.exe	NFCalc.exe	AmrView.exe
Номер версии (иденти- фикационный номер) ПО	6.0.0.0	3.20.1	3.16.60612
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	7FCC2AB9445CE58D 52A44D8F611295F1 (алгоритм MD5)	90F2307A43D11220 7504337B9CCA9F24 (алгоритм MD5)	FAF113F3C83206EB 863D69624F5D3FC0 (алгоритм MD5)

В противном случае результаты проверки соответствия ПО считать отрицательными и последующие операции поверки не проводить.

- 8.2.2 Проверка работоспособности
- 8.2.2.1 Подготовить комплекс к работе в соответствии с РЭ.
- 8.2.2.2 Проверить работоспособность аппаратуры комплекса путем проверки отсутствия сообщений об ошибках и неисправностях при загрузке программного продукта для измерений в ближней зоне «*FrequencyMeas*».
- 8.2.2.3 Проверить работоспособность всех приводов опорно-поворотного устройства (ОПУ) для испытываемой антенны:
 - азимутальное поворотное устройство;
 - угломестное поворотное устройство;
 - поворотное устройство по углу крена.
- 8.2.2.4 Проверить работоспособность ОПУ облучателей зеркала радиоколлиматора (возможность смены облучателей и их поляризации).
- 8.2.2.5 Установить в рабочей зоне тестовую антенну с электрическими размерами апертуры не менее 4λ (где λ длина волны, м). Провести измерения сечений диаграмм направленности (ДН) и поляризационной диаграммы на рабочей длине волны антенны.
- 8.2.2.6 Результаты поверки считать положительными, если аппаратура комплекса работоспособна обеспечивает управление приводами ОПУ, проведение измерений и сохранение их результатов, а также отсутствует программная или аппаратная сигнализация о неисправностях комплекса.

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3 Определение метрологических характеристик

8.3.1 Определение неравномерности амплитудного и фазового распределений, относительного уровня кроссполяризационной составляющей электромагнитного поля в рабочей зоне и максимального размера рабочей зоны

8.3.1.1 Установить сканер ЭМП в центре рабочей зоны комплекса на опорно-поворотное

устройство (ОПУ) в горизонтальное положение.

8.3.1.2 На подвижную каретку сканера установить уголковый отражатель (УО) из соста-

ва системы лазерной координатно-измерительной API RADIAN R50, измерительный блок установить внутри безэховой камеры со стороны зеркала радиоколлиматора.

8.3.1.3 Записать траекторию движения УО при перемещении каретки сканера для горизонтального и вертикального пространственных положений сканера. При помощи программного обеспечения системы лазерной координатно-измерительной API RADIAN R50 рассчитать отклонение траектории УО вдоль направления распространения рассеянного зеркалом коллиматора электромагнитного поля (ЭМП) относительно линейного тренда траектории УО от координат каретки $\Delta l(x_i)$ (где $\Delta l(x_i) < 0$ при смещении каретки в направлении зеркала коллиматора, рисунок 1).

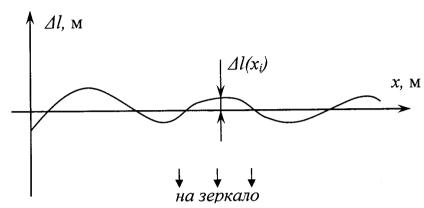


Рисунок 1 – К расчету отклонения траектории каретки сканера (УО)

8.3.1.4 Установить облучатель зеркала радиоколлиматора на вертикальную поляризацию. Взамен уголкового отражателя установить на каретку сканера антенну-зонд на вертикальной поляризации.

Перемещая каретку сканера с антенной-зондом вдоль рабочей зоны и одновременно измеряя амплитуды $A(x_i)$ и фазы $\Phi'(x_i)$ коэффициента передачи получить пространственное распределение амплитуды и фазы электромагнитного поля на согласованной поляризации.

Шаг между отсчётами поля установить не более $\lambda/2$ для максимальной частоты в диапазоне рабочих частот облучателя, а диапазон перемещения каретки сканера должен соответствовать \pm 1,3 м относительно центра рабочей зоны.

8.3.1.5 Повернуть антенну-зонд на 90° относительно оси поляризации.

Перемещая каретку сканера с антенной-зондом вдоль рабочей зоны и одновременно измеряя амплитуды $A_{\kappa}(x_i)$ коэффициента передачи получить пространственное распределение амплитуды кроссполяризации.

8.3.1.6 Обработку результатов измерений проводить с использованием программ Microsoft Excel, MatLab или Mathcad.

Исключить из измеренного фазового распределения линейное отклонение, обусловленное неперпендикулярностью установки направляющей рельсы сканера направлению распространения ЭМП.

Аппроксимировать измеренную зависимость фазы $\Phi'(x_i)$ линейной функцией $\Phi_{\text{лин}}(x_i)$ методом наименьших квадратов (рисунок 2).

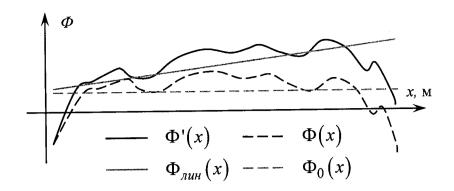


Рисунок 2 - К расчету фазового распределения

8.3.1.7 Рассчитать фазовое распределение ЭМП по формуле (1):

$$\Phi(x_i) = \Phi'(x_i) - \Phi_{\text{nun}}(x_i) - \frac{360}{\lambda} \Delta l(x_i), \qquad (1)$$

где λ – длина волны ЭМП, м;

 $\Phi'(x_i), \Phi_{\text{лин}}(x_i), \Phi(x_i)$ - относительные фазы, °.

Аппроксимировать зависимость $\Phi(x_i)$ линейной функцией $\Phi_0(x_i)$ методом наименьших квадратов (рисунок 4). Значения функции $\Phi_0(x_i)$ в пределах рабочей зоны должны находиться в пределах \pm 0,1°, в противном случае вышеизложенная процедура исключения линейного отклонения повторяется.

8.3.1.8 Установить сканер ЭМП в вертикальное положение.

Повторить измерения пп. 8.3.1.2-8.3.1.7, перемещая каретку сканера с антенной-зондом по координате y_i , провести вычисления зависимостей $A(y_i)$, $A_{\kappa}(y_i)$ и $\Phi(y_i)$.

8.3.1.9 Определить максимальную неравномерность пространственной зависимости амплитуды ΔA и фазы $\Delta \Phi$ на согласованной поляризации в пределах рабочих зон с размерами $\emptyset 2,4,\,\emptyset 1,8$ и $\emptyset 1,2$ м по следующим формулам (2)-(4):

$$\Delta A_{1} = \max \left[\max_{i} \left\{ A(x_{i}) \right\} - \min_{i} \left\{ A(x_{i}) \right\}; \max_{i} \left\{ A(y_{i}) \right\} - \min_{i} \left\{ A(y_{i}) \right\} \right]$$

$$\Delta \Phi_{1} = \max \left[\max_{i} \left\{ \Phi(x_{i}) \right\} - \min_{i} \left\{ \Phi(x_{i}) \right\}; \max_{i} \left\{ \Phi(y_{i}) \right\} - \min_{i} \left\{ \Phi(y_{i}) \right\} \right]$$

$$npu x_{i}, y_{i} \in \pm 1, 2 M$$
(2)

$$\Delta A_{2} = \max \left[\max_{i} \left\{ A(x_{i}) \right\} - \min_{i} \left\{ A(x_{i}) \right\}; \max_{i} \left\{ A(y_{i}) \right\} - \min_{i} \left\{ A(y_{i}) \right\} \right]$$

$$\Delta \Phi_{2} = \max \left[\max_{i} \left\{ \Phi(x_{i}) \right\} - \min_{i} \left\{ \Phi(x_{i}) \right\}; \max_{i} \left\{ \Phi(y_{i}) \right\} - \min_{i} \left\{ \Phi(y_{i}) \right\} \right]$$

$$npu x_{i}, y_{i} \in \pm 0, 9 M$$
(3)

$$\Delta A_{3} = \max \left[\max_{i} \left\{ A(x_{i}) \right\} - \min_{i} \left\{ A(x_{i}) \right\}; \max_{i} \left\{ A(y_{i}) \right\} - \min_{i} \left\{ A(y_{i}) \right\} \right]$$

$$\Delta \Phi_{3} = \max \left[\max_{i} \left\{ \Phi(x_{i}) \right\} - \min_{i} \left\{ \Phi(x_{i}) \right\}; \max_{i} \left\{ \Phi(y_{i}) \right\} - \min_{i} \left\{ \Phi(y_{i}) \right\} \right]$$

$$npu x_{i}, y_{i} \in \pm 0, 6 \text{ M}$$

$$(4)$$

где $A(x_i), A(y_i)$ – амплитуда ЭМП, дБ.

8.3.1.10 Определить относительный уровень кроссполяризации в пределах рабочих зон с размерами Ø2,4, Ø1,8 и Ø1,2 м по формулам (5) – (7):

$$K_{1} = \max \left[\max_{i} \left\{ A(x_{i}) - A_{\kappa}(x_{i}) \right\}; \max_{i} \left\{ A(y_{i}) - A_{\kappa}(y_{i}) \right\} \right]$$

$$npu x_{i}, y_{i} \in \pm 1, 2 M$$

$$K_{2} = \max \left[\max_{i} \left\{ A(x_{i}) - A_{\kappa}(x_{i}) \right\}; \max_{i} \left\{ A(y_{i}) - A_{\kappa}(y_{i}) \right\} \right]$$

$$npu x_{i}, y_{i} \in \pm 0, 9 M$$

$$K_{3} = \max \left[\max_{i} \left\{ A(x_{i}) - A_{\kappa}(x_{i}) \right\}; \max_{i} \left\{ A(y_{i}) - A_{\kappa}(y_{i}) \right\} \right]$$

$$npu x_{i}, y_{i} \in \pm 0, 6 M$$

$$r de A(x_{i}), A(y_{i}), A_{\kappa}(x_{i}), A_{\kappa}(y_{i}) - \text{амплитуда ЭМП, дБ.}$$

$$(5)$$

- 8.3.1.11 Провести измерения пп. 8.3.1.1-8.3.1.10 для всего рабочего диапазона путём поочерёдных измерений в диапазонах частот каждого облучателя коллиматора. Количество частот в пределах рабочего диапазона частот облучателя выбирать не менее двух.
- 8.3.1.12 Результаты поверки считать положительными, если неравномерность амплитудного и фазового распределений, относительный уровень кроссполяризационной составляющей электромагнитного поля в рабочей зоне в рабочем диапазоне частот не превышают значений, приведённых в таблице 5.

Таблица 5

Таблица 5	Значение характе-
Наименование характеристики	ристики
	phemin
Максимальный размер рабочей зоны, м	2,4
в горизонтальной плоскости	
в вертикальной плоскости	1,8
Неравномерность амплитудного распределения в пределах рабочей зоны	
в форме эллипса с размерами ^{1), 2)} , дБ, не более	
в диапазоне частот от 1,0 до 1,4 ГГц включ.	
2,4×1,8 M	1,5
1,8×1,35 M	1,0
1,2×0,9 M	0,8
в диапазоне частот свыше 1,4 ГГц	
2,4×1,8 м	1,0
1,8×1,35 M	0,6
1,2×0,9 м	0,5
Неравномерность фазового распределения в пределах рабочей зоны в	
форме эллипса с размерами ^{1), 2)} , не более	
2,4×1,8 м	20°
1,8×1,35 M	15°
1,0^1,0^1 M	<u> </u>

Наименование характеристики	Значение характе-
	ристики
1,2×0,9 м	10°
Относительный уровень кроссполяризационной составляющей в диапа-	
зоне частот ^{1), 2)} , дБ, не более	
в пределах рабочей зоны в форме эллипса с размерами 2,4×1,8 м	
от 1,0 до 4,9 ГГц включ.	-25
свыше 4,9 ГГц	-30
в пределах рабочей зоны в форме эллипса с размерами 1,8×1,35 м	
от 1,0 до 3,4 ГГц включ.	-25
свыше 3,4 до 4,9 ГГц включ.	-28
свыше 4,9 ГГц	-30
в пределах рабочей зоны в форме эллипса с размерами 1,2×0,9 м	
от 1,0 до 1,4 ГГц включ.	-25
свыше 1,4 до 3,9 ГГц включ.	-28
	-30
свыше 3,9 ГГц	1

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.2 Определение инструментальной погрешности измерений амплитуды и фазы диаграммы направленности

- 8.3.2.1 Подготовить комплекс для измерения диаграммы направленности в соответствии с РЭ.
- 8.3.2.2 Установить на ОПУ тестовую антенну, диапазон частот антенн выбирать в соответствии с диапазоном частот используемого облучателя согласно таблице 6.

Сориентировать тестовую антенну для работы на согласованной поляризации электромагнитного поля, электрическую ось антенны установить в направлении зеркала радиоколлиматора по максимуму принимаемого сигнала.

Измерения проводить в произвольной очерёдности для всех частотных диапазонов.

Таблица 6 – Порядок использования антенн

Номер измерений	Тип антенны	Диапазон частот, ГГц
1		от 1,0 до 1,7 включ.
2		от 1,7 до 2,6 включ.
3	П6-123	от 2,6 до 3,95 включ.
4		от 3,95 до 5,85 включ.

- 8.3.2.3 Подключить в СВЧ тракт комплекса программируемый аттенюатор 84908М.
- 8.3.2.4 Путём регулировки мощности источника сигнала, ширины полосы фильтра промежуточной частоты и количества усреднений приёмника сигнала добиться соотношения сигнал/шум не менее 60 дБ.

Измерения проводить не менее чем в трёх точках частотного диапазона каждого облучателя коллиматора.

- 8.3.2.5 Зафиксировать амплитуду $S_{xdB}(nf)$ измеряемого коэффициента передачи поочередно для ослаблений программируемого аттенюатора xdB=0, 5, 10, 15, 20, 25, 30, 35, 40 и 45 дБ.
- 8.3.2.6 Подключить аттенюатор к портам анализатора электрических цепей векторного ZVA50 используя фазостабильные кабельные сборки.

Установить частоты, соответствующие используемым при измерениях в п. 5.2.4. Параметры обзора установить такими, чтобы обеспечивалось соотношение сигнал/шум не менее 80 дБ.

Зафиксировать амплитуду $S^0_{xdB}(nf)$ измеряемого коэффициента передачи поочередно для ослаблений программируемого аттенюатора $xdB=0,\,5,\,10,\,15,\,20,\,25,\,30,\,35,\,40$ и 45 дБ.

8.3.2.7 Рассчитать инструментальную погрешность [дБ] измерения амплитуды диаграммы направленности в рабочей зоне коллиматора по формуле (8):

$$\delta S_{xdB}(nf) = \pm \left| \left\{ S_{xdB}(nf) - S_{0dB}(nf) \right\} - \left\{ S_{xdB}^{0}(nf) - S_{0dB}^{0}(nf) \right\} \right|, \tag{8}$$

где $S_{xdB}(nf)$ - результаты измерений амплитуды $S_{-5dB}(nf)$, $S_{-10dB}(nf)\dots S_{-45dB}(nf)$, дБ; $S_{xdB}^0(nf)$ - результаты измерений амплитуды $S_{-5dB}^0(nf)$, $S_{-10dB}^0(nf)\dots S_{-45dB}^0(nf)$, дБ.

8.3.2.8 Рассчитать инструментальную погрешность [°] измерения фазы диаграммы направленности в рабочей зоне коллиматора по формуле (9):

$$\Delta \varphi_{xdB}(nf) = \pm \arctan\left(10^{0.05\delta S_{xdB}(nf)} - 1\right). \tag{9}$$

- 8.3.2.9 Повторить пп. 8.3.2.2-8.3.2.8 для остальных диапазонов частот из таблицы 5.
- 8.3.2.10 Результаты поверки считать положительными, если значения инструментальных погрешностей измерений амплитуды и фазы диаграммы направленности в рабочей зоне коллиматора находятся в пределах, указанных в таблице 7.

Таблица 7. Инструментальные погрешности измерений амплитуды и фазы диаграммы направленности

Наименование характеристики	Значение характеристики
Пределы допускаемой инструментальной погрешности измерений ам-	
плитудной (фазовой) ДН ³⁾ , дБ, до уровня:	
минус 20 дБ включ.	±0,1 (±1,0°)
минус 25 дБ включ.	±0,2 (±1,4°)
минус 30 дБ включ.	±0,3 (±2,1°)
минус 35 дБ включ.	±0,5 (±3,4°)
минус 40 дБ включ.	±0,8 (±5,6°)
минус 45 дБ включ.	±1,0 (±7,0°)

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.3 Определение пределов допускаемой инструментальной погрешности измерений эффективной изотропно-излучаемой мощности

- 8.3.3.1 Подготовить комплекс к измерению ЭИИМ (потенциала) в соответствии с руководством по эксплуатации (перевести ВАЦ в режим измерений прямой мощности, загрузить данные о характеристиках используемого облучателя и тракта).
- 8.3.3.2 Отключить радиочастотный кабель от облучателя коллиматора и подключить через тройник к генератору СВЧ и преобразователю измерительному NRP-Z21 согласно схеме, приведённой на рис. 3.

8.3.3.3 Измерения проводить поочерёдно на трёх частотах для каждого облучателя коллиматора, включающих верхнюю, нижнюю и среднюю.

Установить на генераторе сигналов выходную мощность равную минус 30 дБ (мВт). Зафиксировать значение мощности, получаемое из показаний измерителя мощности NRP-Z21. Вычислить расчётный аналог измеряемого значения ЭИИМ по формуле (10):

$$PG_{2} = P_{2} + G + 20\lg(386f),$$
 (10)

где $P_{\mathfrak{I}}$ - показаний преобразователя измерительного NRP-Z21, дБ (Вт);

G - коэффициентов облучателя, взятый из соответствующего файла данных, дБ

f - частота, ГГц;

 $386 = \frac{4\pi R}{10^{-9}c}$ - константа, определяемая исходя из эквивалентного расстояния для коллиматора R = 9,22 м и скорости света c, $\Gamma\Gamma \Pi^{-1}$.

- 8.3.3.4 Зафиксировать значение ЭИИМ PG_{ν} , измеренное комплексом, дБ (Вт).
- 8.3.3.5 Пределы допускаемой инструментальной погрешности измерений ЭИИМ рассчитать по формуле (11):

$$\delta_{PG} = \pm 10 \lg \left(1 + \sqrt{0,0036 + \left(10^{0,1|PG_3 - PG_H|} - 1 \right)^2} \right), \tag{11}$$

где 0,0036 – слагаемое, величина которого обусловлена погрешностью преобразователя измерительного NRP-Z21.

8.3.3.6 Результаты поверки считать положительными, если допускаемая инструментальная погрешность измерений ЭИИМ находится в пределах $\pm 1,0$ дБ.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Комплекс признается годным, если в ходе поверки все результаты поверки положительные.
- 9.2 Результаты поверки удостоверяются свидетельством о поверке в соответствии с Приказом Министерства промышленности и торговли РФ от 02 июля 2015 г. № 1815.
- 9.3 Если по результатам поверки комплекс признан непригодным к применению, свидетельство о поверке аннулируется и выписывается извещение о непригодности к применению в соответствии с Приказом Министерства промышленности и торговли РФ от 02 июля 2015 г. № 1815.

Начальник НИО-1 ФГУП «ВНИИФТРИ»

Заместитель начальника НИО-1 ФГУП «ВНИИФТРИ» **О.В.** Каминский

А.В. Титаренко