Федеральное государственное унитарное предприятие «ЦЕНТРАЛЬНЫЙ АЭРОГИДРОДИНАМИЧЕСКИЙ ИНСТИТУТ имени профессора Н.Е. Жуковского» ФГУП «ПАГИ»

Государственная система обеспечения единства измерений

Весы аэродинамические внутримодельные шестикомпонентные тензометрические 6ТВ-300-1

МЕТОДИКА ПОВЕРКИ

МП 4.28.005-2017

Заместитель начальника НИО-7 А.И. Самойленко Начальник сектора № 3 НИО-7 С.В. Дыцков Инженер НИО-7 А.А. Колпаков Инженер НИО-7

разработана Настоящая методика В соответствии положениями межгосударственной РМГ 51-2002 рекомендации стандартизации ПО «Государственная система обеспечения единства измерений. Документы на методики поверки средств измерений. Основные положения», распространяется аэродинамические внутримодельные шестикомпонентные тензометрические 6ТВ-300-1 (далее – весы), предназначены для измерения сил и моментов сил действующих на модели летательных аппаратов или других объектов при проведении исследований в аэродинамических устанавливает методику первичной и периодической поверки весов.

Интервал между поверками – 12 месяцев.

1 Операции поверки

1.1 При проведении первичной и периодической поверки весов выполняют следующие операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование	Номер пункта	Проведение операции при		
	документа по	первичной	периодиче-	
операции	поверке	поверке	ской поверке	
Внешний осмотр	7.1	Да	Да	
Опробование	7.2	Да	Да	
Определение «нулевых» показаний весов	7.3	Да	Да	
Определение часового и температурного дрейфа показаний весов	7.4	Да	Нет	
Определение рабочего диапазона измерений по каждому измерительному каналу	7.5	Да	Нет	
Определение обращенных формул, абсолютной погрешности и СКО приведенной к размаху рабочего диапазона измерений абсолютной погрешности	7.6			
Определение обращенных формул весов	7.6.1	Да	Нет	
Определение абсолютной погрешности и СКО приведенной к размаху рабочего диапазона измерений абсолютной погрешности	7.6.2	Да	Да	
Определение деформационных характеристик весов	7.7	Да	Нет	

- 1.2 При получении отрицательного результата любой из операций по таблице 1 поверку весов рекомендуется прекратить; последующие операции поверки проводят, если отрицательный результат предыдущей операции не влияет на достоверность поверки последующего параметра.
- 1.3 По письменному заявлению владельца допускается поверять весы только по диапазонам и измерительным каналам, которые необходимы в процессе эксплуатации владельцу весов. При этом в протоколе и свидетельстве о поверке необходимо сделать соответствующую запись.

2 Средства поверки

2.1 При проведении поверки применяют средства поверки, указанные в таблице 2.

Таблица 2 – Средства поверки

Номер	Наименование и тип средства поверки; обозначение нормативного документа,
пункта	регламентирующего метрологические и основные технические характеристики
МП	средства поверки
7.3	
7.3	Усилитель измерительный MGCplus в комплектации с измерительным модулем ML38 (Госреестр № 19298-09):
	- количество измерительных каналов – 8;
	- напряжение питания моста -5 B;
	- диапазон измерения - \pm (0,25,1) мВ/В;
	- нелинейность — менее 0,002 %;
	- влияние изменения температуры окружающей среды на 10 °C:
	- на чувствительность не менее 0,002;
	- на точку нуля не менее 0,001.
7.4	Плита поверочная или разметочная по ГОСТ 10905-86, КТ не ниже 1
7.4	Испытательная камера КТХ-1000:
	- диапазон воспроизведения температуры от минус 70° до плюс 150°С;
	- абсолютная погрешность ±2,0°С.
	Плита поверочная или разметочная по ГОСТ 10905-86, КТ не ниже 1
	Усилитель измерительный MGCplus в комплектации с измерительным модулем ML38
7.5	(Γοсреестр № 19298-09)
7.5;	Стенд градуировочный шестикомпонентный 6ГС-20:
7.6.	- диапазон воспроизведения сил:
	вдоль оси ОХ (X) ± 5000 H;
	вдоль оси ОҮ (Ү) от минус 6000 до плюс 20000 Н;
	вдоль оси OZ (Z) ± 3000 H;
	- диапазон воспроизведения моментов сил:
	относительно оси ОХ (МХ) ± 1000 Н·м;
	относительно оси ОУ (МУ) ± 1500 Н·м;
	относительно оси OZ (MZ) ± 4000 H·м; - приведенная к верхней границе диапазона воспроизведения погрешность сил, не бо-
	лее, %:
	вдоль оси ОХ (X) ± 0,09;
	вдоль оси ОҮ (Y) ± 0,07, вдоль оси ОҮ (Y) ± 0,11;
	вдоль оси OZ (Z) ± 0,15;
	- приведенная к верхней границе диапазона воспроизведения погрешность моментов
	сил, не более:
	относительно оси ОХ (MX) \pm 0,08 %;
	относительно оси ОҮ (МҮ) ± 0,07 %;
	относительно оси OZ (MZ) ± 0,09 %;
	Усилитель измерительный MGCplus в комплектации с измерительным модулем ML38
	(Госреестр № 19298-09)
	Квадрант оптический КО-60 (Госреестр № 868-74):
	- диапазон измерений $\pm 120^{\circ}$;
	- абсолютная погрешность ± 30°°.
7.7	Стенд градуировочный шестикомпонентный 6ГС-20
'.'	Головка измерительная Digico 1 (Госреестр № 44272-10):
	- диапазон измерений от 0 до 30 мм;
	- абсолютная погрешность 2 мкм.
	Дальномер лазерный GLM 150 (Госреестр 44551-10):
	– Диапазон измерений от 0,05 до 150,00 м;
	– класс точности – 2.
L	1

7

Примечание - Допускается применять средства поверки, не приведенные в перечне, но обеспечивающие определение (контроль) метрологических характеристик поверяемых средств измерений с требуемой точностью.

3 Требования к квалификации поверителей

- 3.1 В качестве персонала, выполняющего поверку, допускаются лица с высшим образованием и (или) дополнительным профессиональным образованием в области обеспечения единства измерений в части проведения поверки (калибровки) средств измерений.
- 3.2 Персонал, выполняющий поверку, должен иметь опыт практической работы со средствами измерений механических величин.
- 3.3 К работам по поверке допускаются лица, ознакомившиеся с эксплуатационной документацией на весы и прошедшие инструктаж по технике безопасности и безопасной работе с электрооборудованием напряжением до 1000 В.

4 Требования по безопасности

- 4.1 Помещения, в которых располагаются весы, средства измерений и другие технические средства, должны соответствовать требованиям, изложенным в ПОТ РМ-016-2001.
- 4.2 При проведении поверки в помещении, где располагаются весы, средства измерений и другие технические средства, персоналу, участвующему в поверке надлежит соблюдать требования безопасности, указанные в следующих документах:
- эксплуатационная документация весов, используемого оборудования и средств поверки;
- инструкции по охране труда при эксплуатации ПЭВМ и другого оборудования вычислительной техники;
- Правила пожарной безопасности в РФ ППБ 01-03, утвержденные приказом от 18 июня 2003 года № 313.

5 Условия поверки

5.1 При проведении поверки должны соблюдаться следующие условия:

Температура воздуха, °С	от 18 до 22
Изменение температуры в течение 0,5 часа, °С	не более 0,1
Относительная влажность воздуха, %	от 30 до 80
Атмосферное давление, кПа	от 98,3 до 104,3
Напряжение сети переменного тока, В	от 209 до 231
Частота сети, Гц	50 ± 10

5.2 Воздух в помещении не должен содержать вредных примесей и газов, вызывающих коррозию элементов весов.

A

6 Подготовка к поверке

Перед выполнением поверки должны быть выполнены следующие подготовительные работы:

- 6.1 Проверить наличие всех деталей и узлов, необходимых для установки весов на стенд и базового устройства.
- 6.2 Выдержать весы и средства поверки в помещении, где будут производиться поверка, не менее 12 часов.
- 6.3 Произвести замеры сопротивления изоляции весов и соединительных кабелей. Значение по каждому измерению не должно превышать 5ГОм.
- 6.4 Весы должны быть подлечены к номинальному напряжению питания постоянного тока не менее чем за 30 минут до начала проведения поверки.

7 Проведение поверки

7.1 Внешний осмотр

7.1.1 Внешний осмотр проводится путем наружного осмотра без применения дополнительных средств.

При внешнем осмотре весов проверяют:

- комплектность и маркировку весов на соответствие эксплуатационной документации;
 - отсутствие механических повреждений и коррозии на конструкции весов;
- отсутствие забоин, трещин, царапин и других дефектов, влияющих на эксплуатационные качества.

7.2 Опробование

- 7.2.1 При опробовании весы размещают на поверочной или разметочной плите.
- 7.2.2 Подключить кабель весов к усилителю измерительному MGCplus согласно СФЦА.467239.015 Э4 «Элемент тензометрический. Схема электрических соединений».
- 7.2.3 Включить ML38 и прогреть в течении 30 минут. В настройках ML38 установить требуемое напряжение питания весов 5 В и сверить нулевые сигналы измерительных тензомостов. Допустимое отклонение $\pm 0,2$ мВ/В.
- 7.2.4 После 30 мин прогрева весов и измерительной аппаратуры, выполнить однократною нагрузку ладонью руки по каждому из компонентов, проверить наличие сигналов по каждому измерительному каналу.
 - 7.3 Определение «нулевых» показаний весов.

Определение «нулевых» показаний в проводят с помощью усилителя измерительного MGCPlus в комплекте с измерительным модулем ML38 (далее - ML38).

Весы разместить на поверочной или разметочной плите. Весы не должны подвергаться механическим воздействиям.

_

Подключить кабель весов к ML38 согласно СФЦА.467239.015 Э4 «Элемент тензометрический. Схема электрических соединений». В настройках ML38 установить напряжение питания весов 5 В.

Прогреть 30 мин.

Для определения «нулевых» показаний весов выполнить однократное считывание сигналов по каждому измерительному каналу, данные занести в протокол.

7.4 Определение часового и температурного дрейфа показаний весов

Для определения часового дрейфа выполнять отсчеты в течение одного часа, причем первые 20 минут отсчеты регистрировать через 5 минут, затем через 10-15 мин.

Определить величину часового временного дрейфа измерительных каналов за последние 30 минут. Результат привести к временному интервалу в один час.

Результаты поверки считаются положительными, если значения часового дрейфа сигналов по каждому измерительному каналу не превысит 10 мкВ/час.

Для определения температурного дрейфа установить весы в климатическую камеру. Время выдержки на каждой ступени нагрева должно быть не менее 1 часа. Шаг температуры нагрева не должен превышать 10 °C, количество степеней не менее 4, верхний предел температуры нагрева должен быть не менее 50 °C. На каждой ступени нагрева фиксировать значения показаний измерительных каналов.

7.5 Определение рабочего диапазона измерений по каждому измерительному каналу

Определение рабочего диапазона измерений по каждому измерительному каналу проводится с помощью стенда градуировочного шестикомпонентного $6\Gamma \text{C}$ -20 (далее – $6\Gamma \text{C}$ -20), ML38 и квадранта оптического КО-60.

С использованием переходных приспособлений установить весы на 6ГС-20, контролируя показания по каждому измерительному каналу. Показания не должны превышать 10 мВ (напряжение питания 5 В).

Установка на стенд весов должна обеспечивать приложение нагрузок в начале координат весов («Весы аэродинамические внутримодельные шести-компонентные тензометрические. Формуляр» СФЦА.467239.015 ФО п. 3.3).

Квадрант оптический КО-60 установить на специально отведенное место установочного приспособления. Выставить весы в горизонтальное положение. Отклонение от горизонтального положения не должно превышать $\pm 1^{\circ}$.

Для определения рабочего диапазона измерений по каждому измерительному каналу выполнить следующую последовательность изолированных нагружений с фиксацией показаний в протоколе:

силы вдоль оси ОХ (Х)

силы вдоль оси ОҮ

силы вдоль оси OZ
(Z)

Нагружение № 1		
№ п/п	Н	
1	0	
2	150	
3	300	

Нагружение № 2		
№ п/п Н		
1	0	
2	1000	
3	2000	

Нагружение № 3			
№ п/п	Н		
1	0		
2	230		
3	450		

4	490	4	2941	4	700
5	300	5	2000	5	450
6	150	6	1000	6	230
7	0	7	0	7	0
8	-150	8	-1000	8	-230
9	-300	9	-2000	9	-450
10	-490	10	-2941	10	-700
11	-300	11	-2000	11	-450
12	-150	12	-1000	12	-230
13	0	13	0	13	0

момента силы относительно оси ОХ (МХ)

тельно оси ОХ (МХ)			
Нагружение № 4			
№ п/п	Н∙м		
1	0		
2	100		
3	200		
4	294		
5	200		
6	100		
7	0		
8	-100		
9	-200		
10	-294		
11	-200		
12	-100		
13	0		

момента силы относительно оси ОУ (МУ)

Нагружение № 5		
№ п/п	Н∙м	
1	0	
2	60	
3	120	
4	196	
5	120	
6	60	
7	0	
8	-60	
9	-120	
10	-196	
11	-120	
12	-60	
13	0	

момента силы относительно оси OZ (MZ)

Нагружение № 6			
№ п/п	Н∙м		
1	0		
2	160		
3	320		
4	490		
5	320		
6	160		
7	0		
8	-160		
9	-320		
10	-490		
11	-320		
12	-160		
13	0		

Примечание: допускаемое отклонение задания силы на каждой ступени нагружения, не более $-50~\rm H$; допускаемое отклонение задания момента силы на каждой ступени нагружения, не более $-20~\rm H\cdot m$.

Превышение верхней границы диапазона измерений силы весов более чем на 10 H не допускается.

Превышение верхней границы диапазона измерений моментов силы весов более чем на 7 H не допускается.

7.6 Определение обращенных формул, абсолютной погрешности и СКО приведенной к размаху рабочего диапазона измерений абсолютной погрешности

Выполнить подготовительные операции согласно п. 7.5.

7.6.1 Определение обращенных формул весов

Выполнить изолированные нагружения в объеме 7.6 Если п. 7.6 был выполнен ранее, то допускается использовать полученные ранее данные. Данные занести в протокол.

Выполнить нагружения с подгрузкой в следующей последовательности:

- канал измерения силы вдоль оси ОҮ

Нагружение № 7			
Y,H	Z, H		
0	0		
0	690		
1370	690		
2750	690		
1370	690		
0	690		
-1370	690		
-2750	690		
-1370	690		
0	690		
0	0		

Нагруж	Нагружение № 8		Нагружение № 9			
Y,H	-Z, H		Y, H +Mx,			
0	0		0	0		
0	-690		0	310		
1370	-690		1370	310		
2750	-690		2750	310		
1370	-690		1370	310		
0	-690		0	310		
-1370	-690		-1370	310		
-2750	-690		-2750	310		
-1370	-690		-1370	310		
0	-690		0	310		
0	0		0	0		

Нагружение № 10	
Y,H	-Мх, Нм
0	0
0	-310
1370	-310
2750	-310
1370	-310
0	-310
-1370	-310
-2750	-310
-1370	-310
0	-310
0	0

Нагружение № 11	
Y , H	+Му, Нм
0	0
0	190
1370	190
2750	190
1370	190
0	190
-1370	190
-2750	190
-1370	190
0	190
0	0

Нагружение № 12	
Y,H	-Му, Нм
0	0
0	-190
1370	-190
2750	-190
1370	-190
0	-190
-1370	-190
-2750	-190
-1370	-190
0	-190
0	0

Нагружение № 13	
Y , H	+Mz, Нм
0	0
0	482
1370	482
2750	482
1370	482
0	482
-1370	482
-2750	482
-1370	482
0	482
0	0

Нагружение № 14	
-Mz, Hм	
0	
-480	
-480	
-480	
-480	
-480	
-480	
-480	
-480	
-480	
0	

Нагружение № 15	
Y,H	+X , H
0	0
0	-440
1370	-440
2750	-440
1370	-440
0	-440
-1370	-440
-2750	-440
-1370	-440
0	-440
0	0

Нагружение № 16	
Y,H	"-X , H
0	0
0	444
1370	440
2750	440
1370	440
0	440
-1370	440
-2750	440
-1370	440
0	440
0	0

- канал измерения силы вдоль оси ОХ

Нагружение № 17	
Z, H	+Мх, Нм
0	0
0	310
350	310
690	310
350	310
0	310
-350	310
-690	310
-350	310
0	310
0	0

Нагружение № 18	
Z, H	-Мх, Нм
0	0
0	-310
350	-310
690	-310
350	-310
0	-310
-350	-310
-690	-310
-350	-310
0	-310
0_	0

Нагружение № 19	
Z, H	+Му, Нм
0	0
0	190
350	190
690	190
350	190
0	190
-350	190
-690	190
-350	190
0	190
0	0

Нагружение № 20	
Z, H	-Му, Нм
0	0
0	-190
350	-190
690	-190
350	-190
0	-190
-350	-190
-690	-190
-350	-190
0	-190
0	0

Нагружение № 21	
Z, H	+Mz, Hm
0	0
0	482
350	482
690	482
350	482
0	482
-350	482
-690	482
-350	482
0	482
0	0

Нагружение № 22	
Z, H	-Mz, Hм
0	0
0	-480
350	-480
690	-480
350	-480
0	-480
-350	-480
-690	-480
-350	-480
0	-480
0	0

Нагружение № 23	
Z, H	"+X , H
0	0
0	-440
350	-440
690	-440
350	-440
0	-440
-350	-440
-690	-440
-350	-440
0	-440
0	0

Нагружение № 24	
Z, H	"-X , H
0	0
0	444
350	440
690	440
350	440
0	440
-350	440
-690	440
-350	440
0	440
0	0

- канал измерения момента силы относительно оси ОХ (МХ)

Нагружение № 25	
Мх, Нм	+Му, Нм
0	0
0	190
20	190
30	190
20	190
0	190
-20	190
-30	190
-20	190
0	190
0	0

Нагруже	Нагружение № 26	
Мх, Нм	-Му, Нм	
0	0	
0	-190	
20	-190	
30	-190	
20	-190	
0	-190	
-20	-190	
-30	-190	
-20	-190	
0	-190	
0	0	

Нагружение № 27	
Мх, Нм	+Mz, Hm
0	0
0	482
20	482
30	482
20	482
0	482
-20	482
-30	482
-20	482
0	482
0	0

Нагружение № 28	
Мх, Нм	-Mz, Hm
0	0
0	-480
20	-480
30	-480
20	-480
0	-480
-20	-480
-30	-480
-20	-480
0	-480
0	0

Нагружение № 29	
Мх, Нм	''+X , H
0	0
0	-440
20	-440
30	-440
20	-440
0	-440
-20	-440
-30	-440
-20	-440
0	-440
0	0

Нагружение № 30	
Мх, Нм	"-Х,Н
0	0
0	444
20	440
30	440
20	440
0	440
-20	440
-30	440
-20	440
0	440
0	0

- канал измерения момента силы относительно оси ОУ (МУ)

Нагружение № 31	
Му, Нм	+Mz, Hm
0	0
0	482
90	482
190	482
90	482
0	482
-90	482
-190	482
-90	482
0	482
0	0

Нагружение № 32	
Му, Нм	-Мz, Нм
0	0
0	-480
90	-480
190	-480
90	-480
0	-480
-90	-480
-190	-480
-90	-480
0	-480
0	0

Нагружение № 33	
Му, Нм	+X, H
0	0
0	-440
90	-440
190	-440
90	-440
0	-440
-90	-440
-190	-440
-90	-440
0	-440
0	0

Нагружение № 34				
Му, Нм	-X, H			
0	0			
0	444			
90	440			
190	440			
90	440			
0	440			
-90	440			
-190	440			
-90	440			
0	440			
0	0			

- канал измерения момента силы относительно оси OZ (MZ)

Нагружение № 35				
Мz, Нм	+X, H			
0	0			
0	-440			
110	-440			
220	-440			
110	-440			
0	-440			
-110	-440			
-220	-440			
-110	-440			
0	-440			
0	0			

Нагружение № 36				
Мz, Нм	-Х, Н			
0	0			
0	444			
110	440			
220	440			
110	440 440			
0				
-110	440			
-220	440			
-110	440			
0	440			
0	0			

На основании полученных данных рассчитываются обращенные формулы весов, которые используются для определения нагрузок, действующих на весы по измеряемым сигналам:

$$X_{j} = \sum_{i=1}^{n} B_{j,i} N_{i} + \sum_{i=1}^{n} B_{j,ii} N_{i}^{2} + \sum_{p=1}^{n-1} \sum_{q=p+1}^{n} B_{j,pq} N_{p} N_{q}, \quad (1)$$

где N_i – сигналы i–го компонента, мB, $U_{\text{пит}}=10 \text{ B}$; i=1,2, ,6;

 $N_1=N_X$, $N_2=(N_{M11}+N_{M12})/2$, $N_3=(N_{M21}-N_{M22})/2$,

 $N_4=N_{Mx}, N_5=(N_{M21}+N_{M22})/2, N_6=(N_{M12}-N_{M11})/2;$

 X_j – нагрузки j–го компонента, H и Hм;

 $B_{j,i}$, $B_{j,ii}$, $B_{j,pq}$ - коэффициенты при сигналах каналов $N_i,\ ,N_i{}^2$, $N_p{}^*N_q$;

n – количество компонентов весов.

Полученные обращенные формулы весов занести в формуляр.

7.6.2 Определение абсолютной погрешности и СКО приведенной к размаху рабочего диапазона измерений абсолютной погрешности

Провести контрольные нагружения по следующему плану:

Нагружение №37					
X, H	Y, H	Z, H	Мх, Нм	Му, Нм	Mz, Hm
0	0	0	0	0	0
-220	0	0	0	0	0
-220	410	0	0	0	0
-220	410	560	0	0	0
-220	410	560	890	0	0
-220	410	560	890	560	0
-220	410	560	890	560	300
-220	410	560	890	560	0
-220	410	560	890	0	0
-220	410	560	0	0	0
-220	410	0	0	0	0
-220	0	0	0	0	0
0	0	0	0	0	0

	Нагружение № 38					
X, H	Y, H	Z, H	Мх, Нм	Му, Нм	Мz, Нм	
0	0	0	0	0	0	
220	0	0	0	0	0	
220	-410	0	0	0	0	
220	-410	-560	0	0	0	
220	-410	-560	-890	0	0	
220	-410	-560	-890	-560	0	
220	-410	-560	-890	-560	-300	

220	-410	-560	-890	-560	0
220	-410	-560	-890	0	0
220	-410	-560	0	0	0
220	-410	0	0	0	0
220	0	0	0	0	0
0	0	0	0	0	0

	Нагружение № 39					
X, H	Y, H	Z, H	Мх, Нм	Му, Нм	Mz, Hm	
0	0	0	0	0	0	
-110	0	0	0	0	0	
-110	190	0	0	0	0	
-110	190	300	0	0	0	
-110	190	300	440	0	0	
-110	190	300	440	300	0	
-110	190	300	440	300	150	
-110	190	300	440	300	0	
-110	190	300	440	0	0	
-110	190	300	0	0	0	
-110	190	0	0	0	0	
-110	0	0	0	0	0	
0	0	0	0	0	0	

	Нагружение № 40					
X, H	Y, H	Z, H	Мх, Нм	Му, Нм	Мz, Нм	
0	0	0	0	0	0	
110	0	0	0	0	0	
110	-190	0	0	0	0	
110	-190	-300	0	0	0	
110	-190	-300	-440	0	0	
110	-190	-300	-440	-300	0	
110	-190	-300	-440	-300	-150	
110	-190	-300	-440	-300	0	
110	-190	-300	-440	0	0	
110	-190	-300	0	0	0	
110	-190	0	0	0	0	
110	0	0	0	0	0	
0	0	0	0	0	0	

Абсолютную погрешность измерений для каждой ступени нагружения определять как разность между результатом измерения и заданным с помощью 6ГС-20 действительным значением силы или момента силы по формуле 2.

$$\Delta j_i = (Xj_i - Xj\mathfrak{s}_i), (2)$$

где

і – порядковый номер измерения;

j – измерительный канал (X, Y, Z, MX, MY, MZ);

 Δj_i – абсолютная погрешность весов;

 I_i – действительный размер измерительного интервала штриховой меры, мм;

 X_{j_i} – результат измерения j-го компонента на i-й ступени нагружения;

 X_{j} э $_{i}$ - заданное с помощью эталона значение j-го компонента на i-й ступени нагружения.

СКО приведенной к размаху рабочего диапазона измерений абсолютной погрешности для каждой ступени определять по формуле 3.

$$\sigma j_i = \frac{\Delta j_i}{X_{max}} , (3)$$

где

 $X_{\text{мах}}$ — размах диапазона измерений;

 σj_i - приведенная к размаху рабочего диапазона измерений погрешность.

Абсолютная погрешность измерений весов по каждой из компонент не должна превышать:

- силы вдоль оси $OX(X) \pm 9 H$;
- силы вдоль оси ОУ (Y) \pm 45 H;
- силы вдоль оси OZ (Z) \pm 9 H;
- момента силы относительно оси $OX(MX) \pm 3 H \cdot M$;
- момента силы относительно оси OY (MY) \pm 2 H·м;
- момента силы относительно оси OZ (MZ) \pm 7 H·м.

7.7 Определение деформационных характеристик весов

Для измерения деформационных характеристик весов от действия нагрузок по компонентам Y, MX и MZ:

- установить оптический квадрант на установочный столик совместив ось чувствительности квадранта с направлением углового перемещения весов;
 - зарегистрировать показания квадранта;
- задать нагрузку по соответствующей компоненте в рабочем диапазоне измерений не менее чем в 3 равномерно распределенных по диапазону измерений точках;
 - на каждой ступени нагружения зарегистрировать показания квадранта.

Результатом измерений угла деформации весов являются показания квадранта.

Для измерения деформационных характеристик весов от действия нагрузок по компонентам Z, MY:

- установить на жестких устойчивых опорах две головки измерительные Digico 1, используя в качестве базовой поверхности поверхность весов;

- отрегулировать показания головок измерительных Digico 1 в середине диапазона измерений;
 - зарегистрировать показания головок измерительных Digico 1;
- задать нагрузку по соответствующей компоненте в рабочем диапазоне измерений не менее чем в 3 равномерно распределенных по диапазону измерений точках;
 - на каждой ступени нагружения зарегистрировать показания квадранта.

Угол деформации весов определять как отношение разности показаний головок измерительных Digico 1 к расстоянию между точками измерения (контактами наконечников головок измерительных Digico 1). Расстояние между точками измерений измерить с помощью дальномера лазерного GLM 150.

8 Оформление результатов поверки.

Результаты поверки оформляют в соответствии с установленными требованиями:

- при положительных результатах поверки оформляют свидетельство о поверке. В формуляре вносится соответствующая запись. Знак поверки наносится на свидетельство о поверке в виде оттиска клейма.
 - при отрицательных извещение о непригодности.

Результаты поверки заносят в протокол. Протокол оформляется в произвольной форме.