Государственная система обеспечения единства измерений

Акционерное общество «Приборы, Сервис, Торговля» (АО «ПриСТ»)

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ОСЦИЛЛОГРАФЫ ЦИФРОВЫЕ ЗАПОМИНАЮЩИЕ СЕРИИ WaveSurfer 3000zR

МЕТОДИКА ПОВЕРКИ ПР-22-2018МП

ВВЕДЕНИЕ

Настоящая методика устанавливает методы и средства первичной и периодических поверок осциллографов цифровых запоминающих серии WaveSurfer 3000zR, изготавливаемых «Teledyne LeCroy, Inc.», США.

Осциллографы цифровые запоминающие серии WaveSurfer 3000zR (далее по тексту – осциллографы) предназначены для исследования формы и измерения амплитудных и временных параметров электрических сигналов.

Межповерочный интервал 1 год.

Периодическая поверка осциллографов в случае их использования для измерений (воспроизведения) меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» описания типа, допускается на основании письменного заявления владельца измерителей, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке приборов.

1 ОПЕРАЦИИ ПОВЕРКИ

Таблица 1 – Операции поверки

1 аолица 1 — Операции поверки				
	Номер пункта	Проведение операции при		
Наименование операции	методики	первичной	периодической	
	поверки	поверке	поверке	
1 Внешний осмотр	7.1	Да	Да	
2 Опробование	7.2	Да	Да	
3 Проверка идентификационных данных программного обеспечения	7.3	Да	Да	
4 Определение сопротивления входных каналов осциллографа	7.4	Да	Да	
5 Определение абсолютной погрешности измерения напряжения постоянного тока	7.5	Да	Да	
6 Определение абсолютной погрешности измерения напряжения тока методом смещения.	7.6	Да	Да	
7 Определение ширины полосы пропускания	7.7	Да	Да	
8 Определение времени нарастания переходной характеристики	7.8	Да	Да	
9 Определение относительной погрешности частоты внутреннего опорного генератора	7.9	Да	Да	
10 Определение абсолютной погрешности установки уровня срабатывания цифрового логического анализатора (только для модификаций с логическим анализатором)	7.10	Да	Да	

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки должны применяться средства поверки, перечисленные в таблицах 2 и 3.
- 2.2 Допускается применять другие средства поверки, обеспечивающие измерение значений соответствующих величин с требуемой точностью.
- 2.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

Таблица 2 – Средства поверки

Номер	Тип средства поверки
пункта МП	-
	Калибратор осциллографов Fluke 9500B. Диапазон измерений сопротивления от
7.4	10 Ом до 12 МОм. Относительная погрешность измерения сопротивления от
	±0,1 до ±0,5 %
7.5	Калибратор осциллографов Fluke 9500В. Диапазон выходного напряжения по-
7.5	стоянного тока от 1 мВ до 5 В на нагрузке 50 Ом, от 1 мВ до 200 В на нагрузке
7.6	1 МОм. Пределы допускаемой абсолютной погрешности воспроизведения
7.0	напряжения постоянного тока $\pm (0,00025$ Uвых $+ 25$ мкВ).
7.7	Калибратор осциллографов Fluke 9500B. Пределы допускаемой относительной
7.7	погрешности установки частоты генератора ±2,5·10 ⁻⁷ .
7.0	Калибратор осциллографов Fluke 9500B с формирователем 9530. Время нараста-
7.8	ния не более 150 пс.
7.0	Калибратор осциллографов Fluke 9500В. Пределы допускаемой относительной
7.9	погрешности установки частоты генератора ±2,5·10 ⁻⁷ .
	Калибратор осциллографов Fluke 9500B. Диапазон установки напряжения по-
7.10	стоянного тока от 0 до 200 В на нагрузке 1 МОм. Пределы допускаемой абсо-
7.10	лютной погрешности воспроизведения напряжения постоянного тока
	$\pm (0.00025 \text{U}_{\text{BMX}} + 25 \text{ MkB}).$

Таблица 3 – Вспомогательные средства поверки

Измеряемая величина	Диапазон измерений	Класс точности, погрешность	Тип средства поверки
Температура	от 0 до 50 °C.	±0,25 °C	Цифровой термометр- гигрометр Fluke 1620A
Давление	от 30 до 120 кПа	±300 Па	Манометр абсолютного давления Testo 511
Влажность	от 10 до 100 %	±2 %	Цифровой термометр- гигрометр Fluke 1620A

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке допускаются лица, изучившие эксплуатационную документацию на поверяемые средства измерений, эксплуатационную документацию на средства поверки и соответствующие требованиям к поверителям средств измерений согласно ГОСТ Р 56069-2014.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования ГОСТ 12.27.0-75, ГОСТ 12.3.019-80, ГОСТ 12.27.7-75, требованиями правил по охране труда при эксплуатации электроустановок, утвержденных приказом Министерства труда и социальной защиты Российской Федерации от 24 июля 2013 г № 328H.
- 4.2 Средства поверки, вспомогательные средства поверки и оборудование должны соответствовать требованиям безопасности, изложенным в руководствах по их эксплуатации.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха (23±5) °C;
- относительная влажность, не более 80 %;
- атмосферное давление от 84 до 106 кПа или от 630 до 795 мм рт. ст./

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.27.0-75;
- проверить наличие действующих свидетельств поверки на основные и вспомогательные средства поверки.
- 6.2 Средства поверки и поверяемый прибор должны быть подготовлены к работе согласно их руководствам по эксплуатации.
- 6.3 Проверено наличие удостоверения у поверителя на право работы на электроустановках с напряжением до 1000 В с группой допуска не ниже III.
- 6.4 Контроль условий проведения поверки по пункту 5 должен быть проведен перед началом поверки.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр.

Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие поверяемого прибора следующим требованиям:

- не должно быть механических повреждений корпуса. Все надписи должны быть четкими и ясными:
- все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемый прибор бракуется и подлежит ремонту.

7.2 Опробование.

Опробование осциллографов проводят путем проверки их на функционирование в соответствии с руководством по эксплуатации.

При отрицательном результате проверки прибор бракуется и направляется в ремонт.

7.3 Проверка идентификационных данных программного обеспечения.

Проверка программного обеспечения осциллографов осуществляется путем вывода на дисплей прибора информации о версии программного обеспечения. Вывод системной информации осуществляется по процедуре, описанной в руководстве по эксплуатации на осциллограф.

Результат считать положительным, если версия программного обеспечения соответствует данным, приведенным в таблице 4.

Таблица 4 – Характеристики программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Teledyne LeCroy MAUI™
Номер версии (идентификационный номер ПО)	не ниже 8.5.0.0

7.4 Определение сопротивления входных каналов осциллографа

Определение сопротивления входных каналов осциллографа проводить методом прямого измерения сопротивления калибратором осциллографов Fluke 9500B в следующей последовательности:

- 7.4.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.4.2 На калибраторе установить режим измерения сопротивления.
- 7.4.3 Включить осциллограф и выполнить сброс на заводские настройки согласно инструкции по эксплуатации.
- 7.4.4 В меню осциллографа «Утилиты» в разделе «Калибровка» установить режим «Динамическая калибровка».
- 7.4.5 Провести измерения сопротивления входа осциллографа при настройках, приведенных в таблице 5.
 - 7.4.6 Провести измерения по п.п. 7.4.1 7.4.5 для каждого канала осциллографа.
- 7.4.7 Определить отклонение сопротивления входных каналов осциллографа от номинального значения Δ_R по формуле (1):

$$\Delta_{R} = R_{\text{H3M}} - R_{\text{HOM}} \tag{1}$$

где: $R_{\text{изм}}$ — значение сопротивления входного канала, измеренное калибратором осциллографов Fluke 9500B, Ом;

R_{ном} – значение сопротивления входного канала, установленного в осциллографе, Ом.

Таблица 5 – Определение отклонения сопротивления входных каналов осциллографа от номинальных значений

пальпь	іх значении				
Номер канала	Установленный коэффициент от-клонения, мВ/дел.	Номинальное значение входного сопротивления, Ом	Измеренное значение входного сопротивления, Ом	Отклонение от номинального значения сопротивления, Ом	Допустимое от- клонение от но- минального со- противления, Ом
1	50 200	50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	±1
1	50 200	1·10 ⁶			±2·10 ⁴
	50 200	50			±1
2	50 200	1.106			±2·10 ⁴
	50 200	50			±1
3	50 200	1.106			±2·10 ⁴
4	50 200	50			±1
4	50 200	1·10 ⁶			±2·10 ⁴

Результаты поверки считать положительными, если отклонение сопротивления входных каналов осциллографа не превышает пределов, приведенных в таблице 5.

7.5 Определение абсолютной погрешности измерения напряжения постоянного тока

Определение погрешности измерения напряжения проводить с помощью калибратора осциллографов Fluke 9500B с использованием формирователя 9530.

- 7.5.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.5.2 Органы управления осциллографа установить в следующие положения:
- канал 1 Включен, связь входа DC 50 Ом, ограничение полосы пропускания $20~\mathrm{MFu}$;
 - режим «Динамическая калибровка» включен;
 - синхронизация: режим Авто;
 - режим измерения Среднее значение, статистика измерений включена;
 - коэффициент отклонения устанавливается из таблицы 6;
- 7.5.3 Для получения результата измерения на передней панели нажать «Очистить статистику» и произвести считывание среднего значения результата измерения при числе измерений не менее 50.
- 7.5.4 Измерения провести при значениях коэффициента отклонения, входного сопротивления, выходного напряжения с калибратора, указанных в таблице 6.
 - 7.5.5 Повторить измерения по п.п. 7.5.1 7.5.4 для остальных каналов осциллографа.
- 7.5.6 Провести измерения по п.п. 7.5.1 7.5.5 при входном сопротивлении каналов 1 МОм.

Таблица 6 – Определение абсолютной погрешности измерения напряжения постоянного тока

Коэффициент отклонения		Выходное напряжение	Пределы допускаемой абсолютной
R _{вх} =50 Ом	R _{BX} =1 MO _M	с калибратора, В	погрешности измерения постоянного напряжения, В
1	2	3	4
2 мВ/дел	2 мВ/дел	+0,006	±0,0014
2 мы/дел	2 мыдел	-0,006	10,0014
5 мВ/дел	5 мВ/дел	+0,015	±0,002
3 мы/дел	э мыдел	-0,015	±0,002
10 мВ/дел	10 мВ/дел	+0,030	+0.0022
то мь/дел	то мь/дел	-0,030	±0,0022
20 MP/man	20 мВ/дел	+0,06	+0.0024
20 мВ/дел	20 мб/дел	-0,06	±0,0034
50 xD/===	50 мВ/дел	+0,15	+0.007
50 мВ/дел		-0,15	±0,007
100 x D/	100xD/===	+0,300	+0.012
100 мВ/дел	100мВ/дел	-0,300	±0,013
200D/	200D/=-=	+0,600	+0.025
200 мВ/дел	200 мВ/дел	-0,600	±0,025
500мВ/дел	500мВ/дел	+1,5	±0,061
эоомь/дел	эоомы/дел	-1,5	±0,001
1 В/дел	1 В/дел	+3,0	±0,121
т Б/дел	т Б/дел	-3,0	10,121
	2 В/дел	+6,0	±0,241
-	<i>2</i> В/дел	-6,0	

Продолжение таблицы 6

1	2	3	4
May even o	5 D/	+15	10.601
-	5 В/дел	-15	±0,601
	10 D/	+30,0	11 201
-	10 В/дел	-30,0	±1,201

Результаты поверки считать положительными, если полученные значения погрешностей не превышают пределов допускаемой абсолютной погрешности, приведенных в таблице 6.

7.6 Определение абсолютной погрешности измерения напряжения постоянного тока методом смещения

Определение абсолютной погрешности измерения напряжения постоянного тока методом смещения проводить с помощью калибратора осциллографов Fluke 9500B с использованием формирователя 9530.

- 7.6.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.6.2 Органы управления осциллографа установить в следующие положения:
- канал 1 Включен, связь входа DC 50 Ом, ограничение полосы пропускания $20~\mathrm{M}\Gamma\mathrm{u}$;
 - синхронизация: тип режим Авто;
 - режим «Динамическая калибровка» включен;
 - режим измерения Среднее значение, статистика измерений включена;
 - коэффициент отклонения устанавливается из таблицы 7.
- 7.6.3 Регулятором «Смещение» установить сигнал по центральной горизонтальной линии осциллографа.
- 7.6.4 Подать напряжение положительной полярности (U+), значение которого приведено в таблице 7, с калибратора на вход канала 1 осциллографа. Значение напряжения не должно превышать максимально допустимый уровень на входе осциллографа.
- 7.6.5. Произвести установку напряжения смещения, равного по величине выходному напряжению калибратора, но имеющему противоположный знак.
- 7.6.6 Произвести измерения заданного постоянного уровня с калибратора при помощи автоматических измерений осциллографа.
- 7.6.7 Определить абсолютную погрешность измерения постоянного напряжения со смещением по формуле (2):

 $\Delta = |\mathbf{U}_{\mathsf{H3M}}| - |\mathbf{U}_{\mathsf{K}}| \tag{2}$

где $U_{\text{изм}}$ – значение напряжения, измеренное поверяемым осциллографом, B; U_{κ} – значение напряжения, установленное на калибраторе, B.

- 7.6.8 Провести измерения по п. 7.6.1-7.6.7 при остальных значениях коэффициента отклонения и значениях уровня постоянного напряжения, включая отрицательные значения, указанных в таблице 7.
- 7.6.9 Провести измерения по п.п. 7.6.1 7.6.8 для остальных каналов осциллографа. При этом неиспользуемые каналы должны быть отключены.
- 7.6.10 Провести измерения по п.п. 7.6.1 7.6.9 при входном сопротивлении каналов 1 МОм.

Таблица 7 - Определение абсолютной погрешности измерения напряжения постоянного тока

методом смещения

Коэффициен				Коэффициент отклонения		емой абсолютной
	юграфа	постоянного напряжения		погрешности измерения		
	• •	с калибратора, В		постоянного	смещения, В	
R _{вх} =50 Ом	R _{BX} =1 MOM	R _{вх} =50 Ом	R _{BX} =1 MOM	$R_{BX}=50 \text{ OM}$	$R_{BX}=1$ MOM	
2 мВ/дел	2 мВ/дел	±0,5	±0,5	±0,00624	±0,00624	
5 мВ/дел	5 мВ/дел	±1,4	±1,4	±0,0156	±0,0156	
10 мВ/дел	10 мВ/дел	±2,0	±2,0	±0,0222	±0,0222	
20 мВ/дел	20 мВ/дел	±4	±5	±0,0434	±0,0534	
-	200 мВ/дел	-	±50	-	±0,525	
	2 В/дел		±80		±1,041	
-	10 В/дел	_	±160	-	±2,801	

Результаты поверки считать положительными, если во всех поверяемых точках погрешность измерения, не превышает пределов, приведенных в таблице 7.

7.7 Определение ширины полосы пропускания

Определение ширины полосы пропускания осциллографа проводить методом прямого измерения с помощью калибратора осциллографов Fluke 9500B с использованием формирователя 9530.

- 7.7.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.7.2 Установить на осциллографе:

входное сопротивление канала 50 Ом; коэффициент отклонения осциллографа — І мВ/дел; коэффициент развертки 100 мкс/дел; интерполяция — sinx/x, ограничение полосы пропускания — выключено.

- 7.7.3 Установить на выходе калибратора Fluke 9500В синусоидальный сигнал частотой 50 кГц и установить размах сигнала от 4 до 6 делений по вертикали. Измерить размах сигнала Uопорное при помощи автоматических измерений осциллографа.
- 7.7.4 Вычислить значение $U_{-3дБ} = 0,708~U_{OПОРНОЕ},$ что соответствует ослаблению напряжения на 3 дБ.
- 7.7.5 Установить на выходе калибратора Fluke 9500В сигнал с частотой, соответствующей верхней граничной частоте полосы пропускания поверяемого осциллографа,в соответствии с значениями таблицы 8.
- 7.7.6 Установить на поверяемом осциллографе величину коэффициента развертки 10 нс/дел.
- 7.7.7 Измерить размах сигнала U_{Fmax} при помощи автоматических измерений осциллографа. Записать измеренные значения.
- 7.7.8 Провести измерения по п.п. 7.7.1 7.7.7 для коэффициентов отклонения осциллографа, устанавливаемых из ряда: 5, 10, 20, 50, 100, 200, 500 мВ/дел., 1 В/дел. Для коэффициента отклонения 1 В/дел установить размах сигнала равный 3 В.
 - 7.7.9 Провести измерения по п.п. 7.7.1 7.7.8 для остальных каналов осциллографа.

Таблица 8 - Полоса пропускания по уровню -3 дБ

Характеристика	Модификации	Значение
Полоса пропускания по уровню -3 дБ,	WaveSurfer 3014zR	100
при входном сопротивлении 50 Ом,	WaveSurfer 3024zR	200
МГц, не менее	WaveSurfer 3034zR	350
- при коэффициенте отклонения не	WaveSurfer 3054zR	500
менее 2 мВ/дел	WaveSurfer 3104zR	1000

Результаты поверки считать положительными, если измеренное значение размаха сигнала U_{Fmax} по п. 7.7.7 не менее значения $U_{\text{-3дБ}}$, вычисленного по п.7.7.4.

7.8 Определение времени нарастания переходной характеристики

- 7.8.1 Определение времени нарастания переходной характеристики (ПХ) проводить путем подачи на вход осциллографа импульса с малым временем нарастания от калибратора осциллографов Fluke 9500B с использованием формирователя 9530.
- 7.8.2 Выход формирователя 9530 подключить на вход первого канала поверяемого осциллографа.
 - 7.8.3 Органы управления осциллографа установить в следующие положения:
 - канал 1 Включен, связь входа DC 50 Ом, полоса пропускания Полная;
 - синхронизация: тип Фронт, источник Канал 1 (проверяемый), режим Авто;
- развертка эквивалентная; минимальное значение коэффициента развертки, при котором наблюдается фронт импульса;
- режим измерения: Время нарастания (Rise time 10%-90%), статистика измерений включена;
 - коэффициент отклонения –≥10 мВ/дел.
- 7.8.4 Установить амплитуду импульса на экране осциллографа не меньше 4 делений по вертикали. Нажать на передней панели осциллографа кнопку «Очистить статистику» и произвести считывание среднего значения результата измерения времени нарастания при числе статистки измерений не менее 50.
 - 7.8.5 Определить время нарастания переходной характеристики по формуле (3):

$$t_{\Pi X} = \sqrt{t_X^2 - t_0^2} \tag{3}$$

где t_X — значение времени нарастания, измеренное поверяемым осциллографом, пс; t_0 — значение времени нарастания формирователя калибратора, пс.

- 7.8.6 Повторить измерения по п.п. 7.8.1 7.8.5 для коэффициентов отклонения осциллографа, устанавливаемых из ряда: 20, 50, 100, 200, 500мВ/дел, 1 В/дел.
 - 7.8.7 Повторить измерения по п.п. 7.8.1 7.8.6 для остальных каналов осциллографа.

Результаты поверки считать положительными, если вычисленные по формуле (3) значения времени нарастания не превышают значений, приведенных в таблице 9.

Таблица 9 – Значение времени нарастания ПХ

Модификация осциллографов	Значение ПХ, нс, не более
WaveSurfer 3014zR	3,5
WaveSurfer 3024zR	1,75
WaveSurfer 3034zR	1,0
WaveSurfer 3054zR	0,8
WaveSurfer 3104zR	0,43

7.9 Определение относительной погрешности частоты внутреннего опорного генератора

Определение относительной погрешности частоты внутреннего опорного генератора проводить методом стробоскопического преобразования с помощью калибратора осциллографов Fluke 9500B.

- 7.9.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.9.2 Выполнить следующие установки осциллографа:

- канал 1 Включен, связь входа DC 50 Ом, ограничение полосы пропускания Выключено;
 - синхронизация: режим Авто;
 - режим измерения частота, статистика измерений включена;
 - коэффициент отклонения 100 мВ/дел;
- 7.9.3 Подать на вход осциллографа синусоидальный сигнал с калибратора, частотой frect=10,008 МГц. Амплитуду сигнала с калибратора установить не менее 6 делений по вертикальной шкале осциллографа
- 7.9.4 Установить минимальное значение длины памяти осциллографа (в настройках развертки выбрать установки длины записи и установить значение 500).
- 7.9.5 Установить коэффициент развертки осциллографа 500 мкс/дел. На экране осциллографа будет наблюдаться низкочастотный сигнал F_{CTPOE} .
- 7.9.6 Нажать на передней панели осциллографа кнопку «Очистить статистику» и произвести считывание среднего значения результата измерения частоты при числе измерений не менее 50.
- 7.9.7 Определить абсолютную погрешность частоты внутреннего опорного генератора Δ_F по формуле (4):

 $\Delta_{\rm F} = F_{\rm CTPOB} - 8000, \tag{4}$

где: F_{CTPO5} — частота низкочастотного сигнала, наблюдаемого на экране осциллографа, Γ ц.

7.9.8 Вычислить относительную погрешность частоты внутреннего опорного генератора по формуле (5)

 $\delta_{\rm F} = \Delta_{\rm F}/10^7,\tag{5}$

где: Δ_F — абсолютная погрешность частоты внутреннего опорного генератора, определенная по формуле п.7.9.6, Γ ц.

Результаты поверки считать положительными, если вычисленное по формуле (5) значение погрешности не превышает $\pm 10^{-5}$.

- 7.10 Определение абсолютной погрешности установки уровня срабатывания цифрового логического анализатора (только для модификаций с логическим анализатором)
- 7.10.1 Определение погрешности проводить с помощью калибратора осциллографов Fluke 9500B, используя логический пробник из комплекта осциллографа в следующей последовательности:
- 7.10.2 Произвести сброс всех настроек осциллографа и установить заводские настройки.
- 7.10.3 Подключить логический пробник из комплекта осциллографа к разъему логического анализатора на передней панели осциллографа.
- 7.10.4 Включить цифровые каналы в осциллографе, аналоговые каналы должны быть отключены.
- 7.10.5 Выход калибратора подключить к адаптеру, вид которого приведен на рисунке 1. Сигнальный разъем логического пробника, начиная с канала D0 подключить к адаптеру, вид которого приведен на рисунке 1.

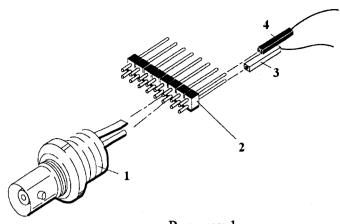


Рисунок 1

где: 1. BNC-разъем (к калибратору)

- 2. Соединительная планка (2 шт.)
- 3. Сигнальный разъем логического пробника
- 4. «Земляной» разъем логического пробника
- 7.10.6 В меню логического анализатора осциллографа установить следующие параметры:
 - тип логики определенный пользователем;
 - порог уровня согласно таблице 10;
 - гистерезис согласно таблице 10.
 - 7.10.7 Задать уровень сигнала с калибратора согласно таблице 10.
- 7.10.8 Плавно увеличивать напряжение на выходе калибратора до значения, при котором канал D0 переходит в состояние устойчивой «логической единицы».
- $7.10.9~\Pi$ лавно уменьшать напряжение на выходе калибратора до значения $U_{\text{ниж}}$, при котором канал D0 логического анализатора переходит в состояние «логического нуля». Записать измеренное значение напряжения с калибратора $U_{\text{ниж}}$ в таблицу 10.
- 7.10.10 Плавно увеличивать напряжение на выходе калибратора до значения $U_{\text{верх}}$, при котором канал D0 переходит в состояние «логической единицы». Записать измеренное значение напряжения с калибратора $U_{\text{верх}}$ в таблицу 10.

7.10.11 Повторить измерения по п.п. 7.11.5 - 7.11.10 для остальных цифровых каналов.

Таблица 10 - Определение абсолютной погрешности уровня срабатывания

Установленный	ределение иссолю	Значение	Измере		, , ,	каемые
уровень	Установленный	выходного напряжения			пределы уровня срабатывания	
срабатывания,	гистерезис, В	калибратора,	U _{верх} , В	U _{ниж} , В	U _{Bepx} , B,	U _{ниж} , В,
В	·	В	Оверх, Б	Ониж, Б	не более	не менее
. 10.00	0,1	+10,45			+10,45	+9,55
+ 10,00	1,4	+11,10			+11,10	+8,90
0.00	0,1	+0,15			+0,15	-0,15
0,00	1,4	+0,80			+0,80	-0,80
-10,00	0,1	-9,55			-9,55	-10,45
	1,4	-8,90			-8,90	-11,10

Результаты поверки считать положительными, если измеренные значения уровня срабатывания логического анализатора находятся в пределах, приведенных в таблице 10.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 При положительных результатах поверки нагрузок оформляется свидетельство о поверке в соответствии с приказом Минпромторга России от 02.07.2015 № 1815 "Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке".

8.2 При отрицательных результатах поверки прибор не допускается к дальнейшему применению, в паспорт вносится запись о непригодности его к эксплуатации, знак предыдущей поверки гасится, свидетельство о поверке аннулируется и выдается извещение о

непригодности.

Начальник отдела испытаний и сертификации

С.А. Корнеев