УТВЕРЖДАЮ

Технический директор OOO «ИЦРМ»

М.С. Казаков

«20» апреля 2018 г.

Трансформаторы тока и напряжения комбинированные электронные типа ТТНК

Методика поверки

ИЦРМ-МП-129-2018

Содержание

1 Введение	3
2 Нормативные ссылки	3
3 Операции поверки	3
4 Средства поверки	
5 Требования к квалификации поверителей	
6 Требования безопасности	5
7 Условия поверки	
8 Подготовка к поверке	
9 Проведение поверки	
10 Оформление результатов поверки	
Приложение А «Метрологические и технические характеристики»10	
Приложение Б «Протокол поверки»1	1

1 ВВЕДЕНИЕ

Настоящая методика поверки устанавливает методы и средства первичной и периодической поверок трансформаторов тока и напряжения комбинированных электронных типа ТТНК (далее по тексту – ТТНК).

ТТНК подлежат поверке с периодичностью, устанавливаемой потребителем с учётом режимов и интенсивности эксплуатации, но не реже одного раза в восемь лет.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей методике использованы нормативные ссылки на следующие стандарты:

ГОСТ Р МЭК 60044-7-2010 «Трансформаторы измерительные. Часть 7. Электронные трансформаторы напряжения».

ГОСТ Р МЭК 60044-8-2010 «Трансформаторы измерительные. Часть 8. Электронные трансформаторы тока».

ГОСТ 1983-2015 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 7746-2015 «Трансформаторы тока. Общие технические условия».

ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки».

ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки».

ГОСТ 12.1.019-2009 «Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты».

ГОСТ 12.2.007.0-75 «Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности».

ГОСТ 12.2.007.3-75 «Система стандартов безопасности труда. Электротехнические устройства на напряжение свыше 1000 В. Требования безопасности».

ГОСТ 12.3.019-80 «Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности».

РМГ 29-2013 «ГСИ. Метрология. Основные термины и определения».

3 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1

	Номер	Необходимость выполнения		
Наименование операции поверки	пункта методики поверки	при первичной поверке	при периодической поверке	
Внешний осмотр	9.1	Да	Да	
Опробование	9.2	Да	Да	
Определение метрологических характеристик	9.3	Да	Да	
Подтверждение соответствия программного обеспечения	9.4	Да	Да	

4 СРЕДСТВА ПОВЕРКИ

При проведении поверки рекомендуется применять средства и вспомогательное оборудование, указанные в таблице 2.

Таблица 2

Наименование,	Tassassassassassassassassassassassassass	Пункты		
обозначение	Требуемые характеристики	методики		
		поверки		
	Основные средства поверки			
Преобразователь напряжения измерительный высоковольтный емкостный масштабный ПВЕ-220	Класс точности 0,05	п.9.3		
Прибор сравнения КНТ-05	Характеристики в соответствии с описанием типа, ГР № 37854-08	п.9.3		
Магазин нагрузок МР 3025	Характеристики в соответствии с описанием типа ГР № 22808-07	п.9.3		
Магазин нагрузок МР 3027	Характеристики в соответствии с описанием типа, ГР № 34915-07.	п.9.3		
Прибор электроизмерительный эталонный многофункциональный Энергомонитор-3.1 КМ	Абсолютная погрешность напряжения ИТН \pm 0,002%; угловая абсолютная погрешность ИТН \pm 0,1 мин.	п.9.3		
Установка поверочная векторная компарирующая УПВК-МЭ 61850	Абсолютная погрешность ±0,02 %.	п.9.3		
Трансформатор тока измерительный лабораторный ТТИ-200	Относительная токовая погрешность 0,01%.	п.9.3		
Трансформатор тока измерительный лабораторный ТТИ-5000.51	Класс точности 0,01, ОСИ 1-го разряда.	п.9.3		
	могательные средства поверки			
Источник высокого напряжения	Диапазон регулирования высокого напряжения постоянного тока от 20 до 500 кВ, точность ±100 В, стабильность 30 мА.	п.9.3		
Устройство синхронизирующее ССВ-1Г	Характеристики в соответствии с описанием типа, ГР№ 58670-14.	п.9.3		
Источник тока регулируемый ИТР-15К	Диапазон воспроизведения силы переменного тока от 0 до 20 кА, нестабильность не более 0,5 %.	п.9.3		
Измеритель параметров микроклимата Метеоскоп-М	Характеристики в соответствии с описанием типа, ГР № 32014-11.	п.7		
Компьютер и принадлежности к компьютеру				
Компьютер	Интерфейс Ethernet; объем оперативной памяти не менее 1 Гб; объем жесткого диска не менее 10 Гб; дисковод для чтения CD-ROM; операционная система Windows	9.2-9.3		
•	использование других средств поверки, обеспечответствующих параметров с требуемой точност			

5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускают лица, имеющие документ о повышении квалификации в области поверки средств измерений электрических величин.

Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением выше 1000 В с квалификационной группой по электробезопасности не ниже III.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.3.019-80, ГОСТ 12.2.007.0, ГОСТ 12.2.007.3, «Правилами техники безопасности, при эксплуатации электроустановок потребителей», охране труда (правилами безопасности) при «Межотраслевыми правилами по эксплуатации электроустановок». Соблюдают также требования безопасности, изложенные в эксплуатационных документах на устройство и применяемые средства измерений.
- 6.2 Средства поверки, которые подлежат заземлению, должны быть надежно заземлены. Подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение после всех отсоединений.
- 6.3 Должны также быть обеспечены требования безопасности, указанные в эксплуатационных документах на средства поверки.

7 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия применения:

- температура окружающего воздуха 20 ± 10 °C;
- относительная влажность воздуха не более 80 %;
- атмосферное давление от 80 до 106,7 кПа.

8 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки необходимо выполнить следующие подготовительные работы:

- провести технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75;
- выдержать ТТНК в условиях окружающей среды, указанных в п.7, не менее 4 ч, если она находился в климатических условиях, отличающихся от указанных в п.7;
- подготовить к работе средства поверки, используемые при поверке, в соответствии с руководствами по эксплуатации (все средства измерений должны быть исправны и поверены).

9 ПРОВЕДЕНИЕ ПОВЕРКИ

9.1 Внешний осмотр.

При проведении внешнего осмотра ТТНК проверяют:

- соответствие комплектности ТТНК перечню, указанному в паспортеформуляре ТТНК;
- соответствие серийного номера ТТНК указанному в паспорте-формуляре
 ТТНК;
 - маркировку и наличие необходимых надписей на наружных панелях;
- разборные контактные соединения должны иметь маркировку, а резьба винтов и гаек должна быть исправна;
 - на корпусе ТТНК не должно быть трещин, царапин, забоин, сколов;

- соединительный провод не должен иметь механических повреждений;
- отдельные части ТТНК должны быть прочно закреплены.

Результат внешнего осмотра считают положительным, если комплектность и серийный номер соответствуют указанным в паспорте-формуляре, маркировка и надписи на наружных панелях соответствуют руководству по эксплуатации, а также отсутствуют механические повреждения, способные повлиять на работоспособность ТТНК.

- 9.2 Опробование.
- 1) Подключить персональный компьютер (далее по тексту ПЭВМ) к выходным интерфейсам ТТНК.
- 2) Включить ТТНК (подать питание) и ПЭВМ, убедиться во включении подсветки индикатора (в течение 2-3 секунд происходит загрузка программного обеспечения).
- 3) При успешном окончании процесса загрузки внутреннего программного обеспечения ТТНК загорается зеленый светодиод (Норма).
- 4) Убедиться в приеме на ПЭВМ сигналов с выходных интерфейсов, соответствующих показаниям индикатора ТТНК.

Результат проверки считают положительным, если после подачи питания на ТТНК включилась подсветка индикатора и появилась соответствующая надпись, загорелся зеленый светодиод (Норма) и при отсутствии напряжения и силы переменного тока показания ТТНК близки к нулевым значениям.

- 9.3 Определение метрологических характеристик.
- 9.3.1 Определение метрологических характеристик измерения напряжения переменного тока.
 - 9.3.1.1 Проверка погрешности для аналогового выхода $100/\sqrt{3}$.

Методика проведения поверки для аналогового выхода $100/\sqrt{3}$ в соответствии с п. 10.3.13.3 ГОСТ 8.216-2011.

Результаты испытаний считаются удовлетворительными, если они соответствуют требованиям ГОСТ Р МЭК 60044-7-2010 для соответствующего класса точности.

- 9.3.1.2 Определение погрешности коэффициента масштабного преобразования и угла фазового сдвига синусоидального напряжения (для выхода МЭК-61850-9-2) проводится в следующей последовательности:
 - 1) Собирают схему подключений согласно рисунку 1.

Рисунок 1 - Схема для определения погрешности коэффициента масштабного преобразования и угла фазового сдвига синусоидального напряжения переменного тока

2) Воспроизводят испытательный сигнал с помощью источника высокого напряжения в соответствии с таблицей 3.

Таблица 3

№ п/п	Процент от номинального первичного напряжения, %
1	80
2	100
3	120

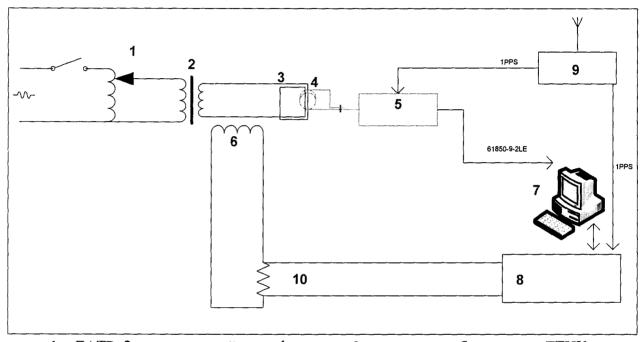
3) Получают значения погрешности коэффициента масштабного преобразования и угла фазового сдвига синусоидального напряжения (для выхода МЭК-61850-9-2) с APM УПВК-МЭ 61850.

Результаты испытания считают удовлетворительными, если погрешность коэффициента масштабного преобразования и угла фазового сдвига синусоидального напряжения (для выхода МЭК-61850-9-2) находятся в пределах, указанных в ГОСТ Р МЭК 60044-7-2010 для соответствующего класса точности.

- 9.3.2 Определение метрологических характеристик измерения силы переменного тока.
- 9.3.2.1 Определение погрешности коэффициента масштабного преобразования силы тока проводится отдельно для каждого из выходов ТТНК.
- 9.3.2.2 Определение погрешности коэффициента масштабного преобразования и угла фазового сдвига силы переменного тока (для выхода 1 А) проводится в следующей последовательности:
 - 1) Собирают схему подключений согласно рисунку 2.

Рисунок 2 - Схема для определения погрешности коэффициента масштабного преобразования и угла фазового сдвига силы переменного тока

2) Воспроизводят испытательный сигнал с помощью источника (ИТР-15К или аналогичного) в соответствии с таблицей 4 (заполняются все строчки 1-120%).


Таблица 4

№ п/п	Процент от номинального первичного тока, %
1	1 — только для ТТНК с расширенным диапазоном измеряемого тока (нижняя граница измеряемого тока указана в паспорте-формуляре на ТТНК)
2	5 — только для ТТНК с расширенным диапазоном измеряемого тока (нижняя граница измеряемого тока указана в паспорте-формуляре на ТТНК)
3	20
4	100
5	120 – только для выходов: MЭK-61850-9-2 и 1A
6	Ххх – верхняя точка диапазона измеряемого тока (если больше 120% от ном.)

3) Получают значения погрешности коэффициента масштабного преобразования и угла фазового сдвига с прибора сравнения КНТ-05.

Результаты испытания считают удовлетворительными, если погрешность коэффициента масштабного преобразования и угла фазового сдвига силы переменного тока (для выхода 1 A) находятся в пределах, указанных в ГОСТ Р МЭК 60044-8-2010 для соответствующего класса точности.

- 9.3.2.3 Определение погрешности коэффициента масштабного преобразования и угла фазового сдвига силы переменного тока (для выхода МЭК-61850-9-2) проводится в следующей последовательности:
 - 1) Собирают схему подключений согласно рисунку 3.
- 2) Воспроизводят испытательный сигнал с помощью источника в соответствии с таблицей 4 (заполняются все строчки 1-120%).

- 1 ЛАТР; 2 нагрузочный трансформатор; 3 первичная обмотка тока ТТНК;
- 4 чувствительный элемент ТТНК; 5 ТТНК; 6 эталонный трансформатор тока;
- 7 АРМ УПВК-МЭ 61850; 8 мультиметр 3458А (из состава УПВК-МЭ 61850);
- 9 устройство синхронизирующее ССВ-1Г; 10 –шунт эталонный безреактивный (из состава УПВК-МЭ 61850)

Рисунок 3 — Структурная схема испытательного стенда

3) Получают значения погрешности коэффициента масштабного преобразования и угла фазового сдвига силы переменного тока (для выхода МЭК-61850-9-2) с АРМ УПВК-МЭ 61850.

Результаты испытания считают удовлетворительными, если погрешность коэффициента масштабного преобразования и угла фазового сдвига силы переменного тока (для выхода МЭК-61850-9-2) находится в пределах, указанных в ГОСТ Р МЭК 60044-8-2010 для соответствующего класса точности.

- 9.4 Подтверждение соответствия программного обеспечения
- 9.4.1 Подтверждение соответствия программного обеспечения (ПО) ТТНК должно выполняться путем контроля идентификационных данных программного обеспечения:

Идентификационные данные метрологически незначимых частей являются справочными и контролю не подлежат.

- 9.4.2 Идентификацию ПО производить следующим образом:
- включить ТТНК;
- зайти в подменю «информация о Π O». В открывшемся окне отобразится номер версии программного обеспечения.

Результаты проверки считают удовлетворительными, если номер версии программного обеспечении не ниже указанного в описании типа.

10 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Результаты проверок ТТНК оформляют путем записи в протоколе поверки. Рекомендуемая форма протокола представлена в приложении Б.

При положительных результатах поверки на паспорт-формуляр ТТНК наносится знак поверки или выдается свидетельство о поверке в соответствии с Приказом Минпромторга России № 1815 от 20.07.2015 г.

При отрицательных результатах поверки ТТНК признается непригодным к применению и на него выписывается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 20.07.2015 г. с указанием причин.

Таблица А.1 – Метрологические и технические характеристики ТТНК

таолица А.1 – Метрологические и техниче	
Наименование характеристики	Значение
Номинальное фазное напряжение	от 100/√3 до 145/√3
переменного тока, кВ *	от 200 /√3 до 250/√3
Номинальное вторичное напряжение для	
аналогового выхода внешнего цифро-	100/√3
аналогового преобразователя, В	
Классы точности при измерении	
напряжения переменного тока по	0,2; 0,5; 1,0; 3P; 6P
ГОСТ Р МЭК 60044-7-2010	
Номинальный первичный ток Іном, А	от 50 до 3000
Номинальный вторичный ток для	
аналогового выхода внешнего цифро-	1
аналогового преобразователя, А	
Классы точности при измерении силы	
переменного тока по	0,1; 0,2S; 0,5S; 1,0; 5P; 5TPE
ГОСТ Р МЭК 60044-8-2010	
Номинальная нагрузка на аналоговом	
выходе внешнего цифро-аналогового	5
преобразователя тока и напряжения $S_{2\text{ном}}$	3
(коэффициент мощности cosφ=1), B·A	
Номинальная частота измеряемых силы и	50 или 60
напряжения переменного тока, Гц	30 mm 00
Номинальный коэффициент	
расширенного первичного тока от Іном:	
- для аналоговых выходов	от 1,2 до 2,0
- для цифровых выходов	от 1,2 до 8,0
Частота дискретизации по выходу "МЭК	
61850-9-2", выборок в секунду:	
- стандартное исполнение	4000, 12800
- специальное исполнение	от 1000 до 64000
Количество одновременно передаваемых	
потоков по выходу "МЭК 61850-9-2" с	от 1 до 4
различной частотой дискретизации	

различной частотой дискретизации
Примечания - * - высоковольтная колонна может устанавливаться в любую сеть с заземленной нейтралью с напряжением в указанном диапазоне. В маркировке ТТНК указывается номинальное напряжение, соответствующее напряжению 100/√3В на выходе цифро-аналогового преобразователя напряжения

Приложение Б (рекомендуемое)

Протокол (первичной) поверки № от				
I. Поверяемый прибор: Грансформатор тока и напряжения комбинирова ГТНК	-			
класс точности изм. напряжения				
класс точности изм. тока				
Ваводской №	Год выпуска			
Номинальное первичное напряжение	_			
Номинальное вторичное напряжение	_			
Номинальная частота				
Номинальный ток				
Принадлежит				
Поверка проводилась по ИЦРМ-МП2018.				
2. Эталонные средства измерений применяем	ъ при поверке:			
3. Условия поверки:				
- температура°С				
- отн. влажность%				
- атм. давление мм.рт.ст.				

4. Результаты поверки:

Результаты определения погрешностей ТТНК при измерении напряжения

Нагрузка поверяемого ТТНК, В·A, при соѕ φ=1	Значение первичного	Погрешность поверяемого ТТНК		Предел допускаемой погрешности для кл.т.	
	напряжения, % от номинального значения	□ _f , %	Δ□, мин	□ _f , %	∆□, мин
	80				
	100				
	120				

Результаты определения погрешностей ТТНК при измерении переменного тока

Номинальный ток, А	Нагрузка поверяемого	Значение первичного тока,	Пог	решность трансфо	•	мого
	трансформатора	% от номиналь-	Δf	, %	Δφ,	мин
	тока, ВА	ного значения	факт.	допуск	факт.	допуск
		120				
		100				
		20				
		5				
		1				

5. Заключение		
	годе	н, не годен
Поверитель		
	подпись	расшифровка подписи