Государственная система обеспечения единства измерений

Акционерное общество «Приборы, Сервис, Торговля» (АО «ПриСТ»)

УТВЕРЖДАЮ Главный метролог АО «ПриСТ» А.Н. Новиков 6» августа 2018 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Анализаторы спектра GSP-79330

МЕТОДИКА ПОВЕРКИ ПР-30-2018МП

> г. Москва 2018 г.

введение

Настоящая методика устанавливает методы и средства первичной и периодических поверок анализаторов спектра GSP-79330, изготовленных «Good Will Instrument Co., Ltd.», Тайвань

Анализаторы спектра GSP-79330 (далее – анализаторы) предназначены для измерений амплитудно-частотных характеристик спектра радиотехнических сигналов.

Интервал между поверками 1 год.

Периодическая поверка анализаторов в случае их использования для измерений (воспроизведения) меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» описания типа, допускается на основании письменного заявления владельца анализаторов, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке анализаторов.

1 ОПЕРАЦИИ ПОВЕРКИ

	Номер пункта Проведение операци		е операции при
Наименование операции	методики	первичной	периодической
	поверки	поверке	поверке
1	2	3	4
1 Внешний осмотр	7.1	Да	Да
2 Опробование	7.2	Да	Да
3 Проверка идентификационных данных программного обеспечения	7.3	Да	Да
4 Определение относительной погрешности частоты опорного генератора	7.4	Да	Да
5 Определение погрешности измерения частоты маркером	7.5	Да	Да
6 Определение относительной погрешности установки полос пропускания фильтров промежуточной частоты (ПЧ) и фильтров электромагнитной совместимости (ЭМС)	7.6	Да	Да
7 Определение коэффициента прямоугольности фильтров ПЧ	7.7	Да	Нет
8 Определение абсолютной погрешности измерения уровня сигнала	7.8	Да	Дa
9 Определение неравномерности амплитудно- частотной характеристики (АЧХ)	7.9	Да	Да
10 Определение погрешности измерений уровня сигнала из-за переключения входного аттенюатора	7.10	Да	Да
11 Определение погрешности измерения уровня при изменении полосы пропускания	7.11	Да	Да
12 Определение уровня гармонических искажений 2-го порядка	7.12	Да	Да
13 Определение уровня фазовых шумов	7.13	Да	Да
14 Определение уровня интермодуляционных искажений 3-го порядка	7.14	Да	Дa

Таблица 1 – Операции поверки

Продолжение таблицы 1

1	2	3	4
15 Определение уровня собственных шумов	7.15	Да	Да
16 Определение метрологических	7 16	Ла	Па
характеристик следящего генератора	7.10	Да	<u>да</u>

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства поверки, перечисленные в таблицах 2 и 3.

2.2 Допускается применять другие средства поверки, обеспечивающие измерение значений соответствующих величин с требуемой точностью.

2.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

Номер	
пункта МП	Тип средства поверки
1	2
	Частотомер универсальный CNT-90.
7.4, 7.5	Пределы допускаемой относительной погрешности частоты опорного генератора ±2·10 ⁻⁷
	Калибратор многофункциональный Fluke 9640A-LPNX.
	Диапазон частот выходного сигнала от 1 мГц до 4 ГГц; пределы допускаемой от-
	носительной погрешности установки частоты ±5·10 ⁻⁸ ; пределы допускаемой абсо-
	лютной погрешности установки уровня на частоте 160 МГц в диапазоне установ-
75-714	ки уровней сигнала: от -48 до 0 дБм ¹⁾ не более $\pm 0,07$ дБ, от -50 до 0 дБм не более
7.5 - 7.14	±0,1 дБ; пределы допускаемой абсолютной погрешности установки уровня вы-
	ходного сигнала в диапазоне частот от 100 кГц до 3,25 ГГц не более ±0,5 дБ; уро-
	вень гармонических составляющих в выходном сигнале не более -80 дБ (с исполь-
	зованием фильтров нижних частот); максимальный уровень фазовых шумов при
	отстройке от несущей 1 ГГц на 10 кГц, 100 кГц не более не более -134 дБ/Гц.
7 14	Генератор сигналов N5181A.
/.1-	Диапазон частот от 250 кГц до 3 ГГц.
	Ваттметр поглощаемой мощности NRP-Z56.
7.9, 7.16	Диапазон частот от 0 до 50 ГГц, диапазон измерений мощности от $3 \cdot 10^{-4}$ до $1 \cdot 10^{2}$,
	пределы допускаемой относительной погрешности в диапазоне частот до 8 ГГц -
	не более ±1,5 %.
Примечание	
1) Здесь и да	лее дБм – уровень мощности в дБ относительно 1 мВт

Таблица 3	-Вспомо	гательные	средства	поверки
	1		epergerbe.	nobepitti

Измеряемая величина	Диапазон измерений	Класс точности, погрешность	Тип средства поверки
Температура	от 0 до +50 °С.	±0,25 °C	Цифровой термометр-гигрометр Fluke 1620A
Давление	от 30 до 120 кПа	±300 Па	Манометр абсолютного давления Testo 511
Влажность	от 10 до 100 %	±2 %	Цифровой термометр-гигрометр Fluke 1620A

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке допускаются лица, изучившие эксплуатационную документацию на поверяемые средства измерений, эксплуатационную документацию на средства поверки и соответствующие требованиям к поверителям средств измерений согласно ГОСТ Р 56069-2014.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования ГОСТ 12.27.0-75, ГОСТ 12.3.019-80, ГОСТ 12.27.7-75, требованиями правил по охране труда при эксплуатации электроустановок, утвержденных приказом Министерства труда и социальной защиты Российской Федерации от 24 июля 2013 г № 328Н.

4.2 Средства поверки, вспомогательные средства поверки и оборудование должны соответствовать требованиям безопасности, изложенным в руководствах по их эксплуатации.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха (25±5) °С;

– относительная влажность до 80 %;

– атмосферное давление от 84 до 106 кПа или от 630 до 795 мм рт. ст.;

6 ПОДГОТОВКА К ПОВЕРКЕ

6.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:

– проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.27.0-75;

– проверить наличие действующих свидетельств поверки на основные и вспомогательные средства поверки.

6.2 Средства поверки и поверяемый прибор должны быть подготовлены к работе согласно их руководствам по эксплуатации.

6.3 Проверено наличие удостоверения у поверителя на право работы на электроустановках с напряжением до 1000 В с группой допуска не ниже III.

6.4 Контроль условий проведения поверки по пункту 5 должен быть проведен перед началом поверки.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие поверяемого прибора следующим требованиям:

- не должно быть механических повреждений корпуса. Все надписи должны быть четкими и ясными;

- все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемый прибор бракуется и подлежит ремонту.

7.2 Опробование

Опробование анализаторов проводить путем проверки их на функционирование в соответствии с руководством по эксплуатации.

Подготовить анализатор к работе в соответствии с руководством по эксплуатации.

Включить анализатор и проверить отсутствие сообщений о неисправности в процессе загрузки.

Результат опробования считать положительным, если на дисплее отсутствуют сообщения об ошибках, прибор функционирует согласно руководству по эксплуатации.

При отрицательном результате опробования прибор бракуется и направляется в ремонт.

7.3 Проверка идентификационных данных программного обеспечения

Проверка программного обеспечения анализаторов осуществляется путем вывода на дисплей прибора информации о версии программного обеспечения.

Войти в меню «Система» анализатора и выбрать «Информация о системе».

Результат считается положительным, если версия программного обеспечения соответствует данным, приведенным в таблице 4.

Таблица 4 – Характеристики программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Firmware
Номер версии (идентификационный номер ПО)	не ниже 1.0.0.0

7.4 Определение относительной погрешности частоты опорного генератора проводить методом прямых измерений с помощью частотомера универсального CNT-90. 7.4.1 Собрать измерительную схему в соответствии с рисунком 1.

Анализатор спектра

Рисунок 1

7.4.2 Подать сигнал с выхода "Ref OUT 10 MHz" (на задней панели анализатора) на вход частотомера. Измерить по частотомеру частоту сигнала внутреннего опорного генератора анализатора спектра Fд. Рассчитать относительную погрешность по формуле (1):

$$\delta F = (10 - Fu_{3M}) / Fu_{3M}, \tag{1}$$

где Fизм – значение частоты, измеренное частотомером, МГц

Результаты поверки считать положительными, если погрешность не превышает допускаемых пределов:

$\pm (1,02 \cdot 10^{-6} + 1 \cdot 10^{-6} \cdot N),$

где N – количество лет после выпуска из производства или подстройки.

7.5 Определение погрешности измерения частоты встроенным частотомером

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

7.5.1 Собрать измерительную схему в соответствии с рисунком 2.

Рисунок 2

На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

1. Выполнить сброс на начальные установки, нажав кнопку «Нач.уст».

2. Установить на поверяемом анализаторе следующие параметры:

- полоса пропускания: 10 Гц
- полоса видеофильтра: 10 Гц
- полоса обзора: 100 Гц
- опорный уровень: 0 дБм
- шкала: 1 dB/дел
- центральную частоту устанавливать равной частоте сигнала генератора.

7.5.2 Установить на калибраторе уровень выходного сигнала 0 дБм, выходную частоту генератора устанавливать последовательно из ряда: 100 кГц, 1 МГц, 100 МГц, 160 МГц, 1 ГГц, 1,5 ГГц, 3 ГГц. Настройки анализатора устанавливать согласно таблице 5.

Таблице 5

Частота сигнала,	Параметры анализатора			Π
установленная на калибраторе	полоса пропус- кания	видеофильтр	полоса обзора	примечание
100 кГц	10 Гц	10 Гц	100 Гц	Если несущая частота
1 МГц	10 Гц	10 Гц	100 Гц	находится за пределами
160 МГц	100 Гц	100 Гц	1 кГц	экрана, подстроить цен-
1 ГГц	1 кГц	1 кГц	10 кГц	тральную частоту на ана-
1,5 ГГц	1 кГц	1 кГц	10 кГц	лизаторе, чтобы несущая
3 ГГц	1 кГц	1 кГц	10 кГц	располагалась примерно по центру экрана

7.5.3 С помощью функции «поиск пика» установить маркер на пик несущей частоты. Измерить значение частоты.

7.5.4 Определить абсолютную погрешность измерения частоты по формуле (2)

$$\Delta F = F_A - F_{\kappa}, \tag{2}$$

где F_A - значение частоты сигнала, измеренное анализатором, Гц

F_{к-}значение частоты сигнала, установленное на калибраторе, Гц

Результаты поверки считать положительными, если значения абсолютной погрешности измерения частоты, не превышают пределов:

 $\pm (\delta_0 \cdot f + 0, 1 \cdot F \pi 4/эм c + k),$

где δ₀ – относительная погрешность частоты опорного генератора, f – измеренное значение частоты, Гц Fпч/эмс– полоса пропускания фильтров ПЧ и ЭМС, Гц

k – разрешение по частоте, Гц

7.6 Определение относительной погрешности установки полос пропускания фильтров промежуточной частоты (ПЧ) и фильтров электромагнитной совместимости (ЭМС)

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

7.6.1 Собрать измерительную схему в соответствии с рисунком 3.

Рисунок 3

7.6.2 Установить на выходе калибратора сигнал с частотой 160 МГц и уровнем -30 дБмВт, калибратор перевести в режим работы по внешнему сигналу опорной частоты.

7.6.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

1. Выполнить сброс на начальные установки.

2. Установить на поверяемом анализаторе следующие параметры:

• центральная частота: 160 МГц

- полоса пропускания: 1 МГц, далее значения устанавливать по п. 7.6.4
- полоса видеофильтра: авто

• полоса обзора: 1,5 х (полоса пропускания); (для полос пропускания 3 Гц, 10 Гц и 30 Гц установить полосу обзора 100 Гц)

- опорный уровень: -30 дБм
- шкала: 1 дБ/дел
- усреднение ≥ 40

7.6.4 В меню «Маркер» включить маркер 1, с помощью меню «Поиск пика» установить маркер анализатора на максимум сигнала. Затем включить в меню «Маркер» режим дельтамаркера. Измерить ширину полосы частот RBWизм, в которой показания дельта-маркера изменяются относительно опорного сигнала на -3 дБ. Дальше, значения полос пропускания устанавливать из ряда: 300 кГц, 100 кГц, 30 кГц, 10 кГц, 3 кГц, 1 кГц, 300 Гц, 100 Гц, 30 Гц, 10 Гц.

7.6.5 Повторить измерения по п. 7.6.4 для фильтров ЭМС. Значения полос пропускания устанавливать из ряда: 200; 9·10³; 1,2·10⁵; 1·10⁶. Измерить ширину полосы частот RBWизм, в которой показания дельта-маркера изменяются относительно опорного сигнала на -6 дБ.

4.7.6.6 Рассчитать погрешность ширины полосы пропускания по формуле (3):

 $\delta RBW = [(RBWyct-RBWu_{3M})/RBWu_{3M}] \cdot 100 \%,$

(3)

где RBWуст – номинальное значение полосы пропускания, установленное в меню «Установка полосы пропускания» анализатора;

RBWизм – измеренное по п.п. 7.3.4 - 7.3.5 действительное значение полосы пропускания.

Результаты поверки считать положительными, если погрешность установки ширины полос пропускания находится в пределах:

 ± 5 % - при полосе пропускания < 1 МГц;

 ± 8 % - при полосе пропускания =1 МГц

7.7 Определение коэффициента прямоугольности фильтров ПЧ

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

7.7.1 Собрать измерительную схему в соответствии с рисунком 3.

7.7.2 Установить на выходе калибратора сигнал с частотой 160 МГц и уровнем -30 дБм, калибратор перевести в режим работы по внешнему сигналу опорной частоты.

7.7.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

1. Выполнить сброс на начальные установки

2. Установить на поверяемом анализаторе следующие параметры:

- центральная частота 160 МГц
- полоса пропускания: 1 МГц, далее значения устанавливать по п. 7.4.6
- полоса обзора: 1,5 х (полоса пропускания)
- опорный уровень: -30 дБм
- шкала: 10 дБ/дел

7.7.4 В меню «Маркер» включить маркер 1, с помощью меню «Поиск пика» установить маркер анализатора на максимум сигнала. Затем включить в меню «Маркер» режим дельтамаркера. Измерить ширину полосы частот RBW-_{3дБ}, в которой показания дельта-маркера изменяются относительно опорного сигнала на -3 дБ. Затем измерить ширину полосы частот RBW. _{60дБ}, в которой показания дельта-маркера изменяются относительно опорного сигнала на -60 дБ.

7.7.5 Вычислить коэффициент прямоугольности по формуле (4):

$$K_{(60 \pm 5.3 \pm 5)} = RBW_{-60 \pm 5} / RBW_{-3 \pm 5}$$

(4)

где RBW_{-60дБ} – измеренное значение полосы пропускания по уровню -60 дБ; RBW_{-3дБ} – измеренное значение полосы пропускания по уровню -3 дБ.

7.7.6 Повторить измерения для значений полос пропускания, устанавливаемых из ряда: 3 Гц, 10 Гц, 30 Гц, 100 Гц, 300 Гц, 1 кГц, 3 кГц, 10 кГц, 30 кГц, 300 кГц.

Результаты поверки считать положительными, если значение коэффициента прямоугольности, вычисленное по формуле (3), не превышает допускаемого значения 5.

7.8 Определение абсолютной погрешности измерения уровня сигнала

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX

7.8.1 Собрать измерительную схему в соответствии с рисунком 3.

7.8.2 Установить на выходе калибратора сигнал с частотой 160 МГц и уровнем 0 дБм, калибратора перевести в режим работы по внешнему сигналу опорной частоты.

7.8.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

1. Выполнить сброс на начальные установки.

2. Установить на поверяемом анализаторе следующие параметры:

• предусилитель выключен

• центральная частота: 160 МГц

• полоса пропускания: 10 кГц

- полоса видеофильтра: 1 кГц
- полоса обзора: 100 кГц
- опорный уровень: 0 дБм
- шкала: 1 дБ/дел
- аттенюатор: 10 дБ
- усреднение ≥ 40

7.8.4 С помощью функции «Поиск пика» измерить при помощи маркера уровень сигнала.

7.8.5 Вычислить погрешность измерения уровня по формуле (5):

$$\Delta \mathbf{P} = \mathbf{P}_{\mathsf{H3M}} - \mathbf{P}_{\mathsf{K}},\tag{5}$$

где Р_{изм} – измеренное анализатором значение уровня сигнала; Р_к – установленный уровень сигнала на калибраторе.

7.8.6 Повторить измерения при включенном в анализаторе предусилителе. Для этого на анализаторе спектра изменить следующие параметры:

- предусилитель: включен
- опорный уровень: -30 дБм
- аттенюатор: 0 дБ

7.8.7 Установить на выходе генератора уровень сигнала по измерителю мощности -30 дБм. Повторить измерения по п.п. 7.8.4 - 7.8.5.

7.8.8 Повторить измерения в диапазоне частот от 1 МГц до 3,25 ГГц. Для этого на анализаторе спектра изменить следующие параметры:

- предусилитель: выключен
- полоса пропускания: 10 кГц
- полоса видеофильтра: 1 кГц
- полоса обзора: 100 кГц
- опорный уровень: 0 дБм
- аттенюатор: 10 дБ
- шкала: 10 дБ/дел
- усреднение ≥ 40

7.8.9 Установить на генераторе значения параметров согласно таблицы 6. Центральную частоту на анализаторе устанавливать равную частоте сигнала на выходе генератора. Повторить измерения по п.п. 7.8.4 - 7.8.5 при установленных параметрах согласно таблице 6.

Таблица 6

Частота сигнала, установленная на генераторе, МГц	Уровень сигнала на выходе генератора, дБм	Параметры анализатора
1	2	3
1	0; -10; -20; -30; -40; -50	по п. 7.8.8
1	-50	по п. 7.8.8, опорный уровень: -50 дБм
10	0; -10; -20; -30; -40; -50	по п. 7.8.8
10	-50	по п. 7.8.8, опорный уровень: -50 дБм
500	0; -10; -20; -30; -40; -50	по п. 7.8.8
	-50	по п. 7.8.8, опорный уровень: -50 дБм

Продолжение табли	щы б	
1	2	3
000	0; -10; -20; -30; -40; -50	по п. 7.8.8
900	-50	по п. 7.8.8, опорный уровень: -50 дБм
1200	0; -10; -20; -30; -40; -50	по п. 7.8.8
1200	-50	по п. 7.8.8, опорный уровень: -50 дБм
1500	0; -10; -20; -30; -40; -50	по п. 7.8.8
1500	-50	по п. 7.8.8, опорный уровень: -50 дБм
1800	0; -10; -20; -30; -40; -50	по п. 7.8.8
1000	-50	по п. 7.8.8, опорный уровень: -50 дБм
2100	0; -10; -20; -30; -40; -50	по п. 7.8.8
2100	-50	по п. 7.8.8, опорный уровень: -50 дБм
2200	0; -10; -20; -30; -40; -50	по п. 7.8.8
2200	-50	по п. 7.8.8, опорный уровень: -50 дБм
2300	0; -10; -20; -30; -40; -50	по п. 7.8.8
2300	-50	по п. 7.8.8, опорный уровень: -50 дБм
2500	0; -10; -20; -30; -40; -50	по п. 7.8.8
2300	-50	по п. 7.8.8, опорный уровень: -50 дБм
2000	0; -10; -20; -30; -40; -50	по п. 7.8.8
2900	-50	по п. 7.8.8, опорный уровень: -50 дБм
3250	0; -10; -20; -30; -40; -50	по п. 7.8.8
5250	-50	по п. 7.8.8, опорный уровень: -50 дБм

Результаты поверки считать положительными, если значение погрешности, вычисленное по формуле (5) не превышает пределов :

- на частоте 160 МГц: ±0,6 дБ;

- в диапазоне частот от 1 МГц до 3,25 ГГц: ±1,5 дБ

7.9 Определение неравномерности амплитудно-частотной характеристики (АЧХ) проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX и ваттметра поглощаемой мощности NRP-Z56.

7.9.1 Собрать измерительную схему в соответствии с рисунком 4.

Рисунок 4

7.9.2 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

- 1. Выполнить сброс на начальные установки.
- 2. Установить на поверяемом анализаторе следующие параметры:
- предусилитель выключен
- центральная частота: 160 МГц
- полоса пропускания: 10 кГц
- полоса видеофильтра: 1 кГц

- полоса обзора 100 кГц
- аттенюатор 10 дБ
- шкала: 1 дБ/дел
- опорный уровень: 0 дБм

7.9.3 Измерить при помощи маркера уровень сигнала на опорной частоте 160 МГц. Записать измеренное значение уровня в таблицу 7.

7.9.4 Последовательно устанавливая значение частот на калибраторе из таблицы 7, произвести измерение уровня анализатором при помощи маркера, устанавливая соответствующую центральную частоту. Записать результаты измерений в таблицу 7.

Таблица	7
raomina	

Частота сигнала, установленная на	Измеренное	Допускасмыс пределы неравно- мерности АЧХ, дБ		
калибраторе	значение уровня Р _{изм,} дБм	с выключенным	с включенным	
		предусилителем	предусилителем	
160 МГц (опорная)	Ропорное =	-	-	
10 МГц				
500 МГц			±0,6	
900 МГц		105		
1200 МГц] ±0,5		
1500 МГц				
1800 МГц				
2100 МГц				
2200 МГц				
2300 МГц			10.9	
2500 МГц		±0,7	±0,0	
2900 МГц]		
3250 МГц]		

7.9.5 Вычислить значение неравномерности АЧХ анализатора по формуле(6):

$$\Delta A \Psi X = P_{\text{опорное}} - P_{\text{изм}}, \tag{6}$$

где Р_{опорное} – значение уровня, измеренное анализатором на частоте 160 МГц; Р_{изм} – значение уровня, измеренное на частотах из таблицы 4.

7.9.4 Включить в анализаторе предусилитель и установить аттенюатор 0 дБ. Повторить измерения по п.п. 7.9.3 - 7.9.4.

Результаты поверки считать положительными, если полученные значения неравномерности АЧХ не превышают пределов, приведенных в таблице 7.

7.10 Определение погрешности измерений уровня сигнала из-за переключения входного аттенюатора

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

7.10.1 Собрать измерительную схему в соответствии с рисунком 3.

7.10.2 Установить на выходе калибратора сигнал с частотой 160 МГц и уровнем -40 дБм. Калибратор перевести в режим работы по внешнему сигналу опорной частоты.

7.10.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

1. Выполнить сброс на начальные установки.

- 2. Установить на поверяемом анализаторе следующие параметры:
- центральная частота: 160 МГц
- полоса пропускания: 10 кГц
- полоса видеофильтра: 1 кГц
- полоса обзора: 100 кГц
- аттенюатор: 10 дБ
- шкала: 10 дБ/дел
- опорный уровень: -30 дБм
- усреднение: ≥40

7.10.4 С помощью меню «Поиск пика» измеряют амплитуду сигнала. Записывают измеренное значение в таблицу как Ропорное. Далее установить настройки согласно таблице 8 и после окончания усреднения спектрограммы измерить амплитуду маркером. Измеренные значения Ризм записать в таблицу 8.

Таблица 8

Ослабление внутреннего	Опорный	Значение уровня выход-	Измеренное
аттенюатора анализатора А,	уровень, дБм	ного сигнала на	значение уровня,
дБ		генераторе, дБм	Ризм
10 (Аопорное)	-30	-40	Ропорное
0	-40	-50	
5	-35	-45	
15	-25	-35	
20	-20	-30	
25	-15	-25	
30	-10	-20	
35	-5	-15	
40	0	-10	
45	5	-5	
50	10	0	

7.10.5 Погрешность измерений уровня сигнала из-за переключения входного аттенюатора определить по формуле (7):

 $\Delta A = (P_{\text{опорное}} - P_{\text{ИЗM}}) - (A_{\text{опорное}} - A),$ (7)

где Р_{опорное} – значение уровня сигнала, измеренное при ослаблении внутреннего аттенюатора анализатора 10дБ;

Ризм – значение уровня сигнала, измеренное при заданных из таблицы 8 значениях ослабления;

Аопорное – значение ослабления 10 дБ, задаваемое внутренним аттенюатором анализатора;

А – значение ослабления внутреннего аттенюатора анализатора, задаваемое из таблицы 8.

Результаты поверки считать положительными, если вычисленные по формуле (7) значения погрешности находятся в пределах ±0,3 дБ.

4.7.11 Определение погрешности измерения уровня при изменении полосы пропускания

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

7.11.1 Собрать измерительную схему в соответствии с рисунком 4.

7.11.2 Установить на выходе калибратора сигнал с частотой 160 МГц и уровнем 0 дБм. Калибратор перевести в режим работы по внешнему сигналу опорной частоты.

7.11.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

1. Выполнить сброс на начальные установки.

- 2. Установить на поверяемом анализаторе следующие параметры:
- центральная частота: 160 МГц
- полоса пропускания: 10 кГц
- полоса обзора: 100 кГц
- аттенюатор: 10 дБ
- шкала: 1 дБ/дел
- опорный уровень: 0 дБм

7.11.4 Измерить уровень сигнала при полосе пропускания 10 кГц и записать в таблицу 9 как опорное значение. На анализаторе последовательно устанавливать полосы пропускания из таблицы 9, меняя при этом полосу обзора как указано в таблице. Измерять отклонение уровня сигнала при изменении полосы пропускания относительно опорного значения. Измерения проводить при помощи дельта-маркера. Для этого войти в меню «Маркер» и включить функцию «Дельта-маркер». Маркер устанавливать на пик сигнала.

Таблица 9

Значение полосы пропускания анализатора	Полоса обзора	Отклонение амплитуды
10 Гц	100 Гц	
30 Гц	150 Гц	
100 Гц	500 Гц	
300 Гц	1,5 кГц	
1 кГц	5 кГц	
3 кГц	15 кГц	
10 кГц (опорная)	50 кГц	0 (опорное значение)
30 кГц	150 кГц	
100 кГц	500 кГц	
300 кГц	1,5 МГц	
1 МГц	5 МГц	

Результаты поверки считать положительными, если отклонение амплитуды при установленных полосах пропускания относительно опорной 10 кГц не превышает ±0,25 дБ.

7.12 Определение уровня гармонических искажений 2-го порядка

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX. В качестве фильтра нижних частот (ФНЧ) использовать фильтры, соответствующие частоте несущей с уровнем подавления не менее 20 дБ.

7.12.1 Собрать измерительную схему в соответствии с рисунком 5.

Рисунок 5

7.12.2 Установить на выходе калибратора сигнал с частотой 450 МГц и уровнем -40 дБм.

7.12.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

1. Выполнить сброс на начальные установки.

- 2. Установить на поверяемом анализаторе следующие параметры:
- центральная частота: 450 МГц
- полоса обзора: 500 Гц
- полоса пропускания: 10 Гц
- видеофильтр: авто
- опорный уровень: -40 дБм
- аттенюатор: 0 дБ
- усреднение ≥40

7.12.4 С помощью меню «Поиск пика» измерить уровень сигнала основной гармоники P_{f1}. На анализаторе спектра установить значение центральной частоты в два раза больше выходной частоты генератора. После окончания усреднения спектрограммы маркером измерить уровень сигнала второй гармоники P_{2f1}.

7.12.5 Уровень помех, обусловленный гармоническими искажениями, выраженный в виде точки пересечения 2-го порядка (SHI) определить по формуле (8).

$$SHI = P_{f1} - P_{2f1}, \tag{8}$$

где P_{fl} – уровень основной гармоники;

Р_{2fl} – уровень второй гармоники.

7.12.6 Повторить измерения на частоте сигнала 900 МГц, используя соответствующий фильтр.

Результаты поверки считать положительными, если значения точки пересечения 2-го порядка (SHI), вычисленные по формуле (9) не менее +35 дБ для частоты сигнала 450 МГц и не менее +60 дБ для частоты сигнала 900 МГц.

7.13 Определение уровня фазовых шумов

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX.

7.13.1 Собрать измерительную схему в соответствии с рисунком 4.

7.13.2 Установить на выходе генератора сигнал с частотой 500 МГц и уровнем 0 дБм, генератор перевести в режим работы по внешнему сигналу опорной частоты.

7.13.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

1. Выполнить сброс на начальные установки.

- 2. Установить на поверяемом анализаторе следующие параметры:
- центральная частота: 1 ГГц
- полоса пропускания: 1 кГц
- видеофильтр: 10 Гц
- полоса обзора: 100 кГц
- опорный уровень: 0 дБм
- аттенюатор: 10 дБ

7.13.4 С помощью меню «Marker» включить маркер 1. Установить маркер анализатора на максимум сигнала с помощью функции «Поиск пика» («Peak Search»). Затем включить в меню «Marker» режим дельта-маркера. Отстроить дельта-маркер от сигнала на 10 кГц, и измерить уровень сигнала при данной отстройке ΔMkr1 (дБ). Привести данный уровень к полосе 1 Гц, рассчитав значение Р_{ФШ} по формуле (9):

$$P_{\Phi III} = \Delta M kr 1 - 10 \cdot lg($$
 полоса пропускания /1Гц) (9)

7.13.5 Повторить измерения для отстройки 100 кГц и при установленной полосе обзора 500 кГц.

Результаты поверки считать положительными, если уровень фазовых шумов не превышает значений:

- при отстройке на 10 кГц: -86 дБн/Гц

- при отстройке на 100 кГц: -95 дБн/Гц

7.14 Определение уровня интермодуляционных искажений 3-го порядка

проводить методом прямых измерений с помощью калибратора многофункционального Fluke 9640A-LPNX и генератора сигналов N5181A.

7.14.1 Собрать измерительную схему в соответствии с рисунком 6.

Рисунок 6

7.14.2 На генераторе 1 установить частоту 500 МГц, уровень -20 дБм; на генераторе 2 – (частота 1-ого генератора + 2 МГц), уровень -20 дБм.

7.14.3 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

1. Выполнить сброс на начальные установки.

2. Установить на поверяемом анализаторе следующие параметры:

• центральная частота = частоте генератора 1

- полоса обзора: 1 кГц
- полоса пропускания: 10 Гц
- видеофильтр: авто
- опорный уровень: -30 дБм
- аттенюатор: 0 дБ
- усреднение: ≥40

7.14.4 С помощью меню «Маркер» и «Поиск пика», установить маркер анализатора поочередно на максимум одного из сигналов и регулировкой выходной мощности генераторов настроить уровни сигналов по экрану анализатора на -30 дБм.

7.14.5 Дождаться окончания усреднения спектрограммы и измерить уровни с помощью маркера на частотах интермодуляции (центральную частоту на анализаторе устанавливать равной частоте измеряемого сигнала):

Частота нижнего бокового тона: 2f1 – f2,

Частота верхнего бокового тона: 2f2 - f1,

где f1 – частота сигнала с генератора 1, f2 – частота сигнала с генератора 2.

$$TOI = P(f1) + (P(f2) - P(2f1 - f2)) / 2,$$
(10)

$$TOI = P (f2) + (P (f1) - P (2f2 - f1)) / 2,$$
(11)

где Р (f1) – измеренный уровень сигнала на частоте сигнала с генератора 1,

Р (f2) - измеренный уровень сигнала на частоте сигнала с генератора 2,

Р (2f1 − f2) - измеренный уровень сигнала на частоте интермодуляции 2f1 − f2 (нижний боковой тон),

Р (2f2 – f1) - измеренный уровень сигнала на частоте интермодуляции 2f2 – f1(верхний боковой тон).

Результаты поверки считать положительными, если значения точки пересечения третьего порядка (TOI), вычисленные по формулам (10) и (11) не менее +1 дБ.

7.15 Определение уровня собственных шумов

выполняется методом прямых измерений и определяется как максимальный уровень отображаемой шумовой дорожки при следующих значениях параметров анализатора: аттенюатор 0 дБ, полоса пропускания 10 Гц, полоса видеофильтра 10 Гц, полоса обзора 500 Гц, опорный уровень -60 дБм, усреднение ≥ 40.

7.15.1 На вход анализатора спектра подключить согласованную нагрузку 50 Ом.

7.15.2 На анализаторе выполнить следующие установки в соответствии с руководством по эксплуатации:

1. Выполнить сброс на начальные установки.

2. Установить на поверяемом анализаторе следующие параметры:

- предусилитель: Выкл
- аттенюатор: 0 дБ
- полоса пропускания: авто
- полоса видеофильтра: авто
- опорный уровень: -60 дБм
- усреднение: ≥ 40

• начальную и конечную частоты устанавливать в соответствии с таблицей 10.

7.15.3 Дождаться окончания усреднения спектрограммы.

7.15.4 При помощи меню «Поиск пика» произвести измерения максимального уровня отображаемой шумовой дорожки на экране прибора. Записать частоту максимально измеренного значения уровня Fmax в таблицу 10.

7.15.5 Установить частоту, определенную по п. 7.15.4 в качестве центральной. Для этого войти в меню «Маркер→» и выбрать функцию «Установить частоту маркера на центр».

7.15.6 На анализаторе выполнить следующие установки: полоса пропускания: 10 Гц, видеофильтр: 10 Гц, полоса обзора 500 Гц. Определить максимальный уровень отображаемой шумовой дорожки при данных установках. Записать измеренный уровень собственных шумов в таблицу 10.

7.15.6 Повторить измерения для остальных диапазонов частот, указанных в таблице 10.

7.15.7 Повторить измерения по п.п. 7.15.1 - 7.15.6, включив в меню «Уровень» встроенный предусилитель.

Таблица 11

Начальная	Конечная	Центральная	Измеренный уровень собственных шумов	
частота	частота	частота	с выключенным преду-	с включенным преду-
		Fmax	силителем	силителем
9 кГц	100 кГц			
100 кГц	1 МГц			
1 МГц	2,7 ГГц			
2,7 ГГц	3,25 ГГц			

Результаты поверки считать положительными, если уровень собственных шумов анализатора не превышает значений, приведенных в таблице 11.

Таблица 11

Наименование характеристик	Значения	
Средний уровень собственных шумов, дБм, не более	Aupukrepherink	
С выключенным предусилителем, в диапазонах частот:		
от 9 кГц до 100 кГц	-93	
св. 100 кГц до 1 МГц	-90-3·(f/100)	
св. 1 МГц до 2,7 ГГц	-118	
св. 2,7 ГГц до 3,25 ГГц	-106	
С включенным предусилителем, в диапазонах частот:		
св. 100 кГц до 1 МГц	-108-2·(f/100)	
св. 1 МГц до 10 МГц	-138	
св. 10 МГц до 3,25 ГГц	$-142+3 \cdot (f/10^6)$	
	где f – частота, на которой	
	измеряется уровень, кГц	

7.16 Определение метрологических характеристик следящего генератора

проводить методом прямых измерений с помощью ваттметра поглощаемой мощности NRP-Z56. 7.16.1 Подключить ваттметр к выходу следящего генератора.

7.16.2 Закот на винова акадината рановатора и нарина

7.16.2 Задать на выходе следящего генератора уровень мощность -10 дБм и установить частоту сигнала 160 МГц. Установки выполнить в соответствии с руководством по эксплуатации.

7.16.3 Измерить уровень сигнала ваттметром и записать как Ропорное.

7.16.4 Вычислить значение абсолютной погрешности установки уровня Ропорное по формуле (12):

$$\Delta P_{\text{опорное}} = P_{\text{уст}} - P_{\text{опорное}}, \tag{12}$$

где P_{yct} – значение уровня на выходе генератора, установленное по индикатору испытуемого прибора;

Ропорное – значение уровня, измеренное ваттметром на частоте 160 МГц;

7.16.5 Изменяя частоту сигнала на выходе генератора провести измерение уровня сигнала с помощью ваттметра на 10 частотах равномерно распределенных по диапазону частот от 200 кГц до 3,25 ГГц. Записать измеренные значения Pf.

7.13.6 Вычислить значение неравномерности АЧХ по формуле (13):

 $\Delta A \Psi X = P_f - P_{onophoe}, \tag{13}$

где Р_{опорное} – значение уровня, измеренное ваттметром на частоте 160 МГц;

Р_f- значения уровня, измеренные на частотах, отличных от 160 МГц по п 7.16.5.

7.16.7 Установить частоту сигнала на выходе следящего генератора 160 МГц, уровень сигнала 0 дБм. Измерить уровень сигнала ваттметром и записать как Ра.

7.16.8 Вычислить значение абсолютной погрешности установки уровня сигнала из-за переключения относительно опорного уровня -10 дБм по формуле (14):

$$\Delta Pa = P_{ycr} - \Delta P_{OIIOPHOe} - P_a, \tag{14}$$

где P_{уст} – значения уровня на выходе генератора, устанавливаемые по индикатору испытуемого прибора;

 $\Delta P_{\text{опорное}}$ – значение абсолютной погрешности установки уровня $P_{\text{опорное}}$, вычисленное по формуле (12);

Р_а- значения уровня, измеренные ваттметром.

7.16.9 Повторить измерения по п. 7.16.8 для уровней сигнала с выхода генератора -20 дБм, -30 дБм, -40 дБм.

Результаты поверки считать положительными, если метрологические характеристики следящего генератора соответствуют приведенным в таблице 12.

Таблица 12 – Ме	трологические	характеристики	следящего	генератора
-----------------	---------------	----------------	-----------	------------

Наименование характеристик	Значения характеристик
Диапазон частот следящего генератора, Гц	от 1·10 ⁵ до 3,25·10 ⁹
Диапазон установки уровня следящего генератора, дБм	от -50 до 0
Пределы допускаемой абсолютной погрешности установки уровня	
-10 дБм на частоте 160 МГц, дБ	$\pm 0,5$
(при нормальных условиях применения)	
Неравномерность АЧХ относительно опорной частоты 160 МГц, дБ	+2
(нормируется в диапазоне частот от 200 кГц до 3,25 ГГц)	IZ
Пределы допускаемой абсолютной погрешности установки уровня	
сигнала из-за переключения относительно опорного уровня -10 дБм, дБ	±1
(нормируется в диапазоне установки уровня от -40 до 0 дБм)	

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 При положительных результатах поверки анализаторов оформляется свидетельство приказом Минпромторга России от 02.07.2015 поверке В соответствии с 0 № 1815 "Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке".

8.2 При отрицательных результатах поверки приборы не допускаются к дальнейшему применению, свидетельство о поверке аннулируется и выдается извещение о непригодности.

Начальник отдела испытаний и сертификации

Сраф С.А. Корнеев