

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ «Ростест-Моеква»

А.Д. Меньшиков

« 29 » _

2018 г.

Государственная система обеспечения единства измерений

КОМПЛЕКСЫ ИЗМЕРИТЕЛЬНЫЕ МНОГОКАНАЛЬНЫЕ УНИВЕРСАЛЬНЫЕ ЦМС-XX (CMS-XX)

Методика поверки

РТ-МП-5402-441-2018

Настоящая методика поверки распространяется на комплексы измерительные многоканальные универсальные ЦМС-XX (CMS-XX) (далее по тексту — ЦМС-XX (CMS-XX)), изготовленные обществом с ограниченной ответственностью научно-производственным объединение «Диагностические Технологии» (ООО НПО «Диатех»), г. Москва, и устанавливает объём, методику и порядок проведения их первичной и периодической поверок.

Интервал между поверками 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Номер		сть проведения ции при
Наименование операции	пункта НД по поверке	первичной поверке	периодической поверке
Внешний осмотр	7.1	Да	Да
Опробование	7.2	Да	Да
Определение относительной погрешности измерений пикового значения (ПИК) виброускорения, среднеквадратического значения (СКЗ) виброскорости, значения размаха (РАЗМАХА) виброперемещения на базовой частоте 80 Гц	7.3	Да	Да
Определение неравномерности амплитудно-частотной характеристики (далее – AЧХ) в диапазонах рабочих частот при измерений ПИК виброускорения, СКЗ виброскорости, РАЗМАХА виброперемещения	7.4	Да	Да
Определение абсолютной погрешности измерений размаха виброперемещения по каналам относительной вибрации	7.5	Да	Да
Определение абсолютной погрешности измерений числа оборотов ротора	7.6	Да	Да

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки применяют средства поверки, указанные в таблице 2.

Таблица 2 – Средства поверки

Номер пункта НД по поверке	Наименование и тип основного или вспомогательного средства поверки; метрологические и основные технические характеристики средства поверки
7.3; 7.4; 7.5; 7.6; 7.7	Генератор сигналов произвольной формы Agilent 33510B, $F_{\text{синус}} = 1 \cdot 10^{-3} - 30 \cdot 10^6 \; \Gamma_{\text{II}}, \; U_{\text{вых}} = \pm 10 \; B_{\Pi\Pi}, \; \Pi\Gamma = 0.01 \; \% + 0.001 \; \text{мB}$
7.3; 7.4; 7.5; 7.6; 7.7	Мультиметр цифровой Agilent 34401A, $U_= 0.1 - 1000 \text{ B}, U_\approx = 0.1 - 750 \text{ B}, F = 3 - 300000 \Gamma \text{ц}, \\ \Pi\Gamma_= = 0.0015 \%, \Pi\Gamma_\approx = 0.06 \%$

2.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых ЦМС-XX (CMS-XX) с требуемой точностью

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки ЦМС-XX (СМS-XX) допускается инженерно-технический персонал со среднетехническим или высшим техническим образованием, имеющий опыт работы с электротехническими установками, ознакомленный с руководством по эксплуатации и настоящей методикой поверки.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны быть соблюдены требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей», а также изложенные в руководстве по эксплуатации на ЦМС-ХХ (СМS-ХХ), в документации на применяемые средства поверки и вспомогательное оборудование.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

относительная влажность воздуха..... не более 80 %;

атмосферное давление от 94 до 106 кПа

Комплектность средства измерений должна соответствовать требованиям, приведенным в описании типа.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Проверить наличие средств поверки, укомплектованность их эксплуатационной документацией (ЭД) и необходимыми элементами соединений.
- 6.2 Используемые средства поверки разместить, заземлить и соединить в соответствии с требованиями ЭД на указанные средства.
- 6.3 Подготовку, соединение, включение и прогрев средств поверки, регистрацию показаний и другие работы по поверке произвести в соответствии с ЭД на указанные средства.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При внешнем осмотре должно быть установлено соответствие ЦМС-XX (CMS-XX) следующим требованиям:

- отсутствие механических повреждений корпуса, соединительных кабелей и соединителей, которые могут влиять на результат поверки;
- соответствие комплектности и маркировки требованиям эксплуатационной документации.

В случае обнаружения несоответствия хотя бы по одному из вышеуказанных требований поверка прекращается (до устранения нарушения).

Результаты внешнего осмотра считать удовлетворительными, если ЦМС-XX (CMS-XX) соответствует вышеперечисленным требованиям, комплектность полная.

7.2 Опробование

Для проведения опробования ЦМС-XX (CMS-XX) необходимо:

- подключить ЦМС-XX (СМS-XX) к персональному компьютеру (далее Π K) с помощью Ethernet кабеля;
 - запустить программное обеспечение (далее Π O) Safe Plant версии не ниже 1.07;
- произвести авторизацию и настройку входных каналов согласно инструкции по эксплуатации, прилагаемой для ПО;
 - в панели измерений выбрать необходимый агрегат с привязанными к нему каналами.

ЦМС-XX (СМS-XX) включена и готова к проведению поверки.

Успешное выполнение описанных выше действий свидетельствует о корректной работе ЦМС-XX (CMS-XX).

Результаты поверки считать удовлетворительными, если предусмотренная процедура опробования выполняется.

7.3 Определение относительной погрешности измерений ПИК виброускорения, СКЗ виброскорости, РАЗМАХА виброперемещения на базовой частоте 80 Гц

В основном меню ПО Safe Plant выбрать вкладку «Анализ данных».

Подключить выход генератора Agilent 33510B (далее – генератор) к входу канала №1 ЦМС-ХХ (СМS-ХХ). Произвести калибровку канала согласно инструкции по эксплуатации, установив на генераторе значение частоты 80,0 Гц и напряжение 70,9 мВ, соответствующее пиковому значению (далее – ПИК) виброускорения 10,0 м/с².

Установить на генераторе значение базовой частоты равное 80,0 Гц и напряжение, эквивалентное пиковым значениям виброускорения из таблицы 3. Выходное напряжение контролировать мультиметром Agilent 34401A (далее — мультиметр). Измеренные значения наблюдать в графическом окне модуля «Анализ данных» (Рисунок 1).

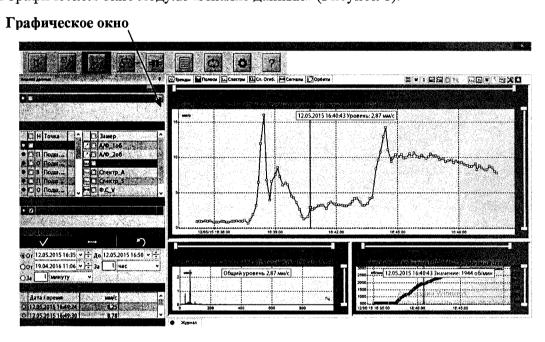


Рисунок 1 – Графическое окно модуля «Анализ данных»

Полученные значения занести в таблицу 5. Описанный выше алгоритм измерений повторить для каналов №№ 2-16 ЦМС-16 (CMS-16) или №№ 2-64 ЦМС-64 (CMS-64).

Таблица 3 - Относительная погрешность измерений виброускорения

U, мВ	3,54	7,09	35,50	70,90	106,40	141,80
$A_{HOM.}$, M/c^2	0,50	1,00	5,00	10,00	15,00	20,00
$A_{\text{изм.}}, \text{ M/c}^2$						
δA _i , %						

Относительную погрешность измерений ПИК виброускорения определить по формуле (1):

$$\delta A_i = \frac{A_{u_{3M.}} - A_{h_{OM.}}}{A_{u_{OU}}} \cdot 100 \tag{1}$$

где: $A_{_{\!\mathit{USM}.}}$ — измеренное значение ПИК виброускорения, м/с²;

 $A_{\text{ном.}}$ — номинальное эквивалентное значение ПИК виброускорения, устанавливаемое на генераторе, м/c².

За относительную погрешность измерения ПИК виброускорения принять максимальное значение $\delta A_{i_{max}}$, вычисленное по формуле (1).

Повторить вышеописанную процедуру для параметров среднеквадратичного значения (далее — СКЗ) виброскорости и значения размаха (далее — РАЗМАХ) виброперемещения. Полученные значения занести в таблицы 4 и 5 соответственно.

Таблица 4 - Относительная погрешность измерений виброскорости

U, мВ	5,00	25,00	50,00	75,00	100,00	150,00	175,00	200,00
$V_{\text{ном.}}$, мм/с	1,00	5,00	10,00	15,00	20,00	30,00	35,00	40,00
V _{изм.} , мм/с								
δV _i , %								

Относительную погрешность измерений СКЗ виброскорости определить по формуле (2):

$$\delta V_i = \frac{V_{u_{3M}} - V_{hom}}{V_{hom}} \cdot 100 \tag{2}$$

где: $V_{u_{3M}}$ – измеренное значение СКЗ виброскорости, мм/с;

За относительную погрешность измерения СКЗ виброскорости принять максимальное значение $\delta V_{i_{\max}}$, вычисленное по формуле (2):

Таблица 5 - Относительная погрешность измерений виброперемещения

20001111	,	************		ora montepe	The birds			
U, м В	4,50	9,00	18,00	36,00	72,00	90,00	134,00	179,00
$S_{\text{Hom.}}$, MKM	5,00	10,00	20,00	40,00	80,00	100,00	150,00	200,00
$S_{\text{изм.}}$, мкм								
δS_i , %								

Относительную погрешность измерений размаха виброперемещения определить по формуле (3):

$$\delta S_i = \frac{S_{u_{3M.}} - S_{hom.}}{S_{...}} \cdot 100 \tag{3}$$

где: $S_{u_{3\text{м.}}}$ — измеренное значение размаха виброперемещения, мкм;

За относительную погрешность измерения размаха виброперемещения принять максимальное значение $\delta S_{i_{\max}}$, вычисленное по формуле (3).

Результаты поверки считаются удовлетворительными, если относительная погрешность измерений значения ПИК виброускорения на базовой частоте 80 Γ ц не превышает \pm 6 %, СКЗ виброскорости не превышает \pm 6 %, размаха виброперемещения не превышает \pm 12 %.

7.4 Определение неравномерности AЧX в рабочих диапазонах частот по каналам измерения абсолютной вибрации

Осуществить подключение ЦМС-XX (CMS-XX) согласно алгоритму, описанному в пункте 7.4.

Установить на генераторе значения частот колебаний и напряжения, эквивалентные

значению ПИК виброускорения, указанные в таблице 8. Выходное напряжение контролировать мультиметром. Измеренные значения наблюдать в графическом окне модуля «Анализ данных» (Рисунок 2).

Полученные значения занести в таблицу 6. Описанный выше алгоритм измерений повторить для каналов №№ 2-16 ЦМС-16 (CMS-16) или №№ 2-64 ЦМС-64 (CMS-64).

Таблица 6 - Неравномерность АЧХ при измерении виброускорения

					P0		P	P	• D-	10000	op cirrin	•		
F , Гц	2,0	4,0	10,0	20,0	40,0	80,0	160,0	320,0	640,0	1000,0	2000,0	4000,0	8000,0	10000,0
U, мВ		141,8												
$A_{\text{HOM.}}, \text{ M/c}^2$		20,0												
$A_{\text{изм.}}, \text{ M/c}^2$														
γA _i , %														

Неравномерность амплитудно-частотной характеристики измерения ПИК виброускорения вычислить по формуле (4):

$$\gamma A_i = \frac{A_{u_{3M}} - A_{u_{3M}80}}{A_{u_{3M}80}} \cdot 100 \tag{4}$$

где: $A_{_{\!\mathit{U3M.}}}$ — измеренное значение ПИК виброускорения, м/с²;

За неравномерность амплитудно-частотной характеристики измерения ПИК виброускорения в рабочем диапазоне частот принять максимальное значение $\gamma A_{i_{\max}}$, вычисленное по формуле (4).

Повторить вышеописанную процедуру для параметров СКЗ виброскорости и размаха виброперемещения. Полученные значения занести в таблицы 7 и 8 соответственно.

Таблица 7 - Неравномерность АЧХ при измерении виброскорости

F , Гц	2,00	4,00	10,00	20,00	40,00	80,00	160,00	320,00	640,00	1000,00	2000,00	3000,00
U, MB	1,26	2,51	6,28	12,55	25,13	50,24	100,48	200,96	401,93	628,00	1256,00	1884,00
V _{HOM.} , MM/C		10,00										
V _{изм.} , мм/с										·		
γV _i , %												

Неравномерность амплитудно-частотной характеристики измерения СКЗ виброскорости вычислить по формуле (5):

$$\gamma V_i = \frac{V_{u_{3M}} - V_{u_{3M}80.}}{V_{u_{3M}80.}} \cdot 100 \tag{5}$$

где: $V_{u_{3M}}$ — измеренное значение СКЗ виброскорости, мм/с;

 $V_{_{\!\mathit{U3M80}_{\!.}}}$ — показания СКЗ виброскорости ЦМС-XX (СМS-XX) на базовой частоте, мм/с.

За неравномерность амплитудно-частотной характеристики измерения СКЗ виброскорости в рабочем диапазоне частот принять максимальное значение $\gamma V_{i_{\max}}$, вычисленное по формуле (5).

Таблица 8 - Неравномерность АЧХ при измерении виброперемещения

1 40311	иолици о перавномерноств и их при измерении внороперемещения											
F, Гц	2,00	4,00	10,00	20,00	40,00	80,00	100,00	200,00	300,00	400,00		
U, мВ	0,05	0,20	1,26	5,01	20,10	80,40	125,61	502,47	1130,55	2009,91		
$S_{\text{ном.}}$, мкм		90,00										
$S_{\text{изм.}}$, мкм			·									
γS _i , %												

Неравномерность амплитудно-частотной характеристики измерения размаха виброперемещения вычислить по формуле (6):

$$\gamma S_i = \frac{S_{u_{3M}} - S_{u_{3M}80}}{S_{u_{3M}80}} \cdot 100 \tag{6}$$

где: $S_{y_{34}}$ — измеренное значение размаха виброперемещения, мкм;

 $S_{_{\it u3m80.}}$ — показания размаха виброперемещения ЦМС-XX (CMS-XX) на базовой частоте, мкм.

За неравномерность амплитудно-частотной характеристики измерения размаха виброперемещения в рабочем диапазоне принять максимальное значение $\gamma S_{i_{\text{max}}}$, вычисленное по формуле (6).

Результаты поверки считаются удовлетворительными, если неравномерность AYX не превышает \pm 5 %.

7.5 Определение абсолютной погрешности измерений размаха виброперемещения по каналам относительной вибрации.

Осуществить подключение ЦМС-XX (CMS-XX) согласно алгоритму, описанному в пункте 7.4.

Абсолютную погрешность определять не менее чем в 10 точках, равномерно распределенных по диапазону измерений, одно из которых должно равняться минимально допустимому, а другое максимально допустимому значению рабочего диапазона измерительного канала.

Установить на частоте 45 Гц значение переменного напряжения на генераторе, эквивалентное размаху виброперемещения, в соответствии с таблицей 9. Полученные значения занести в таблицу 9. Описанный выше алгоритм измерений повторить для каналов №№ 2-16 ЦМС-16 (СМS-16) или №№ 2-64 ЦМС-64 (СМS-64).

Таблица 9 - Абсолютная погрешность при измерении по каналу относительной вибрации

U*, B	0,30	0,50	0,80	1,00	1,50	2,00	2,50	3,00	4,00	5,00
$S_{\text{hom.}}$, mm	0,30	0,50	0,80	1,00	1,50	2,00	2,50	3,00	4,00	5,00
$S_{u_{3M.}}$, MM					_					
ΔS_i , mm										

* С учетом действительного значения коэффициента преобразования канала измерения относительной вибрации равного 1,0 В/мм.

Для других значений коэффициента преобразования значения, задаваемых переменных напряжений в табл. 9, должны быть откорректированы.

Абсолютную погрешность измерений размаха виброперемещения ΔSi определить по формуле (7):

$$\Delta S_i = S_{yyy} - S_{yyy}, \tag{7}$$

 $S_{_{\! HOM.}}$ — номинальное эквивалентное значение размаха виброперемещения, устанавливаемое на генераторе, мм.

За абсолютную погрешность измерений размаха виброперемещения относительной вибрации принять максимальное значение $\Delta S_{i_{max}}$, вычисленное по формуле (7).

Результаты поверки считать удовлетворительными, если допускаемая абсолютная погрешность измерений размаха виброперемещения по каналам относительной вибрации находится в пределах ± 0.05 мм.

7.6 Определение абсолютной погрешности измерений числа оборотов ротора

Осуществить подключение ЦМС-XX (CMS-XX) согласно алгоритму, описанному в пункте 7.4.

Погрешность измерений определять путем задания частоты подаваемого сигнала с генератора по 10 точкам в соответствии с таблицей 10. Описанный выше алгоритм измерений повторить для каналов №№ 2-16 ЦМС-16 (СМS-16) или №№ 2-64 ЦМС-64 (СМS-64).

Таблица 10 - Абсолютная погрешность при измерении числа оборотов ротора

					1 1					
F, Гц	0,033(3)	0,33(3)	0,66(6)	1,33(3)	1,66(6)	16,66(6)	83,33(3)	166,6(6)	500,00	1000,00
$N_{\scriptscriptstyle HOM.}$, об/мин	2,00	20,00	40,00	80,00	100,00	1000,00	5000,00	10000,00	30000,00	60000,00
$N_{\scriptscriptstyle \! \!\! \!$										
Δ_N , об/мин										

Абсолютную погрешность измерения частоты вращения ΔN_i определить по формуле (8):

$$\Delta N_i = N_{yyy} - N_{yyy} \,, \tag{8}$$

где:

N_{изм} – измеренное значение числа оборотов, об/мин;

 $N_{_{3.}}$ — номинальное значение числа оборотов задаваемое при помощи генератора, об/мин.

За абсолютную погрешность измерений числа оборота ротора принять максимальное значение $\Delta N_{i_{\max}}$, вычисленное по формуле (8).

Результаты поверки считать удовлетворительными, если допускаемая абсолютная погрешность измерений числа оборотов ротора находится в пределах ($1\pm0,0025n$) об/мин в диапазоне измерений от 2 до 60000 об/мин, где n – число оборотов.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Результаты измерений, полученные в процессе поверки, заносят в протокол произвольной формы.
- 8.2 При положительных результатах поверки выдается свидетельство о поверке в соответствии с действующими нормативными правовыми документами.

Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска поверительного клейма.

8.3 При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности с указанием причин.

Начальник лаб. № 441 ФБУ «Ростест – Москва» А.С. Фефилов

Начальник сектора лаб. № 441 ФБУ «Ростест – Москва» И.А. Кофиади