Федеральное государственное унитарное предприятие «Всероссийский научио-исследовательский институт метрологии имени Д.И. Менделеева» ФГУП «ВНИИМ им.Д.И.Менделеева»

УТВЕРЖДАЮ И.О. директора ФГУИ ВНИЙМ из Д.И.Менделеева» мил в предоступна 18 и детерения протива 18 2017 2017 2017

Государственная система обеспечения единства измерений

Анализатор масел четырехкомпонентный интегрированный MicroLab моделей MicroLab30 и MicroLab40

МЕТОДИКА ПОВЕРКИ

МП-242-2144-2017

Заместитель руководителя отдела Государственных эталонов в области физико-химических из-
мерений ФГУП «ВНИИМ им. Д.И. Менделеева»"
А.В. Колобова
Ведущий инженер
ФГУП «ВНИИМ им Д.И. Менделеева»
Т.М. Эннанова
Руководитель лаборатории государственных эта-
лонов и научных исследований в области изме-
рений параметров дисперсных сред ФГУП
«ВНИИМ им. Д.И. Менделеева»
Д. Н. Козлов
Руководитель НИЛ 2302
ФГУП «ВНИИМ им. Д.И. Менделеева»
А.А. Демьянов

Санкт-Петербург 2017 г.

1. ВВЕДЕНИЕ

Настоящая методика распространяется на анализаторы масел четырехкомпонентные интегрированные MicroLab, моделей MicroLab30 и MicroLab40 (далее – анализаторы масел MicroLab), изготавливаемые Spectro Scientific Inc., США. Анализаторы масел MicroLab подлежат первичной поверке до ввода в эксплуатацию и после ремонта и периодической поверке в процессе эксплуатации. Интервал между поверками – 1 год.

2. ОПЕРАЦИИ ПОВЕРКИ

2.1. При проведении поверки должны быть выполнены операции, указанные в таблице 1. Таблица 1- Операции поверки

	Hoven Hymyera	Проведение операции		
Наименование операций	Номер пункта настоящей методики	при пер- вичной поверке	при перио- дической поверке	
Внешний осмотр.	7.1	да	да	
Опробование	7.2	да	да	
Подтверждение соответствия ПО	7.3	да	да	
Определение метрологических характеристик.	7.4	да	да	
Определение диапазонов измерений и относительной погрешности измерений содержания элементов в пробе масла	7.4.1	да	да	
Определение диапазонов измерений и относительной погрешности измерений кинематической вязкости масла	7.4.2	да	да	
Определение диапазонов измерений и относительной погрешности измерений счётной концентрации частиц в масле	7.4.3	да	да	

- 2.2. Операции по пункту 7.4.3 выполняются только для анализаторов масел MicroLab модели MicroLab40.
- 2.3. Если при проведении той или иной операции поверки получен отрицательный результат, дальнейшая поверка прекращается.

3. СРЕДСТВА ПОВЕРКИ

3.1. При проведении поверки должны быть применены средства, указанные в таблице 2. Таблица 2 – Средства поверки

№ п/ п	Наименование и тип средства поверки	Основные технические и (или) метрологические характеристики
1	ГСО 10066-2012, СО содержания металлов в нефтепродуктах (СО СМН-ПА)	Массовые доли элементов от 0,5 млн ⁻¹ до 10000 млн ⁻¹ ; относительное значение расширенной неопределенности аттестованного значения 4 % (при k=2 и доверительной вероятности Р=0,95)
2	ГСО 8589-2004, СО вязкости жидко- сти (РЭВ-20)	Кинематическая вязкость при температуре $(40,00\pm0,01)$ °C от 8,0 до 12,0 мм²/с и при $(100,00\pm0,01)$ °C от 2,20 до 3,40 мм²/с, относительная погрешность $\pm0,2$ %
	ГСО 8595-2004, СО вязкости жидко- сти (РЭВ-150)	Кинематическая вязкость при температуре $(40,00\pm0,01)$ °C от $40,0$ до $60,0$ мм²/с и при $(100,00\pm0,01)$ °C от $6,50$ до $9,70$ мм²/с, относительная погрешность $\pm0,2$ %
	ГСО 8598-2004, СО вязкости жидко-	Кинематическая вязкость при температуре (40,00±0,01)

MΠ-242-2144-2017 Анализаторы масел четырехкомпонентные интегрированные MicroLab

	сти (РЭВ-600)	°C от 132 до 198 мм²/с и при (100,00±0,01) °C от 12,0 до
		18,0 мм ² /с, относительная погрешность ±0,2 %
3	Рабочий эталон единицы счётной	Относительная погрешность рабочего эталона не
	концентрации частиц в жидкости в	более ±10 %.
	соответствии с ГОСТ Р 8.606-2012	
	«ГСИ. Государственная поверочная	
	схема для средств измерений дис-	
	персных параметров аэрозолей, взве-	
	сей и порошкообразных материалов».	
4	Барометр-анероид М-110, № в Феде-	Диапазон измерений не уже чем от 630 до 790
	ральном информационном фонде	мм.рт. столба, (от 84 до 107 кПа) абсолютная по-
	3745-73	грешность ±2,5 мм.рт. столба
5	Термогигрометр электронный CEN-	Диапазон измерений отн. влажности от 10 до 100
	TER, № в Федеральном информаци-	%; абс. погрешность не более 3,0 %; диапазон из-
	онном фонде 22129-09	мерений температуры от +10 до +40 °C; абсолют-
		ная погрешность не более 0,5 °C

- 3.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик анализаторов масел MicroLab с требуемой точностью.
- 3.3. Все средства поверки должны иметь действующие свидетельства о поверке, а стандартные образцы, - действующие паспорта.
- 3.4. При применении рабочего эталона для определения диапазонов и относительной погрешности измерений счётной концентрации частиц в масле необходимо осуществить приготовление контрольных образцов (далее - КО) согласно приложению Б к настоящей методике поверки. Материалы и оборудование, применяемые при приготовлении КО, приведены в таблице Б.1.
- 3.5. Допускается проведение периодической поверки по пункту 7.4.3 анализаторов масел MicroLab модели MicroLab40 в отдельных поддиапазонах измерений по письменному заявлению владельца с обязательным указанием об этом в свидетельстве о поверке согласно приказу Минпромторга России от «02» июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

4. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ И ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1. Требования безопасности должны соответствовать рекомендациям, изложенным в руководстве по эксплуатации анализаторов масел MicroLab.
- 4.2. К проведению поверки допускаются лица, изучившие руководство по эксплуатации анализаторов масел MicroLab и методику поверки МП-242-2144-2017, и имеющие удостоверение поверителя.
- 4.3. При проведении работ по подготовке проб следует руководствоваться правилами и нормами, регламентированными инструкциями по безопасности труда для лабораторий, действующими на предприятии.
- 4.5. Для получения данных, необходимых для поверки, допускается участие в поверке оператора, обслуживающего анализаторы масел MicroLab, или сервис-инженера (под контролем поверителя).

5. УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

5.1. При проведении поверки должны быть соблюдены следующие условия:

- температура окружающей среды, °С or +15 до +25; от 84,0 до 106,7; - атмосферное давление, кПа - относительная влажность при температуре +25 °C, % не более 80: $(230\pm23);$ - напряжение питания переменного тока однофазной сети, В

- частота переменного тока, Гц

 $(60\pm1);$

- вибрация, тряска, механические воздействия должны отсутствовать;
- внешние электрические и магнитные поля должны отсутствовать, кроме земных.
- 5.2. Перед проведением поверки анализатор масел MicroLab следует выдержать при условиях поверки (см. п. 5.1) не менее 2 часов (до подключения к сети переменного тока).

6. ПОДГОТОВКА К ПОВЕРКЕ

- 6.1. Установку и подготовку прибора к поверке, включение соединительных устройств, заземление, выполнение операций при проведении контрольных измерений осуществляют в соответствии с правилами эксплуатации, изложенными в руководстве по эксплуатации анализаторов масел MicroLab.
- 6.2. Подготовить для анализа выбранные стандартные образцы в соответствии с инструкцией по применению соответствующего комплекта стандартных образцов, являющейся Приложением к Свидетельству на комплект СО.

7. ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр.

- 7.1.1. При проведении внешнего осмотра должно быть установлено:
- наличие маркировки, подтверждающей тип и идентифицирующей анализатор масел MicroLab;
- отсутствие на наружных поверхностях анализатора повреждений и дефектов, влияющих на его работоспособность;
 - отсутствие ослаблений элементов конструкции, чистоту разъемов;
 - надежность крепления соединительных элементов, кабелей;
- правильность размещения анализатора в лаборатории (согласно руководства по эксплуатации).
- 7.1.2. Анализатор масел MicroLab считается прошедшим поверку по п. 7.1, если корпус, внешние элементы, органы управления не повреждены, отсутствуют механические повреждения и ослабления элементов конструкции.

7.2 Опробование.

Опробование анализаторы масел MicroLab заключается в его включении в соответствии с руководством по эксплуатации и загрузке ПО «OilAnalyzer FE».

Результаты опробования считаются удовлетворительными, если на дисплее монитора после загрузки ПО «OilAnalyzer FE» не появляется сообщений об ошибках.

7.3 Подтверждение соответствия ПО

7.3.1. Определение наименования программного обеспечения и номера версии (идентификационного номера) программного обеспечения.

В проводнике операционной системы в папке, где находятся файлы ПО «OilAnalyzer_FE» либо на «рабочем столе» операционной системы выбрать исполняемый файл OilAnalyzer.exe, произвести щелчок правой кнопкой мыши по файлу OilAnalyzer.exe и выбрать пункт «Свойства» («Properties»). Это окно также можно открыть, нажав на кнопку «?» в меню «Состояние системы» при открытой программе. Затем, в появившемся окне переключиться на вкладку «Подробно» («Details»). В строке «Описание файла» («FileDescription») отображается наименование ПО. В строке «Версия продукта» («Product version») отображается полный номер версии ПО, в котором к метрологически значимой части относятся первые две цифры номера версии. Следующие за ними цифры, указанные после первых двух, относятся к не метрологически значимой части ПО и могут принимать любые значения. Полный номер версии ПО должен быть не ниже 10.0.0.00 и соответствовать указанному в техническом паспорте на поверяемый прибор. Копия примера окна идентификации приведена на рисунке 1.

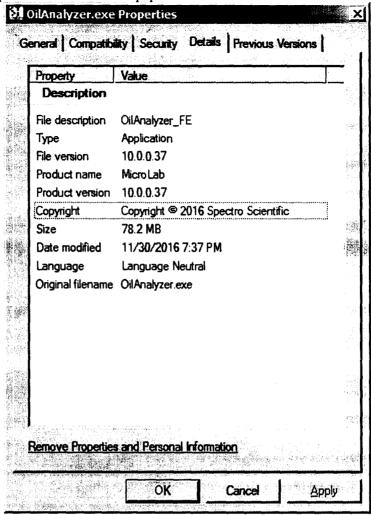


Рисунок 1. Окно с идентификационным названием и номером версии ПО «OilAnalyzer FE».

7.3.3. Анализатор масел MicroLab считается выдержавшим поверку по п. 7.3, если версия ПО «OilAnalyzer_FE» не ниже 10.0.0.00 * (* - версия ПО может иметь дополнительные цифровые суффиксы), а полная версия ПО «OilAnalyzer_FE» совпадает с указанной в Паспорте на поверяемый прибор.

7.4. Определение метрологических характеристик.

- 7.4.1. Определение диапазонов измерений и относительной погрешности измерений содержания элементов в пробе масла.
- 7.4.1.1. Для проведения измерений по данному пункту применяют стандартные образцы, указанные в п. 1 таблицы 2 настоящей МП либо аналогичные. Выбрать стандартные образцы, содержание в которых не менее чем по четыре из указанных элементов: алюминия, бария, бора, кальция, молибдена, никеля, фосфора, калия, хрома, меди, железа, свинца, магния, марганца, кремния, натрия, олова, титана, ванадия, цинка, находится в следующих поддиапазонах массовых долей элементов: от 5 млн⁻¹ до 50 млн⁻¹, свыше 50 до 100 млн⁻¹, свыше 100 до 9000 млн⁻¹, либо приготовить контрольные образцы методом разбавления по методике, приведенной ниже:

Для приготовления контрольных образцов применяют следующее оборудование и реактивы:

- стаканы ВН-100 см³ по ГОСТ 23932-90;
- пипетки мерные 2-го класса точности по ГОСТ 29227-91;
- государственные стандартные образцы содержания металлов в нефтепродуктах, ГСО 10066-2012 (массовые доли элементов от 0,5 млн⁻¹ до 10000 млн⁻¹; относительное значение расширенной неопределенности аттестованного значения 4 % (при k=2 и доверительной вероятности P=0,95)),

- минеральное масло не хуже 8-го класса чистоты по ГОСТ 17216-2001 либо масло вазелиновое медицинское по ГОСТ 3164-78 (в качестве разбавителя рекомендуется использовать образцы OSA № 29088-01 (0 млн⁻¹);
- весы аналитические специального класса точности с погрешностью измерения не более 0,001 г по ГОСТ Р 53228-2008 "Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания";
- мешалка магнитная MM 5 по ТУ 25-11-834-80 либо вибрационный стол;
- ультразвуковая ванна ПСБ-2835-05 либо аналогичная.

Контрольные образцы готовят из образцов ГСО 10066-2012 и разбавителя, в качестве которого используют минеральное масло не хуже 8-го класса чистоты по ГОСТ 17216-2001 либо масло вазелиновое медицинское по ГОСТ 3164-78, либо образцы OSA № 29088-01 (0 млн⁻¹).

Количество разбавителя (m_p) , необходимое для получения контрольного образца с требуемой массовой долей элементов (X_i) вычисляют, используя следующую формулу:

$$(m_C + m_p) = m_C \times \frac{X_C}{X_i} \tag{1}$$

где X_i расчетные массовые доли элементов в i-ом контрольном образце, мг/кг (млн⁻¹);

 X_{C} — массовые доли элементов в исходном стандартном образце, используемом для приготовления контрольного образца, мг/кг (млн⁻¹);

 m_{C} — масса исходного стандартного образца, используемого для приготовления контрольного образца, г;

тр- масса разбавителя, г.

В стакан, взвешенный с точностью до 0,001 г, помещают исходный стандартный образец в количестве (m_C) г. Затем в тот же стакан, находящийся на весах, добавляют разбавитель, чтобы общая масса исходного стандартного образца и разбавителя стала равной (m_C + m_p) г. Содержимое стакана перемешивают в течение 5 -7 минут с помощью магнитной мешалки (либо помещают его на вибрационный стол) до получения однородного раствора. Для лучшей гомогенизации раствора стакан с контрольным образцом помещают в ультразвуковую ванну на 8-10 минут, если это не противоречит требованиям нормативных документов по применяемому стандартному образцу, либо применяют метод вакуумирования для удаления пузырьков воздуха. Затем переливают в емкости с плотно закрывающимися крышками. Емкости хранят в темном прохладном месте и используют в течение 1 месяца. При появлении осадка образцы бракуют.

- 7.4.1.2. Подготовить анализатор к работе в соответствии с разделом II руководства по эксплуатации четырехкомпонентных интегрированных анализаторов масел MicroLab. Выполнить калибровку анализатора в соответствии с разделом III руководства по эксплуатации четырехкомпонентных интегрированных анализаторов масел MicroLab. Выполнить не менее 2-3 анализов («промывка») с применением «нулевого» стандарта (СНЕСК FLUSH), следует добиться следующих результатов: по фосфору и цинку не более 50 млн⁻¹ (мг/кг), по остальным элементам результат анализа должен отображаться либо как "<2", либо "0". Выбрать режим «Свежее масло»: марка «ОSA», тип «СНЕСК FLUSH»; в меню настройки анализа выбрать только режим измерения содержания элементов: в разделе «Анализ» «Элементы (ОЕЅ)» «Расширенные элементы», в разделе «Режим вискозиметра» «Расчет по ИК спектру». Выполнить не менее одного измерения содержания элементов в выбранном (приготовленном) для анализа образце в соответствии с разделом IV Руководства по эксплуатации для стабилизации систем спектрометра. Процедуру промывки и последующего однократного анализа повторять при переходе к анализу каждого нового образца (по составу и по содержанию контролируемых элементов).
- 7.4.1.3. Определение диапазонов измерений массовой доли элементов совмещают с определением относительной погрешности результатов измерений. Выполнить не менее трех измерений содержания элементов в выбранном (приготовленном) для анализа образце в соответ-

ствии с разделом IV Руководства по эксплуатации. После каждого измерения выполняют дважды чистку электродов ватными палочками с CHECK FLUSH в соответствии с требованиями РЭ. Относительную погрешность измерений содержания элементов в пробе масла определяют как наибольшую из полученных результатов измерений для каждого элемента по формуле:

$$\delta = \frac{C_{uxw} - C_{am}}{C_{am}} \times 100 , \%$$
 (2)

где: $C_{u_{3M}}$ - результат измерения содержания элемента в пробе масла, млн⁻¹;

 C_{am} — значение содержания элементов в пробе масла, приведенное в паспорте либо свидетельстве на стандартный образец, либо рассчитанное для контрольного образца по формуле (1) в п. 7.4.1.1, млн⁻¹.

7.4.1.4. Анализатор масел MicroLab считается выдержавшим поверку по п. 7.4.1, если диапазоны измерений и относительные погрешности измерений содержания элементов в пробе масла, вычисленные в п. 7.4.1.3, соответствуют требованиям, указанным в таблице 3.

Таблица 3 – Диапазоны измерений и относительные погрешности измерений содержания элементов в пробе масла

Определяемый элемент	Диапазон измерений массовой	Пределы допускаемой относи- тельной погрешности, %		
	доли элементов, млн-1 (мг/кг)			
Алюминий	от 5 до 100	±20		
Барий	от 25 до 150 включ.	±20		
Барий	св. 150 до 2000	±20		
Бор	от 5 до 100 включ.	±15		
Бор	св. 100 до 1000	±15		
Кальций	от 25 до 500 включ.	±20		
Кальций	св. 500 до 9000	±20		
Хром	от 8 до 100	±8		
Медь	от 5 до 500 включ.	±20		
Медь	св. 500 до 1000	±20		
Железо	от 6 до 1000 включ.	±5		
Железо	св. 1000 до 3000	±20		
Свинец	от 6 до 150	±20		
Магний	от 5 до 100 включ.	±5		
Магний	св. 100 до 3000	±20		
Марганец	от 5 до 100	±5		
Молибден	от 10 до 1000	±5		
Никель	от 5 до 100	±10		
Фосфор	от 100 до 600 включ.	±20		
Фосфор	св. 600 до 4000	±20		
Калий	от 10 до 1000 включ.	±5		
Калий	св. 1000 до 4000	±20		
Кремний	от 5 до 150 включ.	±8		
Кремний	св. 150 до 3000	±15		
Натрий	от 10 до 1000	±15		
Олово	от 6 до 100	±10		
Титан	от 8 до 100	±15		
Ванадий	от 7 до 100	±15		
Цинк	от 8 до 100 включ.	±15		
	св. 100 до 4000	±20		

- 7.4.2. Определение диапазонов измерений и относительной погрешности измерений кинематической вязкости масла.
- 7.4.2.1.Определение диапазонов измерений и относительной погрешности измерения кинематической вязкости проводят с использованием стандартных образов вязкости жид-кости утвержденного типа Γ CO 8589-2004, Γ CO 8595-2004 и Γ CO 8598-2004 при температурах измерений 40 °C и 100 °C.
- 7.4.2.2. Подготовить анализатор к работе в соответствии с разделом ІІ руководства по эксплуатации анализаторов масел четырехкомпонентных интегрированных MicroLab. Выполнить калибровку анализатора в соответствии с разделом ІІІ руководства по эксплуатации анализаторов масел четырехкомпонентных интегрированных MicroLab. Выбрать режим «Свежее масло»: марка «OSA», тип «CHECK FLUSH»; в меню настройки анализа выбрать только режим измерения для вискозиметра в разделе «Режим вискозиметра» устанавливают температуру измерения 40 °C и 100 °C одновременно. Заполняют бутыли для анализа образцом и проводят измерения в соответствии с Руководством по эксплуатации анализатора. После каждого измерения выполняют промывку в соответствии с требованиями РЭ.
- 7.4.2.3. Определение диапазонов измерений кинематической вязкости совмещают с определением относительной погрешности измерений кинематической вязкости. Начало диапазона измерений кинематической вязкости для температуры 40 °C контролируется при анализе масла с нормированным значением кинематической вязкости от 8 до 10 мм²/с; начало диапазона измерений кинематической вязкости для температуры 100 °C контролируется при анализе масла с нормированным значением кинематической вязкости от 3 до 5 мм²/с; конец диапазона измерений кинематической вязкости для температуры 40 °C контролируется при анализе масла с нормированным значением кинематической вязкости от 175 до 180 мм²/с; конец диапазона измерений кинематической вязкости для температуры 100 °C контролируется при анализе масла с нормированным значением кинематической вязкости от 17 до 18 мм²/с. Для каждого образца проводят не менее трех измерений кинематической вязкости определяют как наибольшую из полученных результатов измерений для каждой температуры измерения по формуле:

$$\sigma = \frac{\eta_{uxu} - \eta_{am}}{\eta_{am}} \times 100 , \%$$
 (3)

где: $\eta_{u_{3M}}$ – результат измерения кинематической вязкости, мм²/с;

 η_{am} — аттестованное значение кинематической вязкости стандартного образца жидкости, мм²/с.

7.4.2.4. Анализатор масел MicroLab считается выдержавшим поверку по п. 7.4.2, если диапазоны измерений и относительные погрешности каждого измерения, вычисленные в п. 7.4.2.3, не превышают значений, указанных в таблице 4.

Таблица 4

Температура при которой определяется кинематическая вязкость масла, °С	Диапазон измерений кинематиче- ской вязкости масла, мм ² /с	Пределы допускаемой относительной погрешности, %	
+40	от 8 до 180	±5	
+ 100	от 3 до 18	±7	

- 7.4.3. Определение диапазонов измерений и относительной погрешности измерений счётной концентрации частиц в масле
- 7.4.3.1. Определение диапазонов измерений счётной концентрации частиц в масле совмещают с определением относительной погрешности измерений счётной концентрации частиц в масле. Поверку проводят с применением рабочего эталона.
- 7.4.3.1.1. Осуществить настройку параметров измерений анализатора масел MicroLab и рабочего эталона согласно рекомендациям п. Б.1.3 приложения Б.
- 7.4.3.1.2. Приготовить КО согласно приложению Б. Провести анализатором масел MicroLab и рабочим эталоном измерения счётной концентрации частиц в приготовленном КО.
- 7.4.3.1.3. Записать полученные значения счётной концентрации частиц в протокол поверки, где:
 - Cu (частиц/см³) измеренное значение счётной концентрации частиц в масле, полученное анализатором масел MicroLab;
 - $C\partial$ (частиц/см³) действительное значение счётной концентрации частиц в масле, полученное на рабочем эталоне.
- 7.4.3.1.4. Относительную погрешность измерений счётной концентрации частиц в масле δ_{C} (%) рассчитать по формуле (4):

$$\delta_C = \frac{Cu - C\partial}{C\partial} \cdot 100 \tag{4}$$

Анализатор масел четырехкомпонентный интегрированный MicroLab считается выдержавшим поверку, если диапазоны измерений и относительная погрешность каждого измерения, вычисленная в п. 7.4.3.1.4, не превышают значений, указанных в таблице 5.

Таблица 5

Сенсор, установленный в мо- дуле счётчика частиц	Диапазон измерений счетной концентрации частиц в масле, см-	Пределы допускаемой относительной погрешности, %
HCB-LD-25/15	от 1·10 ² до 2·10 ⁵	±30
HCB-LD-25/25	от 1·10 ² до 1,2·10 ⁵	±30
HCB-LD-50/50	от 1·10 ² до 2,4·10 ⁴	±30
HCB-LD-SC-25/25	от 1·10 ² до 1·10 ⁴	±30

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТА ПОВЕРКИ

- 8.1. Данные, полученные при поверке, оформляются в согласно приложения А к настоящей методике поверки.
- 8.2. Анализатор масел четырехкомпонентный интегрированный MicroLab моделей MicroLab30 и MicroLab40, удовлетворяющий требованиям настоящей методики поверки, признается годными и на него оформляется свидетельство о поверке по установленной форме.

На оборотной стороне свидетельства приводится следующая информация:

- -результаты опробования и внешнего осмотра;
- -результат проверки соответствия ПО;
- результаты определения метрологических характеристик;
- 8.3. Анализатор масел четырехкомпонентный интегрированный MicroLab моделей MicroLab30 и MicroLab40, не удовлетворяющий требованиям настоящей методики, к дальнейшей эксплуатации не допускается и на него выдается извещение о непригодности.
- 8.4. Знак поверки наносится на боковую панель анализатора масел MicroLab и (или) на свидетельство о поверке.

Приложение А.

Протокол поверки

				Зав.№						
П	[риі	надлежит					ИНН			
Іоверка п	ров	ведена по	документу							
7				<i>c</i>						
использ	ова	нием стан	ідартных с 	ооразцов						
словия г		-						0.0		
				ſРі				°C,		
			ность окру	жающего воз,	духа			<u></u> %.		
езультат		-								
									····	
лирооова	анис	·	- IIO							
				огических хар						
		зультат о нтов в про		я диапазонов	и отно	оси:	гельной погреш	ност	и измерений соде	
Наиме-	(Опреде-	Аттестов	анное значе-	Резул	тьт	ат измерения	Относительная по-		
нование)]	тяемый і		жания эле-		ржания элемента грешность измерен		шность измерения		
образца	. 3	элемент		мента в пробе масла,		в пробе масла, млн-1		сод	содержания элемента	
			млн ⁻¹	H-1		-		в пробе масла, %		
		зультат о язкости м	-	я диапазонов	и отно	си	гельной погреш	ност	и измерений кине	
Наимен	0-	Темпера	гура при	Аттестованное		Результат измере-		e-	Относительная	
вание		которой	опреде-	значение ГС	CO,	1	ния кинематиче	-	погрешность из-	
образца	.	ляется к	инемати-	mm ² /c			ской вязкости,		мерений кинема-	
		ческая вя	язкость			1	мм ² /с		тической вязко-	
		масла, °С	C						сти, %	
N	_									
аблица 3	3. Pe	зультат о	пределени	я диапазонов	и отно	си'	тельной погреш	ност	и измерений счёт-	
ой конце	ентр	рации част	гиц в масл	e .			_		-	
		чение счё	1 , ,	іствительное зна-		Измеренное значение			Относительная	
- 1	•		е счётной кон-	· •			погрешность			
- 1	i -			•		частиц в масле, полу-		•	измерений счёт-	
1	_		1	- 1		ченное анализатором		_	ной концентра-	
	HOM	и КО, см	э рабоч	нем эталоне, с	M ⁻³	мас	сел MicroLab, с	M ⁻³	ции частиц, %	
			· · · · · · · · · · · · · · · · · · ·							
Іоверите.	ль									

приложение б

(обязательное)

Методика приготовления контрольных образцов

- Б.1.1. Настоящая методика описывает процедуру приготовления контрольного образца (далее КО) при определении относительной погрешности измерений счётной концентрации частиц в масле анализаторов масел MicroLab (далее поверяемый анализатор).
- Б.1.2. В поверяемом анализаторе каналы регистрации размеров частиц настраиваются изготовителем при выпуске из производства, например, в соответствии с ГОСТ Р ИСО 11171-2012 «Гидропривод объёмный. Калибровка автоматических счётчиков частиц в жидкости». Под регистрируемым размером частицы следует понимать эквивалентный сферический диаметр. При проведении измерений настройки каналов регистрации у поверяемого анализатора и рабочего эталона должны быть идентичны. В данной методике следует считывать показания с канала «более 4 мкм».
- Б.1.3. Рекомендуемые настройки проведения измерений для поверяемого анализатора и рабочего эталона:
 - канал регистрации размеров частиц, индицирующий показания после проведения измерений «более 4 мкм»;
 - объём предварительной прокачки пробы не менее 30 см³.
 - объём анализируемой пробы не менее 30 см³;
- Б.1.4. Материалы и оборудование, применяемые при приготовлении КО, а также требования к ним приведены в таблице Б.1. Допускается применение других материалов и оборудования с аналогичными характеристиками.

Таблина Б.1

	Наименование материала или оборудо-	Требования, предъявляемые к материалу или
№	вания, номер документа, регламенти-	оборудованию, основные технические и (или)
	рующего технические требования	метрологические характеристики
1	Доломит молотый марки ДМ-20-0,10	Средний диаметр частиц (10 – 15) мкм
	по ГОСТ 23672-79	
2	Масло индустриальное И-20А по ГОСТ	Допускается применение масла, счётная концен-
	20799-88	трация частиц к котором не превышает 1000 ча-
		стиц/см ³ по каналу регистрации размеров частиц
		«более 4 мкм». Контроль осуществляется рабо-
		чим эталоном.
3	Стаканы лабораторные термостойкие по ГОСТ 25336-82	Объём не менее 50 см ³
4	Цилиндры по ГОСТ 1770-74	Класс точности не хуже 2
5	Ванна ультразвуковая ВУ-09-«Я-ФП»-	Рабочая частота ультразвукового преобразовате-
	03	ля (40±2) кГц
6	Мешалка электромагнитная US-1500	Диапазон задания скоростей вращения
		(0 – 1500) об/мин; диапазон задания температур
		нагрева (20 – 340) °C

Б.1.5. КО готовится добавлением доломита в масло. Масса доломита и объём масла подбираются в таком соотношении, чтобы счётная концентрация частиц в приготовленном КО по каналу регистрации размеров частиц «более 4 мкм» составляла (60 – 90) % от верхнего предела диа-

пазона измерений поверяемого анализатора. Оценку КО осуществлять поверяемым анализатором.

12

Б.1.6. В случае, если верхний предел измерений поверяемого анализатора выше, чем у используемого рабочего эталона, КО необходимо приготовить с таким условием, чтобы счётная концентрация частиц в приготовленном КО по каналу регистрации размеров частиц «более 4 мкм» составляла (60 – 90) % от верхнего предела диапазона измерений используемого рабочего эталона. Оценку КО осуществлять рабочим эталоном.

Б.1.7. При приготовлении КО перемешивание и нагрев осуществлять магнитной мешалкой на средней скорости вращения якоря и температуре (30 – 40) °С. Дегазацию КО проводить с помощью ванны ультразвуковой. Допускается проводить дегазацию с помощью устройств вакуумирования аналитических проб. Подготовку КО к применению проводить согласно рекомендациям ГОСТ 31247-2004 «Чистота промышленная. Определение загрязнения пробы жидкости с помощью автоматических счётчиков частиц».