УТВЕРЖДАЮ

Первый заместитель генерального

директора-заместитель по научной работе

ИНСТРУКЦИЯ

АНАЛИЗАТОРЫ РАЗМЕРОВ ЧАСТИЦ PHOTOCOR МОДИФИКАЦИЙ PHOTOCOR COMPLEX, PHOTOCOR COMPACT, PHOTOCOR COMPACT-Z, PHOTOCOR MINI

МЕТОДИКА ПОВЕРКИ

МП-640-036-17

Настоящая методика поверки распространяется на анализаторы размеров частиц Photocor модификаций Photocor Complex, Photocor Compact, Photocor Compact-Z, Photocor Mini (далее – анализаторы) и устанавливает методы и средства их первичной и периодической поверок.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Объем поверки

	Номер	Проведение операции при		
<i>Наименование операций</i>	пункта	первичной	периодической	
	методики	поверке	поверке	
1 Внешний осмотр	7.1	да	да	
2 Опробование	7.2	да	да	
3 Идентификация программного обеспечения (ПО)	7.3	да	да	
4 Определение абсолютной погрешности установки температуры в кюветном отделении анализатора*	7.5	да	нет	
5 Определение относительной погрешности измерений размера частиц в жидкости	7.4	да	да	

^{*} Данную операцию выполняют при поверке модификаций анализаторов, имеющих функцию терморегулирования

2 СРЕДСТВА ПОВЕРКИ

2.1 При поверке должны быть использованы средства, указанные в таблице 2.

Таблица 2 – Средства поверки

Таолица 2 —	Средства поверки
Номера	Наименование и тип (условное обозначение) основного или вспомогательного
пункта	средства поверки; обозначение нормативного документа, регламентирующе-
методики	го технические требования, и (или) метрологические и основные технические
поверки	характеристики средства поверки
7.4, 7.5	Государственный вторичный эталон единиц дисперсных параметров взвесей нанометрового диапазона по поверочной схеме ГОСТ 8.606-2012 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений дисперсных параметров аэрозолей, взвесей и порошкообразных материалов»
7.4	ГСО 10050-2011 стандартный образец гранулометрического состава (монодисперсный латекс) ОГС-09ЛМ
	Вспомогательные средства поверки
	Измеритель температуры многоканальный прецизионный МИТ 8.03 с датчиком
7.4, 7.5	температуры ТСПН–5В, диапазон измерений температуры от 0 до 100 °C, пределы допускаемой абсолютной погрешности измерений температуры ±0,06 °C
	Дозатор пипеточный Eppendorf Research Plus, объем дозирования от 10 до 100
7.4, 7.5	мкл, пределы допускаемого относительного отклонения среднего арифмети-
7.4, 7.3	ческого значения фактического объема дозы \pm 8,0 % от номинального 2 мкл,
	$\pm 2,5$ % от номинального 10 мкл, $\pm 2,0$ % от номинального 20 мкл
7.4, 7.5	Емкости мерные стеклянные по ГОСТ 1770-74 вместимостью 100 см ³ , ц.д.
7.7, 7.3	2 см3, класс точности 1
	Вода по ГОСТ Р 52501-2005 температурой (25±5) °C, удельной электропрово-
7.4, 7.5	димостью не более 0,01 мСм/м, значением рН от 5,4 до 6,6, степень чистоты
	не хуже 2
7.5	Масло АМГ-10 по ГОСТ 6794-75

- $2.2~\mathrm{B}$ случае отсутствия в комплекте поверяемого анализатора персонального компьютера, необходим компьютер с характеристиками: процессор Intel Pentium или AMD с тактовой частотой не менее $1.7~\mathrm{\Gamma}$ Гц, объём оперативной памяти не менее $2~\mathrm{\Gamma}$ Б, жёсткий диск объёмом не менее $500~\mathrm{\Gamma}$ Б, не менее двух свободных USB портов, операционная система не ниже Windows XP.
- 2.3 Все средства поверки должны быть исправны, применяемые при поверке средства измерений должны быть поверены и иметь свидетельства о поверке с не истекцим сроком действия на время проведения поверки или в документации.
- 2.4 Допускается замена средств поверки, указанных в таблице 2, другими средствами поверки, обеспечивающими определение метрологических характеристик анализатора с требуемой точностью.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

3.1 К проведению поверки допускаются лица, аттестованные в качестве поверителя, а также имеющие высшее или среднетехническое образование, опыт работы в радиоизмерительной или физической сфере не менее 1 года, владеющие техникой измерений параметров аэрозолей, взвесей и порошкообразных материалов, изучивших настоящую методику и эксплуатационную документацию на анализатор, прошедшие инструктаж по технике безопасности.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны выполняться общие правила техники безопасности и производственной санитарии по ГОСТ 12.3.019-80, ГОСТ 12.1.005-88, а также правила безопасности, указанные в эксплуатационной документации на анализатор и средства поверки.
- 4.2 В случае использования при поверке масла АМГ-10, соответствующего требованиям ГОСТ 6794-75, необходимо соблюдать правила безопасности, указанные в данном стандарте.

5 УСЛОВИЯ ПОВЕРКИ

- 5.1 Испытания проводить в нормальных условиях (если не оговорено иное):
- температура окружающей среды, °С

от 15 до 30;

- относительная влажность окружающего воздуха (без конденсата), % от 30 до 80;
- атмосферное давление, кПа

от 84 от 106.7.

- 5.2 Характеристики питающей электрической сети должны соответствовать требованиям:
 - напряжение, В

 $(220 \pm 22);$

частота переменного тока, Гц

 (50 ± 1) .

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки анализатор должен быть выдержан в климатических условиях, соответствующих условиям поверки, не менее 8 часов. В случае, если анализатор находился при температуре ниже 0 °C, время выдержки должно быть не менее 24 часов.
- 6.2 Для операции по п.7.5 необходима серия проб водных взвесей монодисперсных латексов и масляной взвеси диоксида с размерами частиц 10, 20, 100, 500, 1000, 5000, 10000 нм. В качестве масляного разбавителя масло АМГ–19. Разбавители должны быть чистыми, без содержания загрязняющих частиц размером 10 нм и более. При необходимости провести предварительную очистку разбавителей с применением мембранного фильтра с соответствующей тонкостью фильтрации. Пробы готовить в соответствии с рекомендациями руководства по эксплуатации анализатора, непосредственно перед их анализом.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

7.1.1 Проверить визуально комплектность и внешний вид анализатора согласно его эксплуатационной документации. При проверке комплектности удостовериться в наличии автономного программного обеспечения, необходимого для работы анализатора. При проверке внешнего вида удостовериться в отсутствии механических повреждений, которые могут повлиять на работу анализатора, чистоте кюветного отделения, четкости и полноте маркировки.

 Π р и м е ч а н и е — Допускается отсутствие флеш-диска Π О в комплекте поставки анализатора, если при поверке используется компьютер уже с предустановленным Π О анализатора.

- 7.1.2 Анализатор считать пригодными для проведения поверки, если:
- комплектность достаточна для проведения поверки;
- маркировка достаточна для идентификации анализатора и правильного его подключения к сети питания;
 - отсутствуют видимые механические повреждения;
 - кюветное отделение анализаторов не имеет видимых загрязнений.

В противном случае анализатор к дальнейшей поверке не допускается, результаты поверки считать отрицательными.

7.2 Опробование

- 7.2.1 При опробовании проверить готовность анализатора к работе и нормальное его функционирование следующим образом:
 - а) соединить анализатор с компьютером;
- б) включить анализатор согласно руководству по его эксплуатации, при этом крышка кюветного отделения должна быть закрыта. Выдержать анализатор во включенном состоянии не менее 3 мин для стабилизации работы лазера;
- в) включить компьютер, установить при необходимости ПО и запустить его согласно руководству по эксплуатации анализатора. В результате должно появиться основное окно программы, что говорит о готовности анализатора к работе. Анализатор функционирует нормально, если отсутствуют сообщения о сбоях и ошибках в его работе.
- 7.2.2 Результаты опробования считать положительными, если анализатор функционирует нормально, сообщения о сбоях и ошибках в работе отсутствуют. В противном случае результаты поверки считать отрицательными.

7.3 Идентификация ПО

- 7.3.1 Для выполнения данной операции необходимо:
- а) соединить анализатор с компьютером;
- б) включить анализатор и компьютер. автономное ПО должно быть установлено на компьютере. Запустить ПО согласно руководству по эксплуатации анализатора;
- в) сравнить данные о ПО в диалоге о ПО на экране компьютера с паспортными данными анализатора.
- 7.3.2 Результаты идентификации ПО считать положительными, если идентификационное наименование и версия ПО соответствуют указанным в таблице 3. В противном случае результаты поверки считать отрицательными.

Таблица 3 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Photocor-FC
Номер версии (идентификационный номер) ПО	не ниже 7.26.6.123

7.4 Определение абсолютной погрешности установки температуры в кюветном отделении анализатора

- 7.4.1 Операцию выполнить в следующем порядке:
- а) подготовить анализатор к работе согласно руководству по его эксплуатации;
- б) подготовить измеритель температуры с датчиком температуры к работе согласно руководству по их эксплуатации, поместить датчик температуры в кюветное отделение анализатора:
- в) последовательно задать в кюветном отделении анализатора температуры нагрева 15, 30, 50, 95 °C и при каждом заданном значении после его стабилизации снимать показание измерителя температуры. Показания занести в протокол поверки.
- 7.4.2 Определить значения абсолютной погрешности установки температуры в кюветном отделении анализатора по формуле (1):

$$\Delta_i = t_{iadi} - t_{uimi} \tag{1}$$

где $t_{3адi}$ – заданное значение температуры, °С;

 $t_{\text{изм}i}$ — измеренное значение температуры, °С.

7.4.3 Результаты поверки считать положительными, если значения абсолютной погрешности установки температуры в кюветном отделении анализатора находятся в допускаемых пределах ± 0.1 °C. В противном случае результаты поверки считать отрицательными.

7.5 Определение относительной погрешности измерений размеров частиц в жид-кости

- 7.5.1 При выполнении операции использовать эталон, а также серию проб, подготовленных согласно разделу 6 настоящей методики. Операцию выполнять при температурах пробы 5, 30, 50, 95 °C (кроме модификации Photocor Mini). При температурах нагрева 5, 15, 25, 50 °C использовать пробы на основе монодисперсных латексов, при температуре нагрева 95 °C пробы на основе диоксида кремния. Для анализатора модификации Photocor Mini температура пробы должна быть в температурном диапазоне условий поверки, т.к. данная модификация не имеет функции терморегулирования.
- 7.5.2 Операцию выполнить с каждой пробой при данной температуре следующим образом:
- а) подготовить анализатор к работе согласно руководству по его эксплуатации. Установить на анализаторе режим измерения «Cycle», в соответствующие поля ПО ввести требуемую информацию о частицах и разбавителе пробы;
- б) кювету с пробой поместить в кюветное отделение анализатора, задать температуру нагрева пробы, выждать до достижения и стабилизации заданной температуры, после чего провести измерения размера частиц в пробе не менее 10 раз. Результаты измерений (d_{cui}) занести в протокол поверки;
- в) провести измерения той же самой пробы на эталоне не менее 10 раз, при этом температура пробы должна быть такой же, как при измерении на анализаторе. Результаты измерений $(d_{3\pi i})$ занести в протокол поверки.

Примечание – При использовании пробы на основе ГСО пункт в) исключить.

- 7.5.3 Определить относительную основную погрешность измерений размеров частиц в жидкости согласно ГОСТ Р 8.736-2011:
- а) вычислить среднее арифметическое значение (\bar{d}_{cu}) результатов измерений, полученных на анализаторе при анализе данной пробы по формуле (2):

$$\bar{d}_{\text{CM}} = \frac{\sum_{i=1}^{n} d_{\text{CM}i}}{n},\tag{2}$$

где n — количество измерений данной пробы, проведенных анализатором;

б) вычислить среднее квадратическое отклонение результатов измерений анализатора по формуле (3) и выразить в процентах:

$$S_{\bar{d}} = \sqrt{\frac{\sum_{i=1}^{n} (d_{\text{CM}i} - \bar{d}_{\text{CM}})}{n(n-1)}};$$
 (3)

в) вычислить случайную составляющую относительной основной погрешности измерений размера частиц в жидкости по формуле (4):

$$\varepsilon = t \cdot S_{\bar{d}} \,, \tag{4}$$

где t – коэффициент Стьюдента относительно при P = 0,95для n измерений, проведенных анализатором для данной пробы при данной температуре;

г) в случае использования при поверке эталона вычислить систематическую составляющую относительной основной погрешности измерений размеров частиц в жидкости по формуле (5):

$$\Theta = \frac{\bar{d}_{\text{CM}} - \bar{d}_{\text{3T}}}{\bar{d}_{\text{3T}}} \cdot 100 \%, \qquad (5)$$

где $\bar{d}_{\rm 3T}$ – среднее арифметическое значение результатов измерений данной пробы при данной температуре, проведенных эталоном;

д) в случае использования при поверке ГСО вычислить систематическую составляющую относительной погрешности измерений размеров частиц в жидкости по формуле (6):

$$\Theta = \frac{\bar{d}_{\text{CM}} - d_{\text{HOM}}}{d_{\text{HOM}}} \cdot 100 \%, \tag{6}$$

где $d_{\text{ном}}$ – номинальное значение размера частиц ГСО;

е) вычислить среднее квадратическое отклонение систематической составляющей относительной погрешности измерений размеров частиц в жидкости по формуле (7):

$$S_{\Theta} = \frac{\Theta + \sigma_{\text{3T}}}{\sqrt{3}},\tag{7}$$

где $\sigma_{\text{эт}}$ – значение погрешности измерений (воспроизведения) размера частиц применяемого эталона (ГСО), %;

ж) вычислить суммарное среднее квадратическое отклонение относительной основной погрешности измерений размера частиц в жидкости по формуле (8):

$$S_{\Sigma} = \sqrt{S_{\Theta}^2 + S_{\bar{d}}^2}; \tag{8}$$

з) вычислить коэффициент соотношения случайной и систематической составляющих относительной основной погрешности измерений размера частиц в жидкости по формуле (9):

$$K = \frac{\varepsilon + \Theta}{S_{\tilde{a}} + S_{\Theta}}; \tag{9}$$

и) вычислить относительную основную погрешность измерений размера частиц в жидкости по формуле (10):

$$\delta = K \cdot S_{\Sigma}. \tag{10}$$

7.5.4 Результаты поверки считать положительными, если значения относительной основной погрешности измерений размеров частиц в жидкости находятся в допускаемых пределах ± 10 %. В противном случае результаты поверки считать отрицательными.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Результаты поверки оформить протоколом. Рекомендованная форма протокола приведена в приложении А.

- 8.2 При положительных результатах поверки анализатор признается годным и на него выдается свидетельство о поверке установленного образца в соответствии с Приказом №1815 "Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке". На свидетельство наносится знак поверки в виде наклейки или оттиска поверительного клейма.
- 8.3 При отрицательных результатах поверки анализатор к дальнейшей эксплуатации не допускается и на него выписывается «Извещение о непригодности» установленного образца в соответствии с Приказом №1815 "Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке" с указанием причин непригодности.

Начальник лаборатории 640

Д.М. Балаханов

Ведущий инженер лаб.640

Н.Б. Потапова

Приложение А (справочное)

Форма протокола поверки

	Протокол поверки №
	ОТ
	от анализатора размеров частиц Photocor модификаций
1	Заводской номер и дата выпуска СИ
2	Наименование предприятия—изготовителя СИ
3	СИ принадлежит
	СИ принадлежит
4	Наименование нормативного документа по поверке СИ
5	Вид поверки
	первичная/периодическая
	Условия поверки: температура окружающего воздуха, °С относительная влажность воздуха, % атмосферное давление, кПа напряжение питания, В
7	Сведения о средствах поверки наименование, обозначение, заводской номер средства поверки,
	сведения о поверке/аттестации применяемых при поверке средств измерений/испытательного оборудования

8 Результаты поверки:

- 8.1 Результаты внешнего осмотра (достаточность комплектности для поверки, отсутствие видимых повреждений и загрязнений, четкость и полнота маркировки для идентификации СИ и правильного его подключения к сети питания)
- 8.2 Результаты опробования
- 8.3 Результаты идентификации ПО СИ
- 8.4 Результаты определения метрологических характеристик:
- а) Определение абсолютной погрешности установки температуры в кюветном отделении анализатора

Таблица 1 – Результаты расчета абсолютной погрешности установки температуры в кювет-

ном отделении анализатора

t _{cH} , °C	t₃r, °C	Δt, °C	Δt _H , °C
5			
15			
25			±0,1
50			
95			

t_{си} - заданное значение температуры в кюветном отделении анализатора;

 $t_{\text{эт}}$ – значение температуры, измеренное эталонным измерителем температуры;

 Δt — расчетное значение абсолютной погрешности установки температуры в кюветном отделении анализатора;

 $\Delta_{\rm H}$ – пределы допускаемой абсолютной погрешности установки температуры в кюветном отделении анализатора

Вывод:		
	положительны/отпилательные пезультаты	

б)Определение относительной основной погрешности измерений размеров частиц в жидкости

Таблица 1- Результаты измерений размеров частиц в жидкости, полученных СИ

t, °C	d _{ном} , нм	N змеренное значение размера частиц ($d_{\text{сы}}$), нм									
ι, τ		1	2	3	4	5	6	7	8	9	10
	10										
	20										
	100										
5	500										
	1000										
	5000										
	10000										
	10										
	20										
	100										
25	500										
	1000										
	5000										
	10000										
	10										
	20										
	100										
50	500										
	1000										
	5000										
	10000										
	10										
	20										
	100										
95	500										
	1000										
	5000									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	10000										

Примечание -

Таблица 2- Результаты измерений размеров частиц в жидкости, полученных эталоном

¹ d_{ном} – номинальный размер частиц образца, на основе которого приготовлена проба;

t – температура анализируемой пробы

² Результаты измерений для модификации Photocor Mini указываются только при температуре пробы, соответствующей условиям поверки, т.к. данная модификация не имеет функции терморегулирования

t, °C	d _{ном} , нм -	Измеренное значение размера частиц $(d_{\pi i})$, нм									
		1	2	3	4	5	6	7	8	9	10
	10										
	20				*** * ***						
	100										
5	500										
	1000									-	
	5000										
	10000										
	10										
	20										
	100				**						
25	500										
	1000										
	5000				.,,,						
	10000										
	10										
	20										
	100										
50	500										
	1000										
	5000										
	10000										
	10				,						
	20					-					
	100										
95	500										
	1000										
	5000	· · · · · · · · · · · · · · · · · · ·				1					
	10000										

Таблица 3 – Результаты расчета относительной погрешности измерений размеров частиц в жидкости

d us	$ar{d}_{cu}$, HM	$ar{d}_{\scriptscriptstyle 9m}$, HM	$S_{\bar{d}}, \%$	ε, %	Θ, %	S _Θ , %	S _Σ , %	K	δ,%	S 0/
d _{HOM} , HM				при темп	ературе пр	обы 5 °С	,			δ _н ,%
10										
20										
100										
500										±10
1000										
5000										
10000										
				при темп	ературе пр	обы 30 °С				
10										
20										
1 0 0										±10
500										
1000										

				1.1
5000				
10000				
		при температу	уре пробы 50 °C	
10				
20				
100				
500				±10
1000				
5000				
10000				
		при температ	уре пробы 95 °C	
10				
20				
100				
500				±10
1000				
5000				
10000				
Применал	Jue -			

Примечание -

- \bar{d}_{cu} среднее арифметическое значение показаний анализатора при анализе данной пробы;
- $S_{\bar{d}}$ среднее квадратическое отклонение показаний анализатора;
- є случайная составляющая основной погрешности измерений размера частиц;
- О систематическая составляющая основной погрешности измерений размеров частиц;
- S_{Θ} среднее квадратическое отклонение систематической составляющей основной погрешности измерений размеров частиц;
- S_{Σ} суммарное среднее квадратическое отклонение основной погрешности измерений размера частиц;
- К коэффициент соотношения случайной и систематической составляющих основной погрешности измерений размера частиц;
- δ расчетное значение относительной основной погрешности измерений размера частиц для анализатора;
- $\delta_{\rm H}$ пределы допускаемой относительной основной погрешности измерений размера частиц для анализатора.

Вывод			
	положител	ьные/отрицательные результать	ı
Заключение			
	соответствие уст	ановленным в описании типа мет	прологическим требованиям,
годен/не годен	к применению в сфере го	осударственного регулирования о	беспечения единства измерений
П			
Поверитель		подпись	инициалы, фамилия
Дата		подпись	ппициалы, фамилия