ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии»

Государственный научный метрологический центр

ФГУП «ВНИИР»

УТВЕРЖДАЮ В ОБДЕ

Заместитель директора по развитию

ФГУП «ВНИИР

«30» августа 2018 г.

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений СИСТЕМЫ ИЗМЕРЕНИЙ КОЛИЧЕСТВА НЕФТИ И ГАЗА «ОЗНА-ИС2»

МЕТОДИКА ПОВЕРКИ

МП 0833-9-2018

Начальник отдела НИО-9

К.А. Левин Тел. отдела: +7 (843) 273 28 96

РАЗРАБОТАНА

ФГУП «ВНИИР»

исполнители

Левин К.А

УТВЕРЖДЕНА

ФГУП «ВНИИР»

Настоящая инструкция распространяется на Системы измерений количества нефти и газа «ОЗНА-ИС2» (далее – системы), предназначенные для измерений массы сырой нефти, массы сырой нефти без учета воды и объема нефтяного газа, и устанавливает методику их первичной и периодической поверок.

Интервал между поверками – четыре года.

1. Операции поверки

При проведении поверки выполняют операции, приведенные в таблице 1.

Таблица 1 – Операции поверки

Haveravanavanavana	Номер пункта документа по поверке	Проведение операции при	
Наименование операции		первичной поверке	периоднческой поверке
Подтверждение соответствия программного обеспечения (ПО) системы	6.2	Да	Да
Внешний осмотр	6.3	Да	Да
Опробование	6.4	Да	Да
Определение метрологических характеристик	6.5	Да	Да

2. Средства поверки

- 2.1. При первичной поверке при выпуске из производства систем в составе установокреципиентов используют:
 - Государственный первичный специальный эталон массового расхода многофазной среды ГЭТ 195-2011 (далее ГЭТ 195) или;
 - рабочие эталоны 1-го и 2-го разряда по ГОСТ 8.637 «ГСИ. Государственная поверочная схема для средств измерений массового расхода многофазных потоков» (далее рабочие эталоны);
- 2.2. При периодической поверке и при первичной поверке при установке системы в находящиеся в эксплуатации установки-реципиенты используют средства поверки, указанные в НД на методику поверки средств измерений (далее СИ), входящих в состав системы.
- 2.3. При периодической поверке допускается использовать передвижные эталоны 2-го разряда по ГОСТ 8.637 «ГСИ. Государственная поверочная схема для средств измерений массового расхода многофазных потоков» в соответствии с п. 6.5.1.1.

3. Требования безопасности

При проведении поверки соблюдают требования, определяемые:

- требованиями безопасности, действующими в помещениях, где проводится поверка, и требованиями безопасности, установленными в руководстве по эксплуатации на эталонные СИ и поверяемую установку;
- правилами безопасности при эксплуатации используемых СИ, приведенными в их эксплуатационной документации;
 - правилами технической эксплуатации электроустановок;
- правилами техники безопасности при эксплуатации электроустановок потребителей.

4. Условия поверки

4.1. При проведении поверки соблюдают условия, указанные в правилах хранения и применения эталонов, и указанные в разделах «Условия поверки» в методике поверки соответствующего СИ, входящего в состав системы.

5. Подготовка к поверке

При подготовке к поверке проводят работы в соответствии с эксплуатационными документами системы и НД на методы и средства поверки СИ, входящих в состав системы.

6. Проведение поверки

6.1. Проводят идентификацию прикладного ПО системы. ПО должно иметь идентификационные признаки, соответствующие указанным в таблице 2.

Таблица2 - Идентификационные данные ПО системы:

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	SP32.IS.001
Номер версии (идентификационный номер) ПО	01.xxxxxx*
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	yyyy**.10AC
Алгоритм вычисления цифрового идентификатора ПО	CRC32

Примечание:

- *— номер подверсии из шести десятичных цифр идентификатор для поиска исходных текстов сборки в автоматизированной системе контроля версий Subversion, используемой производителем, может быть любым;
- **— служебный идентификатор ПО из четырех шестнадцатеричных цифр, расположен перед контрольной суммой, может быть любым.
- 6.2. Если идентификационные данные ПО (наименование и версия) не соответствуют указанным в таблице 2, результаты поверки считают отрицательными
 - 6.3. Внешний осмотр

При внешнем осмотре должно быть установлено соответствие системы следующим требованиям:

- комплектность системы должна соответствовать технической документации;
- на компонентах системы не должно быть механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
- надписи и обозначения на компонентах системы должны быть четкими и соответствовать технической документации.
 - 6.4. Опробование
- 6.4.1. Опробование проводят в соответствии с НД на поверку СИ, входящих в состав системы.
- 6.4.2. Проверяют работоспособность компонентов системы в соответствии с эксплуатационными документами.
- 6.4.3. При поверке с применением эталонов по ГОСТ 8.637 опробование системы проводят путем изменения параметров потока и качественной оценки реакции на такое изменение. Результаты опробования считают удовлетворительными, если при увеличении (уменьшении) значения параметров потока соответствующим образом изменялись показания системы.
- 6.5. Определение метрологических характеристик проводят с применением эталонов по ГОСТ 8.637 (п. 6.5.1) или поэлементным способом (п. 6.5.2)
- 6.5.1. Определение метрологических характеристик системы при первичной поверке с применением эталонов по ГОСТ 8.637.
- 6.5.1.1. Определение относительной погрешности при измерении массового расхода сырой нефти, массового расхода сырой нефти без учета воды, объемного расхода свободного нефтяного газа, приведенного к стандартным условиям проводится с использованием рабочего эталона, или с применением ГЭТ 195, если проведение поверки с применением рабочих эталонов невозможно.

Для поверки система подключается к эталону и на эталоне создается газожидкостный поток с параметрами, соответствующими таблице 3. В каждой i-й точке проводят не менее трех измерений.

Таблица:	3 - Параметры	газожидкостного	потока	при поверке.

№	Расход жидкости, Q_L , т/ч	Объемная доля воды в жидкой фазе, WLR, % об. доли	Объемный расход газа, приведенный к стандартным условиям, Q_G , м 3 /ч
1		От 0 до 35	$(0,0,-0,35) \cdot Q_G^{\max}$
2	$(0,0,-0,35) \cdot Q_L^{\max}$	От 35 до 70	$(0,35-0,7) \cdot Q_G^{\max}$
3		От 70 до 100	$(0,7 -1,0) \cdot Q_G^{\max}$
4		От 0 до 35	$(0,0,-0,35) \cdot Q_G^{\max}$
5	$(0,35-0,7)\cdot Q_L^{\max}$	От 35 до 70	$(0,35-0,7)\cdot Q_G^{\max}$
6		От 70 до 100	$(0,7-1,0)\cdot Q_G^{\max}$
7		От 0 до 35	$(0,0,-0,35) \cdot Q_G^{\max}$
8	$(0,7-1,0)\cdot Q_L^{\max}$	От 35 до 70	$(0,35-0,7) \cdot Q_G^{\text{max}}$
9		От 70 до 100	$(0,7-1,0)\cdot Q_G^{\max}$

 Q_L^{max} - максимальный расход жидкости, создаваемый эталоном или максимальный расход, измеряемый системой согласно описанию типа, т/ч

 Q_G^{max} - максимальный расход газа, приведенный к стандартным условиям, создаваемый эталоном или максимальный расход, измеряемый системой согласно описанию типа, м 3 /ч

При каждом і-м измерении в ј-й точке расхода относительная погрешность определяется по формуле:

$$\delta Q_{ij} = \frac{Q_{ij} - Q_{ij}^{ref}}{Q_{ii}^{ref}} \cdot 100\%$$
 (1)

где δQ_{ii} - относительная погрешность системы при измерении расхода;

 Q_{ij} - значение, измеренное системой (массового расхода сырой нефти, массового расхода сырой нефти без учета воды, объемного расхода свободного нефтяного газа, приведенного к стандартным условиям) при i-м измерении в j-й точке расхода, τ /ч (м 3 /ч)

 Q_{ij}^{ref} - значение, измеренное эталоном (массового расхода сырой нефти, массового расхода сырой нефти без учета воды, объемного расхода свободного нефтяного газа, приведенного к стандартным условиям) при i-м измерении в j-й точке расхода, τ/τ (m^3/τ)

Результаты поверки считаются удовлетворительными, если ни одно из значений относительной погрешности не превышает:

- при измерении массы и массового расхода сырой нефти ± 2,5 %

- при измерении объема и объемного расхода нефтяного газа ± 5,0 %

- при измерении массы и массового расхода сырой нефти без учета воды

- при содержании объемной доли воды до 70 % \pm 6,0 %

- при содержании объемной доли воды св. 70 % до 95 % \pm 15,0 %

Если условие не выполняется хотя бы для одного измерения соответствующей величины, то проводят дополнительное измерение и повторно определяют относительную погрешность измерения соответствующей величины. Если это условие продолжает не выполняться, то поверку прекращают до выявления и устранения причин невыполнения данного условия. После устранения причин заново проводят серию из не менее трех измерений соответствующей величины, и определяют относительную погрешность ее измерения. В случае если условие повторно не выполняется, результаты поверки считают отрицательными.

6.5.2. Определение метрологических характеристик системы при первичной и периодической поверке поэлементным способом.

Определение метрологических характеристик СИ, входящих в состав системы, проводят в соответствии с методиками поверки, приведенными в их свидетельствах об утверждении типа.

Если все СИ, входящие в состав системы, прошли поверку с положительным результатом, система считается поверенной и пригодной к эксплуатации.

7. Оформление результатов поверки

- 7.1. При положительных результатах проведения поверки поэлементным способом оформляют свидетельство о поверке системы, на обороте которого приводится информация о положительных результатах поверки СИ, входящих в состав системы, с указанием заводских номеров.
- 7.2. При положительных результатах проведения поверки системы с применением эталонов по ГОСТ 8.637 оформляют свидетельство о поверке в соответствии с требованиями обязательных НД и протокол произвольной формы, содержащий результаты определения метрологических характеристик системы.
 - 7.3. Знак поверки наносится на свидетельство о поверке.
- 7.4. При отрицательных результатах поверки систему к эксплуатации не допускают, свидетельство о поверке аннулируют и выдают извещение о непригодности в соответствии с требованиями обязательных НД.